
Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 1

Appendix to:
What Makes a Great Software Engineer?

March 7, 2019
Technical Report
MSR-TR-2019-8

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 2

Appendix to:
What Makes A Great Software Engineer?

Paul Luo Li*+, Andrew J. Ko*, Jiamin Zhu+

Microsoft+
Seattle, WA

{pal,jiaminz}@microsoft.com

The Information School*
University of Washington

ajko@uw.edu

APPENDIX DESCRIBING ATTRIBUTES OF GREAT SOFTWARE ENGINEERS

CORRESPONDING TO (Li, Ko, & Zhu, 2015)

Our analysis (Li et al., 2015) identified a diverse set of 54 attributes of great software engineers.

At a high level, our informants described great software engineers as people who are passionate

about their jobs and are continuously improving, who develop and maintain practical decision-

making models based on theory and experience, who grow their capability to produce software

that are elegant, creative, and anticipate needs, who evaluate tradeoffs at multiple levels of

abstraction, from low-level technical details to big-picture strategies, and whom teammates trust

and enjoy working with.

We present a model of the 54 attributes in Figure 1, showing how the attributes

interconnect. We organized the attributes into four areas: internal attributes of the software

engineer’s personality and ability to make effective decisions, as well as external attributes of the

impact that great software engineers have on people and products.

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 3

By decision-making, we mean ‘rational decision-making’, as described in a paper by

Simon (Simon, 1955), as recognizing decisions to be made, identifying alternative courses of

action, assessing likely outcomes, and evaluating values of outcomes. We discuss decision-

making in more detail below.

While informants generally discussed attributes of software engineers that they admired

and liked, many lamented about detrimental and dysfunctional attributes of bad engineers. In an

attempt to identify what makes a great engineer, this dissertation will not emphasize what makes

a poor engineer.” we decided to frame all of the attributes in the positive. Nevertheless, for some

attributes (e.g. the well-mannered attribute), informants’ sentiment was to avoid a trait—being an

‘asshole’—that would inhibit a software engineer from being considered great.

While many of the attributes are applicable to many professions (some simply to being a

‘good person’), our objective was to identify the attributes that expert software engineers viewed

as relevant; more importantly, we aimed to provide contextualized definitions and explanations

of why these attributes were important in real-world engineering of software. In the subsequent

sections, we provide a description of each attribute, reasons why our informants thought it

important, and supporting quotations (including informants’ title and division when this

information would not reveal their identity) that capture the sentiment in interviews.

Figure 1. Model of attributes of great software engineers

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 4

Personality

That is something that can’t be taught. I think it’s something a person just has to have...
They don’t need any outside motivation. They just go…They have just an inner desire to
succeed, and I don't know why. It's not necessarily for the money, it's not necessarily for
the recognition. It's just that whatever it is they do, they want to do it extremely well…
I've seen a lot of smart people that have none of these characteristics...

– Principal Dev Lead, Windows

Informants mentioned 18 attributes that we felt pertained to software engineers’ personalities.

With attributes like passionate and curious, these concerned who great software engineers were

as people. Informants felt that many of the attributes were intrinsic to the engineer—formed

through their upbringing—and would be difficult (if not impossible) to change.

Continuously improving

… Always looking to do something better, always looking for the next thing, studying
about the newer thing… [Great software engineers will] study different articles and
research papers on software development and stuff. So they're more up to date on newer
technologies and newer ideas and thoughts of software architecture or software
engineering in general… they are essentially continuing their education and continuing
to look, to do things better, is a really big plus.

– Senior Dev Lead, Gaming

Many informants described great software engineers as continuously improving: constantly

looking to become better, improving themselves, their product, or their surroundings. Informants

felt that great software engineers desired to improve things for which they felt ownership,

moving it to a state that they felt was better:

He was not the kind of person that would keep doing things the same way even if other
people thought it was fine. He was always looking to improve.

-Software Architect, division removed to preserve anonymity

Generally, informants felt that continuously improving was important for two reasons.

First, informants recognized that engineers did not start their careers being great; young software

engineers needed to learn and improve in order to become great. Second, informants felt that

because the software field was rapidly changing and evolving, unless software engineers kept

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 5

learning, they would not continue to be great. This notion of running up an infinite escalator was

prevalent among our informants:

Computer technology, compared to other sciences or technology, it's pretty young. Every
year there's some new technology, new ideas. If you are only satisfied with things you
already learned, then you probably find out in a few years, you're out of date… good
software engineer [sic], he keep investigate, investment. [sic]

– SDE2, IT

The need to continue one’s learning is closely related to ‘continuing professional

development’ discussed in the ACM Software Engineering Curricula (Joint Task Force on

Computing Curricula, 2014). Graduates are expected to continue their education even after

attaining their software engineering degrees: “learn new models, techniques, and technologies as

they emerge and appreciate the necessity of such continuing professional development.” This

edict is in the code of ethics for many professions (e.g. medicine (AMA, 2001) and ‘traditional’

engineering (NSPE, 2007)) and appears to be a fundamental aspect of most learned professions.

Open-minded

…the problem is sort of in a way the inverse of sharing, which is people not being willing
to take the input of others… That I see as a big problem. You’ve heard of NIH – not
invented here. That’s a huge problem… It comes from this unwillingness to accept what
other engineers are eager and willing to share.

– Principal Dev Lead, Applications

Most informants described great software engineers as open-minded: willing to let new

information change their thinking. Informants felt that great software engineers, even if they

were the experts in their area, were open to changing their thinking based on new information

presented to them. Frequently, informants discussed this attribute negatively, describing some

software engineers who would dismiss ideas and technologies that they did not conceive, also

known as the ‘not invented here’ mentality. Great software engineers were not reported to be

conceited about their knowledge and did not believe that they knew everything.

Informants felt that not being open-minded lead to suboptimal decisions, commonly in

two ways. First, informants felt that outcomes in software engineering, such as user reactions and

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 6

commercial success, were difficult to predict. Therefore, great software engineers needed to be

open to letting real-world data change their thinking:

You should be open… what you think need not be the right thing tomorrow… like the
Facebook explosion, when Myspace was already there, but it exploded… no one knew
that Facebook would explode when it started.

– Senior SDE, Web Applications

Informants also felt that many software products were large, complex (e.g. extensive use of

layering and abstractions), and constantly changing; therefore, it was rare for any one person to

have a complete understanding of the software product and of all the implications of design

choices. Therefore, even experts needed to be open to changing their understanding when

provided with new information:

No matter how much you know, the software industry is so large… there’s so many other
areas… If that person has something to say that hadn’t occurred to me, I’ll stop
everything and say, ok, explain this. What did you see, that I didn’t see?

– Senior SDE, Applications

Executes; no analysis paralysis

“[Great software engineers] should not be just idealistic software designers where you
can think you can do a lot of, they should not get into analysis paralysis… write the most
optimal solution for the problem on hand.

– SDE2, Devices

Several informants described great software engineers as knowing when to execute, not having

analysis paralysis: knowing when to stop thinking and to start doing. By ‘analysis paralysis’,

informants meant taking too much time to think about alternatives or over optimizing the

solution. Many informants felt that many things in software engineering, such as the variability

of alternative technologies, could not be known ahead of time. Furthermore, most projects had

hard deadlines. Therefore, a saturation point existed where additional thinking and debate was

detrimental to the success of the software product:

…you have to not be so thorough that you don't get anything done because you're
spending all your time analyzing, or researching, or prototyping, or whatever you do,
you'll never deliver anything.

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 7

– SDE2, IT

Informants felt that great software engineers understood that they existed to ship products

to customers in a timely manner. The product might not be successful if engineers spent too

much time thinking about the problem rather than implementing the solution. The overwhelming

sentiment was that ‘perfect should not be the enemy of the good’:

“[Some engineers who are not great] like to go very deep in the problem. For them,
problem solving is the goal actually. They don't care as much about shipping. They will
go for the last one percent improvement also. Then you'll be like, "there's no business
value. It’s 90% accurate, I’m good" They're like, "no, no I can make it 96%."… a
different skill set to be successful there compared to successful here.

–Senior Dev Lead, Web Applications

Microsoft, as a for-profit company, likely influenced informants’ perspectives about this

attribute. Business terms like ‘time to market’ were commonly used by our informants in

discussions. While many software development organizations are like Microsoft, software

engineering research indicates that many ‘open-source’ software projects have a primary goal

other than making money like Mozilla (Ko & Chilana, 2010) and Linux (Raymond, 2001).

Whether and how this attribute manifests in the ‘open source’ contexts may be an interesting

area for future research.

Self-reliant

Rather than looking around for somebody to solve it for them... try to figure out how they
can do this on their own… get yourself unblocked attitude works really well in this
company.”

– Principal SDE, Windows

Informants commonly described great software engineers as self-reliant: getting things done

independently (i.e. not needing to go to their lead/manager for help constantly) and removing

roadblocks by leveraging their abilities and resources (e.g. asking other experts for help). Great

software engineers were not expected to know everything; rather, they were expected to have the

initiative and ability to seek out answers independently in order to deliver on their objectives.

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 8

For many informants, being self-reliant was a minimum requirement for working at

Microsoft. Even new software engineers were expected to be able to make forward progress on

complex and novel problems with limited guidance:

I think that engineers go through this growing up phase, but there's a key milestone
where they realize that they actually don't need anyone else's help… you just need to
figure out yourself… You have to be more independent.

– SDE2, Enterprise

However, several informants lamented that some engineers, though technically capable with high

seniority, lacked the ability to reach objectives by themselves. Our informants felt that reliance

on managers and leads for day-to-day guidance prevented these engineers from being considered

great:

…there's sort of a base differentiator. I would call it effectiveness. I work with a lot of
people…super smart, they have the skill sets, they're just not effective… They lack self-
confidence. They come to you and ask you questions all the time and you work with them
all the time and you say, just make a decision and do this on your own, you're level 63 [a
senior level engineer]… you need to be able to do this on your own.

– Principal Dev Manager, Web Applications

This attribute closely mirrors the ‘movers’ attribute—avoiding uncertainty and lack of

self-efficacy—discussed in Begel and Simon’s paper (Begel & Simon, 2008). One of the

rudimentary attributes that new hires needed in order to be effective at an organization was self-

reliance. Building on the Begel et al. study, which focused on new hires, our findings indicate

that the ‘ability to make independent progress’ may not be so basic after all; it may be an issue

for new and experienced software engineers alike.

Self-reflecting

... a little bit of an intuition and maybe the ability to see where you're going wrong and
step back so self-reflection a little bit maybe is important, being able to recognize, yeah,
this ain't working, I better start over.

– Principal Dev Lead, Gaming

Several informants described great software engineers as self-reflecting: able to recognize when

things are going wrong or when the current plan is not working, and then self-initiate corrective

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 9

actions. This attribute is likely a manifestation of the concept of metacognitive awareness in

cognitive psychology (Schraw, 1998), where people have (or can learn) the ability to self-

monitor and self-regulate. While it was not clear what triggered the recognition (e.g. checklist or

intuition), informants felt that great software engineers were able to self-initiate corrective

actions in order to avoid dead ends (i.e. wasted effort), failures to deliver, and/or bugs that harm

users:

It turned out most of the accidents… you learned that the engineer who wrote that code,
didn't have the right level of training and understanding to write it… they did something
that was textbook but it didn’t really apply to what they were doing.

– Software Architect, division removed to preserve anonymity

Informants felt that great software engineers needed to be self-reflecting because they

were commonly the people who were the most knowledgeable about the area and the situation.

Therefore, they were best able to recognize when the current direction or strategy was untenable:

[Great software engineers] should have a sense of where you should be... I understand
that if it's a two-week project, I really know that by four or five days and I need to be at
this point and if I'm not there, I need to make adjustments. It’s surprising of how many
people don't necessarily recognize that.

–Principal Dev Lead, Enterprise

Persevering

Ultimately I will never give up. I will live here day and night to make sure it happens…
definitely intelligence is required but the people continuously keep hearing that, ‘okay, I
won’t give up. I will try to find out a solution.’ Those people always succeed.

– Senior Dev Lead, Enterprise

Many informants described great software engineers as persevering: not dissuaded by setbacks

and failures; they kept on going, kept on trying. Their confidence and belief was bolstered by

previous experiences overcoming setbacks to achieve success:

It's quite often that you face a problem, you look at it and say, ‘I have no idea how to do
this. This is too big.’… If you easily give up, then you will end up giving up pretty much
every hard problem you touch.

– Partner Dev Manager, IT

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 10

Informants felt that perseverance was important because software engineers constantly

encountered difficult problems during real-world engineering of software, such as seemingly

impossible objectives, difficult bugs, and dead-end investigations. Therefore, it took perseverant

software engineers to overcome problems and to successfully deliver software products:

Most coders don’t know what they need to know or actually… don’t know how to do
something right away. There’s a lot of learning on the job, right. There’s a lot of figuring
out, a lot of you know, doing the search for how to do this, how to do that. Following
through and knowing how to do those things is very important for a coder. Like not just
giving up right away and looking for someone else saying we should change our
objective…

–SDE2, Enterprise

A side benefit of the perseverant attribute was that it often created positive feedback

loops. Several informants discussed perseverant engineers—successfully delivering software

products despite setbacks and failures—were often given subsequent interesting and challenging

assignments by their managers because they proved their perseverance. These opportunities

enabled great software engineers to grow their skills and knowledge quickly, as well as gain

recognition and promotions faster:

They always press in to find the issue; even they facing the hardship they will
aggressively to find a way to fix the issue. Maybe they get [interesting] assignments the
way they handle the issue.

– Senior SDE, Devices

Interestingly, being persistent was explicitly called out in a paper (McConnell, 2004) as

possibly being detrimental in software engineering. In McConnell’s opinion, “Most of the time,

persistence in software development is pigheadedness—it has little value. Persistence when

you’re stuck on a piece of new code is hardly ever a virtue.” This attribute is one of many for

which dissenting opinions exist; the fact that expert software engineers can have differing

opinions is a motivation for our subsequent studies.

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 11

Curious

…the best people naturally are not satisfied until they’ve really figured out the
problem…The best ones they just have this thing and then they just want it by themselves
until they’ve figured it out.

– Principal Dev Manager, Web Applications

Many informants described great software engineers as curious: desiring to know why things

happen and how things work (e.g. how the code and the context interact to produce a software

behavior). Informants felt that great software engineers desired to deeply understanding how

products worked end-to-end (typically their own or competitors), not satisfied with superficial

‘black box’ knowledge:

A curiosity… how things work, why things work, the way they work, having that curiosity
is probably a good trait that a good engineer would have. Wanting to tear something
apart, figure out how it works, and understand the why's

–Principal Dev Lead, Gaming

For our informants, being curious was important for three reasons. First, it motivated great

software engineers to gain a more thorough understanding of their technical domains, which

enabled them to derive better solutions and to make better decisions. Second, knowing the

important parts of the product (i.e. where the essential difficulties lie), meant those areas

received the appropriate attention during development. Third, figuring out the nuanced side

effects of various actions enabled great software engineers to avoid problems when designing or

coding:

You're doing step by step a really hard problem and then you're always curious, what's
next now… when you're writing a code, you have indirectly debugging in your mind,
‘Okay, I'm writing this line, this will happen, now this is going to happen, now this is
going to happen, now this is going to happen.’

– Senior Dev Lead, Enterprise

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 12

Craftsmanship

Really being able to demonstrate something that you've done, that you're really proud of,
and speak to it well. When you do your work that you take pride in the fact that it's
quality work.

–Principal Dev Lead, Gaming

Several informants described great software engineers as having craftsmanship: taking pride in

oneself and one’s product, letting their output be a reflection of their skills and abilities.

Informants believed that most software engineers knew the difference between doing something

and doing something right. Great software engineers with craftsmanship did not cut corners and

did things the right way:

It's nice to know how it works and all that kind of stuff, but actually making yourself do it
that way is a task in itself. The discipline is really important to be paired with the process
and all that kind of stuff, so yeah, discipline is key.

–Principal Dev Lead, Gaming

Informants commonly discussed two reasons for craftsmanship being important. First,

even with numerous quality assurances processes in place, to test/validate all scenarios was often

difficult. Unless the software engineer ‘did things the right way’, the shipped product would have

many problems. This might have been especially important at Microsoft where, historically,

other people—testers—were responsible for verifying that the code was correct and met

specifications. Therefore, informants felt that great software engineers did not merely do

minimum work, ‘throwing it over the wall’ for the tester to find the problems:

…in that attention to detail that willingness to, also the introspection packet to really be
able to say, "Oh gee, I may not have accounted for this. Let make sure I account for that."
and, "Oh, gee, this might not work here. Let me make sure I account for that. And really
following through. Whereas, there's others who are just like, "Let me just do the minimum
to be able to say I’m done with it and move on.

–Principal Dev Lead, Applications

Second, informants felt that software engineers with craftsmanship did “not stop caring

once the code was checked in”, extending their stewardship of their code to deployment and

maintenance. Issues after deployment were common and having software engineers that

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 13

remained engaged with the product—who did not simply ‘check out’ or move onto the next

thing—helped the long-term success of the product:

‘I think seeing things through to the end’ is like once you build something you don’t
immediately check out, you’re not gone. It’s still your baby, you still need to kind of get it
walking, get it running. As people consume it they’re going to find bugs and you just need
to be there to fix them quick and keep people happy.

–SDE2, Web Applications

Overall, there was a feeling of respect for software engineers with craftsmanship among

our informants. They felt that software engineering was often hard and tedious, sometimes

needing to iterate many times to account for edge cases and special conditions. Consequently,

software engineers were often tempted to cut corners. Our informants felt that great software

engineers consistently resisted these temptations and always did things right. They took pride in

doing something to the best of their abilities:

…willingness…to say, ‘Oh gee, I may not have accounted for this. Let make sure I
account for that.’ and, ‘Oh, gee, this might not work here. Let me make sure I account for
that.’ And really following through. Whereas, there's others who are just like, ‘Let me
just do the minimum to be able to say I’m done with it and move on.

–Principal Dev Lead, Applications

Desires to turn ideas in to reality

They feel more accomplished at the end of the day if they’ve actually built something
whether it was with their hands, or maybe they drew something, maybe they designed
something, maybe they wrote some code. I think you have to have that…. personality
trait.

–Senior SDE, Windows

Several informants implied that great software engineers desire to turn ideas into reality: takes

pleasure in building, constructing, and creating software. This can be an entire software product,

a feature within a product, or even a solution to a hard problem. Informants felt that great

software engineers felt joy in bringing something into existence that did not exist before.

We inferred the importance of desiring to turn ideas in to reality from our interviews. The

sentiment was that software engineers with this attribute would bring new things into existence.

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 14

Great software engineers often saw potentially new products and new features based on their

understanding of the technical domain; yet, it took those with a desire to turn ideas into reality to

actualize those features, bring new things into existence that could substantially change the

world:

[Great software engineers] have a sense of a potential that software has, right?... I think
the people that are great are able to grasp a bigger chunk of that potential and sort of
turn it into something useful … I think in this field really the limitations are all in your
own head. I think there are people who are able to kind of push those limits out a little
further and grab a bigger piece of what they think they can do.

–Principal Dev Lead, IT

This attribute overlaps somewhat with other personality attributes, e.g. executes and

productive; however, we felt that the desire to birth something new into existence was a

distinctly separate sentiment. Whereas other attributes might lead to creation of new things, none

focused directly on desire to ‘create’ as the motivation:

It’s more like you have an urge to create. You get satisfaction from creating.

–Senior SDE, Windows

Willing to go into the unknown

People are just naturally going to gravitate towards their comfort areas and just kind of
hang out there…But if you're willing to take those risks and learn about other things and
then actually apply them they can help move you forward. But apply them might mean
getting out of your comfort zone.

– Senior Dev Manager, Windows

Many informants described great software engineers as willing to go into the unknown: taking

informed risks into new areas even though they may not have, at the time, knowledge or

expertise (e.g. a new technology). Informants felt that it was important for software engineers to

overcome inertia: try new things, gain new knowledge, and push the boundaries of their domain:

[Great software engineers] are willing to take the risk to try to make the product
successful... if we don’t do it, we won’t improve our selves, if we stay wherever we have
we actually just never change, never bring the new stuff to the whole company

 –Senior SDE, Devices

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 15

Informants felt that willing to go into the unknown was important for two reasons. First,

in order for a software engineer to produce a successful software product, commonly entailing

‘differentiator’ that distinguished it from competitors, the software engineer often needed to push

the technological envelope:

…being bold enough to take the risk of making some mistakes… explore some new ideas
or some new technologies that's not foolproof yet... So, if you have shut that door right
from the beginning, and I've seen many people like that, that's not going to yield good
results.

– Senior Dev Lead, Enterprise

Second, great software engineers commonly needed broad holistic understandings of their

domain; this often required them to branch out into new areas. Willingness to go into the

unknown enabled engineers to gain new knowledge and perspectives, understandings different

ways of ‘doing things’:

…at Microsoft, they say, "You have to move every two releases within Microsoft." They
encourage people to move, so they can broaden their knowledge and learn a lot of stuff,
rather than being stuck in one spot. Those might be patterns, inertia.

– Senior Dev Manager, Windows

Passionate

[Great software engineers] are usually very interested in the area they're in. They like it.
They would probably play with that even if they weren't getting paid for it. The best
engineers don't see it as a job, they see it as a hobby and they just like doing the work… I
don't think I've ever known a really good coder who hated the feature he was in… I firmly
believe every coder who hated what they're doing some other developer paid the price
later.

– Principal SDE, Windows

Informants described great software engineers as passionate: intrinsically interested in the area

they are working in, and not just doing it for extrinsic rewards such as money. Informants felt

that great software engineers did not simply view engineering software as their job, rather it was

their passion; great software engineers would do what they did, even if they were not paid.

Informants discussed various aspects of the software product as being potentially interesting,

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 16

from the software product itself (e.g. Xbox), to attributes of the software product (e.g. aesthetics,

security, or performance), to the technology area (e.g. mobile computing or big data):

…knowing what people are passionate about, knowing what people are not passionate
about; it’s hard but it’s really key to people’s long term health, and desire to actually
produce results… Some people love security, for instance, other people hate security. If
you give somebody who hates security a security function, they're just going to not
perform well, regardless.

– Senior Dev Manager, Windows

As indicated in the quotes above, most informants felt that software engineers will not

succeed if there is a mismatch between their interests and their assigned task, and the software

product will ultimately suffer. Great software engineers needed to find project and assignments

that matched their passion.

I think that there are people who are great software engineers who are in the wrong
place and aren't motivated and they end up not performing well.

– Principal Dev Lead, Enterprise

While this raised the possibility of task/assignments that no one wants (and consequently bad

software), there was an underlying sentiment among our informants that no matter the subject

matter, there would be someone with a natural affinity towards it, such that they would want to

work on it:

I found that there's always a person who's passionate about every type of thing, you just
have to find the right people… I ended up in the wrong job for six months. It was painful.
People around me, they loved their work

– Principal Dev Lead, Devices

Focused

In an environment like Microsoft where there’s a lot of meetings and interruptions… [this
great software engineer] just figured out that when he can get away from the chaos of the
day-to-day, he could come back and make very good use of that time.

–Principal Dev Lead, Web Applications

Several informants described great software engineers as focused: allocating and prioritizing

their time for the most impactful work, not overwhelmed by daily distractions and tasks.

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 17

Informants felt that software engineers experienced many distractions daily (e.g. meetings, IMs,

and emails) and were assigned many tasks. Great software engineers were able to focus on the

most important tasks, often structuring their days to have sufficient time to complete priority

items:

I think the other thing is focus. At Microsoft we have priorities every day. Everybody
going to be working on different issues and different priorities… It's easy to get lost by
the work… It can be always busy, but do you make the choice of the right priority? That's
the challenge.

–SDE2, Devices

Our informants did not discuss avoiding disruptions, as many were resigned to

interruptions and meetings—where the team aligned understandings and shared information

activities—being painful but necessary parts of large scale software development:

There’s some simpler things just in terms of raw speed and focus. In an environment like
Microsoft where there’s a lot of meetings and interruptions, I think it takes … A
developer has to kind of figure out how to get their focus and when to get their focus.

–Principal Dev Lead, Web Applications

Most informants viewed the focused attribute as a software engineer’s ability to deal with such

disruptions. Informants commonly discussed the attribute as a mental attribute, where great

software engineers were intrinsically more effective at switching quickly between contexts and

recovering quickly to their previous tasks; nonetheless, in several instances, informants also

discussed great software engineers devising processes of dealing with disruptions, e.g. making

prioritized lists, coming in early before others arrive for uninterrupted time, and blocking time

out on the calendar to focus on high priority items.

The underlying issue associated with this attribute, interruptions, is a rich research topic

within software engineering. Many researchers have sought to understand the nature of varying

kinds of interruptions (Dabbish, Mark, & Gonzalez, 2011), their impacts on various tasks

(Czerwinski, Horvitz, & Wilhite, 2004), and approach for mitigating their negative effect (Iqbal

& Horvitz, 2007). In our study, our informants largely ignored the nature and impact of

interruptions, instead focusing on the software engineer’s ability to make progress despite the

existence of interruptions.

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 18

Systematic

You have to be patient and not rush to the solution. You have to go through a mental
gymnastics in order to get to a solution.

– Principal SDE Lead, Windows

Several informants described great software engineers as systematic: not rushing or jumping to

conclusions, addressing problems in a systematic and organized manner. Informants felt that

great software engineers took actions in logical and ordered steps, carefully reasoning about the

unbounded and complex nature of software. They decomposed problem into manageable pieces

of investigation to be investigated in an orderly manner:

They are fairly quickly able to break any arbitrary problem down into its components…
help shape the solution… it’s the fully and accurate picture of the problem and
understanding where the boundaries are, and the pieces are.

– Principal Dev Manager, Web Applications

Without being systematic, informants felt that engineers were prone to waste time and

resources on fruitless investigations and strategies. Informants felt that it was common for

software engineers to have an initially wrong hypothesis about the situation; therefore, great

software engineers needed to be “thoughtful” and “not immediately try to project this ideas about

what it might be”. Great software engineers systematically approached problems to avoid

“chasing down blind alleys”. This was true for design tasks, but also particularly true for

debugging:

If you're given a very humongous amount of code and there is a problem, you can’t
debug each and every line of the pool... step by step. You get to the root of the problem
very fast.

– Senior Dev Lead, Enterprise

Software engineers frequently formulate and validate hypothesis about code behavior,

especially during maintenance tasks, as reported by many researchers (Ko, DeLine, & Venolia,

2007) (Ko, 2006). Findings about the systematic attribute in this study provide nuanced

understanding that how the activity is performed distinguishes the great software engineers.

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 19

Adaptable to new settings

…things are going to change, what are you going to do about that? Are you going to be
one of the people that are helping to change? ...everything from values to fit into the
group, or the product, or the problem you're trying to solve, and I think that that is
important… How are you going to take and adapt your situation to move forward, and
how do you adapt to work with what you have to work with?

– SDE2, IT

Many informants described great software engineers as adaptable to new settings: continuing to

be of value to the organization even with changes in what they do (e.g. software product and

organizational objectives) and how they do it (e.g. people, processes, and technologies). Whereas

willing to go into the unknown entailed self-initiated changes, informants felt that changes often

occurred outside of the software engineer’s control, including changes to the organization, to

focus of the software product, to the competitive landscape, as well as to the task assigned to the

engineer:

…embrace new ideas, new technologies, patterns of doing things, being adaptable to a
new team, being able to adapt to a new team and their culture… [great software
engineers] need to be adaptable… we need to be adaptable to accommodate change in
our lives, especially professional lives.

–Senior Dev Lead, Enterprise

Informants felt great software engineers were able to successfully navigate and adapt to

the changes around them. Regardless of the context, the organization could expect positive

results from great software engineers. Many informants discussed the ever-evolving nature of

software development as a contributing factor to this attribute: “the time changes and good

software engineer will adapt to it”:

Whatever feature you happen to be working on one day you guys may decide that you’re
heading down path A and this is how the feature is going to work and then all of a sudden
you said it’s going to run into this problem so we need to switch and go down path
B…You do have to be flexible to change because there is a lot of change in the software.
It’s superfast, growing and changing industry.

–Senior SDE, IT

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 20

However, the notion of software engineers as ‘interchangeable parts’ was not shared by all

informants. It conflicted with the notion of needing a tight fit between the interests of software

engineers and the task they are assigned (passionate). Furthermore, some informants felt that

certain technical domains required ‘deep expertise’ such that it was rarely practical to move

software engineers to/from that area:

…our developers tend to stay… It’s a very specialized area, and there’s not any other
group within Microsoft to hop around to, so you basically give up 10 years or 20 years of
education in order to move to a different group if there’s something completely different.

– Principal Dev Manager, Applications

Productive

“Some developers can do things very fast. The work takes someone else maybe half a
day, [they] can take half the time required.

– Senior Dev Lead, Web Applications

Many informants described great software engineers as productive: achieving the same results as

others faster, or taking the same amount of time as others but producing more. Productivity–the

speed and the number of tasks completed—is often used as a measure of expertise when

comparing novice and expert developers. Our informants felt similarly; great software engineers

produced code faster:

… developer productivity is always an example. Some of the developers that are most
highly regarded are the ones that are able to produce more results than others… no one's
ever consider the great developer if their productivity isn't great

– Principal Dev Manager, Enterprise

In addition to the obvious business benefit of enabling their software products to reach

the market faster, informants also discussed productive engineers enabling their teams to ‘fail

fast’. Informants described scenarios in which great software engineers quickly produced a

MVP—minimum viable product—to understand and to reason about the product. Since some

things in software engineering were difficult to know ahead of time, productive engineers

quickly provided information that enabled the organization to make better decisions (sometimes

to forgo further investment in the products):

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 21

In a start-up, where you've got a deadline to actually secure your next round of funding,
and doing so requires that you have the product in certain level of minimal viability.
Speed is really of the essence. Being able to rapidly iterate, fail fast, that kind of thing.

– Principal Dev Lead, Web Applications

Aligned with organizational goals

A mismatch of value… their number one goal is really to learn and learn … you are paid
because we are a business.

– Principal Dev Manager, Web Applications

Several informants described great software engineers as aligned with organizational goals:

acting for the good of the product and the organization, not for their own self-interest. Usually

discussed in the negative, informants commonly described two forms of misalignment. First,

some software engineers focused on an interesting technology rather than customer needs; this

commonly led to wasted efforts on software features that did not make the software product

more value to customers:

… my job is to provide value to the customers so that they’ll buy our product. Writing the
coolest, most fun, neatest software solution, in fact often does not provide the best
customer value. Sometimes the most boring, mundane, simple, brute force, least cool bit
of code is exactly what’s going to provide the best customer value. For me having
passion about providing customer value is important. More important than writing
something cool software.

– Principal Dev Lead, Applications

Second, some engineers neglected less glamourous aspects of system (e.g. usability); this neglect

commonly led to poor quality.

In addition to completing their own tasks, great software engineers undertook tasks

outside of their responsibility in order to help their software product to be successful, such as

writing documentation, answering customer questions, or running tests. Informants felt that

having great software engineers that had bought-in to the success of the organization was

necessary for successful software products:

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 22

I will do whatever it takes. You need to run a test pass, I will do the test pass. You need
somebody to write some docs, I will go write docs. You need somebody to help with
customer support I can do that.

– Principal Dev Lead, Gaming

The attribute is close to the concept of ‘signing up’, described by Zachary in his account

of the creation of Windows NT at Microsoft (Zachary, 1994); software engineers committed to

joining a team to work a software product, implicitly indicating that they were willing to do

whatever it took to make the software product successful. This concept was also discussed in

Soul of a New Machine, Kidder’s Pulitzer winning account of software development at Data

General (Kidder, 2000). The notion of great software engineers committing to delivering

something and then doing their best to deliver on their promises appears to be a long-standing

unwritten rule within software engineering:

He's very dedicated to whatever thing he took on, meaning that if he promised to deliver
something, he was going to do his best to deliver that, took pride in delivering what he
said he would deliver.

–Principal Dev Lead, Applications

Data-driven

Look at things in a more scientific way, a more empirical sort of way… do the
measurements, [great software engineers] will understand, and they’ll try to break down
the data… a hypothesis about what I think will make it better, and try the hypothesis and
measure again, and look at look at the results.

– Principal Dev Manager, Web Applications

Many informants described great software engineers as data-driven: measuring their software

and the outcomes of their decisions, letting actual data drive actions, not depending solely on

intuition.

Informants commonly discussed two benefits. First, by creating feedback loops,

informants believed that great software engineers used data to confirm or disprove

understandings and expectorations, helping them to improve their future decisions:

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 23

…data driven and not instinctive driven for most of the time... collect customer data and
take some of that into account while you're making the next wave of decisions.

– Senior Dev Lead, Enterprise

In some situations, such as A/B online experiments (Kohavi, Frasca, Crook, Henne, &

Longbotham, 2009), informants believed that great software engineers tried various options and

then made choices based on actual customer preferences instead of resorting to rhetorical or

intuition-driven arguments:

Very iterative… Just try it. We have a hundred online experiments running at any time on
users. When people get into debate… the way I look at it is: how do I make the system
better so that I can try all these three ideas… it's very experimental.

 –Senior Dev Lead, Web Applications

Overall all, informants viewed being data-driven as an effective approach of avoiding

confirmation bias, leading to better software products. However, many informants lamented that

simply having data was no panacea. They stated that software engineers frequently found ways

to ignore the data or to discredit the evidence, leading to bad engineering decisions:

One thing that surprises me… even though we are driven by data, at least we try to
believe we are… Some data gets shown to us. We figure out some ways to ignore it. So,
maybe, maybe everybody thinks that they’re data driven, but I’ve seen people come up
with excuses for why the data doesn’t apply to them. I’ve seen that a million times.

– Senior SDE, Applications

Hardworking

…Incredible work ethic, like the ideal Microsoft employee, he would just work 12 plus
hours a day, just unbelievable. That's proto-typical programmer that we need to hire
more of.

– Principal Dev Manage, Applications

Several informants described great software engineers as hardworking: willing to work more

than 8 hours days to deliver the product. This typically meant working longer days, during

weekends, and/or during other free time in order to accomplish goals. Informants believed that,

at a minimum, software engineers needed to be willing to work beyond normal hours

immediately prior to ship dates in order for the team to successfully deliver the product:

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 24

I remember it came down to the last day. He is going on vacation and we needed to ship
and he stayed late and was there all night… even delayed his vacation by a day, so that
he could get it done and get it out the door so we could ship on time ... he got high praise
for it from the management.

–SDE2, Web Applications

There was a hidden sentiment that engineers were expected to be hardworking. This may

be inherent to the software engineering profession, reinforced by accounts from Microsoft

(Zachary, 1994) and elsewhere. Our informants seemed to accept the fact that software

engineering involved significant amounts of mundane time-consuming but necessary tasks:

I have worked in many different companies and worked in different countries,
engineering, at least from my experience, it's a time-consuming job, especially schedules
generally are tight… There's always issues that come up. There's always a big push,
especially towards the end when you have a date for a project to be completed by. You're
never where you need to be when you start getting close to that date, so you wind up
working extra hours. Unfortunately, there's some people that say, "I'm not going to work
extra hours," and I think that hurts them. Sad to say, but, to be honest, I think that may
not define you as a good engineer.

– Senor Dev Lead, Gaming

Decision Making

How do we make, what I often call, “robust decisions”? What’s a decision we could
make, depending on this range of potential outcomes, which we can’t foresee? ...if we can
make a decision that is viable, whether A or B happens, then we don’t have to fight about
A or B right now.

– Technical Fellow, division removed to preserve anonymity

Informants mentioned 9 attributes that we felt pertained to engineers’ ability to make decisions:

assess the current context (i.e. understanding when/what decisions were needed), identify

alternate courses of action, gauge probabilistic outcomes, and estimate values of outcomes. As

indicated in the quotation above—and numerous more in the sections that follow—engineering

of software requires many choices of ‘what software to build and how to build it’. Many of our

informants’ descriptions of great software engineers involved these engineers’ making optimal

decisions under difficult and complex circumstances. Beyond book knowledge, great software

engineers understand how decisions play out in real-world conditions. They not only know what

should happen, but also what can and likely will happen.

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 25

Combining their knowledge, their mental models that tie the knowledge together, and

their mental ability to reason about their models, decision-making attributes were internal to the

software engineer. We grouped these attributes together because they revolved around the

important mental process of ‘making decisions’. Furthermore, in contrast to many of the

personality attributes, the underlying sentiment among our informants was that attributes

concerning decision-making could be acquired.

To make optimal decisions, informants discussed great software engineers having three

kinds of attributes. First, they needed knowledge of several dimensions—technical domain,

customers and business, tools and building materials, and software engineering processes.

Second, great software engineers needed to build and maintain decision-making models that link

the knowledge together—growing their ability to make good decisions and updating their

decision-making knowledge. Finally, great software engineers needed the mental dexterity to use

their decision-making models under real-world conditions: mentally handling complexity and

seeing the forest and the trees. Great software engineers had complex and multifaceted decision-

making models that were continuously updated.

Knowledgeable about their technical domain

You are working in some of the most complex and intricate code bases there are up there.
It takes, look it, for a lot of people, it takes several years to get the point where you can
reasonably go in there and do something without doing any harm, right? If you were
churning people or just had people in there working willy nilly, it wouldn't help you,
right?

 – Technical Fellow, division removed to preserve anonymity

Most informants described great software engineers as knowledgeable about their technical

domain: thoroughly conversant about their software product, technology area, and competitors.

The exact technical knowledge discussed was product and team specific, ranging from

distributed computing in Bing, to signal processing in Skype, to encryption in Servers and Tools,

and more. Informants often discussed needing domain-specific training, as well as an

understanding of the solutions of others (e.g. competitors) in order to have a thorough

understanding one’s own product.

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 26

Informants also believed that thorough understanding included knowing the entire

solution, not just a small piece of the system. This might have been especially important with

large products involving many interconnected pieces, as choices for those systems are more

likely to have side effects. Our informants generally viewed acquisition of this knowledge as a

gradual process; starting out, even great software engineers (e.g. when an experienced engineer

was transferred to another team) were usually assigned a small piece of the product and then

progressively developed a broader and more holistic knowledge of the product:

I feel that it’s like you should have a very good understanding of the entire system as well
as all of the moving parts. Knowing basically, you should have a very good picture, a
good big picture of how it’s supposed to work… the architects behind big systems,
complex systems and know it, all the gotchas, in and out. I really do look up and consider
them great because they spend all this time to learn about systems.

– Senior SDE, Web Applications

Informants’ discussions of the benefits of being knowledgeable about the technical

domain concerned four areas. First, most frequently, informants felt that this attribute enabled

great software engineers to avoid actions with negative consequences, i.e. do not ‘break

something’:

I have a better understanding of what I'm changing... I'm not going to break something
that I'm not getting into… if you had originally written the code, or if you've spent the
time to gain a deep architectural understanding of the code, then it's much easier and
quicker to make those changes than if you're trying to make an isolated change to
something that you don't really understand.

– Senior SDE, Windows

Second, the knowledge enabled great software engineers to focus attention on the most important

areas within the software product, commonly parts of the system that were especially error

prone:

[This great software engineer] had a profound understanding of how the hardware
actually worked and was able to just optimize the key critical paths as a result.

– Technical Fellow, (division removed to preserve anonymity)

Third, great software engineers leveraged their knowledge to identify important innovations to

improve their products. Our informants felt that the key was discerning between important

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 27

advancements—ones worth the investment—versus non-essential changes that were unlikely to

yield meaningful gains. The sentiment was that many things were touted as ‘game changers’ but

few actually were; great software engineers understood their technical domain and were able to

discern important changes:

Technology changes a lot. The actual underlying ideas don’t change all that often but the
way they get expressed changes. I think being able to keep a firm grasp on that stuff is
important. I see people get overwhelmed a lot with the level of detail, so being able to
filter out what’s the essential things.

– Principal Dev Lead, IT

Finally, great software engineers knew about solutions and approaches of others (typically

competitors), which they would be able to borrow and apply to their own software products. This

typically led to better and more successful product:

[Great software engineers] are always interested in what new is out there, what they can
leverage… The technology you can use, what's available, whether it's from Microsoft,
whether it's from somebody else who has created something new and innovative… always
looking at what else is out there…

–Senior Dev Lead, Windows

Knowledgeable about tools and building materials

They understand the why the motivation for, why we have 17 different data structures, a
black tree, and this tree, and that tree and what... they really, really have a better ability to
make the right choice when choosing from this tool set. Or even understanding, well, you
know what? This problem is different in enough ways that’s we’ve got to maybe make a
new tool right here but it’s really understanding I think the why.

– Principal Dev Manager, Web Applications

Many informants described great software engineers as knowledgeable about tools and building

materials: knowing the strengths and limitations of technologies used to construct their software.

However, opinions of what constitutes ‘tools and building materials’ varied greatly among

informants; many software products were ‘building materials’ for other software products at

higher levels of abstraction. No single piece of technology is universally critical. For example,

while the SQL Server was the final product for several informants, the database was a ‘building

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 28

material’ for the informants in Dynamics that used the database to build their CRM management

product:

…But what's happened in the industry is the applicability of those skills has been getting
less and less, to this point that the teams that rely mostly on validating algorithm and data
structure skills, tend to have the least reliability in terms of accurately predicting success
as a developer in the group.

… Databases apply to so much software at this point, I mean you can't really do an online
service, for example, without a database, and using a database, the data structure
algorithm, you're dealing with higher level concepts.

– Principal Dev Manager, Enterprise

Informants’ opinions about the importance of knowledge about tools and building

materials also varied. Some informants felt that since these were things that software engineers

used frequently, and that mastery over them was essential. Others felt that information about

tools and building materials could easily be looked up; thus, engineers merely needed to be

aware of the tools and building materials:

I've found it less important that you really have the entire core computer science
curriculum in your head at any given moment. That's just the understanding of when you
see something coming that you haven't touched in a while, you have to go freshen up on
it…In practice, I sent out some code once to do a binary search on something or other,
and universally the reviewer said, "We don't write that kind of stuff. We rely on standard
libraries for that. It's silly that you would write one of those things."

– Principal Dev Lead, Web Applications

Differing opinions aside, informants felt that great software engineers with knowledge of

tools and building materials produced code faster, were better at debugging, and had fewer

quality issues. Informants felt that the increase in productivity and quality frequently stemmed

from “not having to build one’s own”. Great software engineers effectively leveraged existing

well-tested code; the key was knowing which technology to use and knowing under which

conditions the choices would differ:

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 29

[This great software engineer’s] manipulation of these is very detailed, knowing what to
use under what conditions. There’s no universal approach to this, so the ability to match
the right technology to the right situation, is actually very difficult. To be able to do it
effectively is great. It’s not something everyone can do.

– SDE2, Enterprise

In addition, knowing the limitations of the underlying technologies also enabled great software

engineers to quickly diagnose and resolve unexplained anomalies:

If you write in Java, you're probably not going to have to performant code. That's not your
fault as a programmer. It's just the constricts you're given in Java because it consumes a
lot of memory… Definitely language has a choice of tool makes a big difference in how
good of an end project you're going to get.

– Senior SDE, Windows

Many of the ‘tools and building materials’ (e.g. data structures and algorithms) are

elements of technical knowledge needed by software engineers prescribed by the ACM

Computing Curricula (Joint Task Force on Computing Curricula, 2014). However, rather than

general concepts (e.g. programming languages), the discussions and descriptions provided by our

informants were all grounded in detailed knowledge about specific instantiations (e.g. memory

consumption for Java).

Knowledgeable about software engineering processes

[Great software engineers] know how to go about developing software…how to go about
software development.

– Principal Dev Lead, Web Applications

Several informants described great software engineers as knowledgeable about software

engineering processes: knowing the practices and techniques for building a software product—

purposes, how to, costs, and best situations to use the process. Informants felt that there were

many ways to engineer software, with differing approaches and necessary adjustments for

various situations and contexts. Great software engineers have mastery over the necessary

stepwise processes—and their variants—for a team to successfully complete a software product:

Clearly one of the difficulties in software is it's so easy to do so many different things in
so many different ways, they could all be right, but the amount of effort that it takes to get

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 30

there or the amount of effort it takes to support it later on, really drives the overall
experience of what you've done... [This great software engineer] just always struck me as
someone who really stood above the rest [for knowing what process to use].

– Senior Dev Manager, Windows

Informants identified three primary benefits of being knowledgeable about software

engineering processes: higher quality, more deterministic timelines (i.e. fewer surprises), and

efficient allocation of time/resources. Many informants discussed great software engineers using

(and enforcing) validation processes/techniques to ensure high quality, such as unit testing, test

drive development, and code reviews. Interviewees believed that leveraging these processes led

their software to be high quality:

[This great software engineer] had a really really high bar for kind of engineering
excellence… he did a test driven development thing where you kind of write the test first
and then you know, kind of write the code to match the test… the state of the art was for
basically creating the best way of developing software… this one particular component
that he worked on had like one bug.

 – Principal Dev Manager, Web Applications

In addition to the three primary benefits, several informants also mentioned great

software engineers using ‘processes’ to effectively grow their teams. Great software engineers

established well-defined and well-reasoned processes, formalizing the team’s common

understandings, so that the team effectively grew in size while maintaining coherence and

quality:

How many developers you can throw at a project… having good practices around how
you do the code reviews and check ins and having unit tests that enforces things don’t
break and that kind of thing it is way way more important than the actual having a
beautiful architecture

– Principal Dev Lead, Web Applications

The knowledge discussed in this section shares similarities with technical knowledge

prescribed by the ACM Computing Curricula (Joint Task Force on Computing Curricula, 2014)

and topics discussed in software engineering processes and methodologies research. ‘Software

Verification and Validation’ and ‘Project Management’ are key areas of knowledge prescribed

by the computing curricula; ‘quality’ and ‘predictability’ are key outcomes discussed by

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 31

processes/methodology research (e.g. CMM (Herbsleb, Zubrow, Goldenson, Hayes, & Paulk,

1997)).

Knowledgeable about customers and business

…Really understanding the point: who is the customer, why are we doing this. There is an
old phrase that says an engineer does for one dollar what any damn fool can do for ten.

 – Principal Dev Lead, Gaming

Many informants described great software engineers as knowledgeable about customers and

business: understanding the role their software product plays in the lives of their customer and

the business proposition that it entails. Some informants saw the purpose of software engineering

as benefiting humanity, though most were realistic and pragmatic; the purpose was to make

money. Therefore, most informants felt that software engineers needed to understand what their

customers needed and how their software filled that need. This understanding enabled software

engineers to make software products and services that customers were willing to pay for:

[Some software engineers] want to solve really hard problems, [but instead]…
understanding your customer, find out what they've got, find out what they already want,
what they already do, what's the delta you can provide, how can you help, and then go
find a simple solution to it because at the end of the day, we are a for profit company.

– Principal Dev Lead, Gaming

Informants generally discussed three ways in which knowledge about customers and

business were important. First, informants felt that great software engineers recognized that they

were not the customer; therefore, they used their knowledge to avoid choices that fitted their

needs but did not work for customers. Second, many informants mentioned needing to ‘fill in the

blank’ during development (i.e. making everyday engineering decisions). Written specifications

were often incomplete or out-of-date; therefore, software engineers often needed to exercise their

own judgment in making engineering choices. Informants felt that great software engineers

effectively used their knowledge about the customer and business objectives to make optimal

choices:

Great software architects are not religious about the technology, but they're able to
understand the technology and then say, "Hey, here's how I think we can solve that
business problem better." Through this use of technology and they come out from a

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 32

perspective that's, "I understand what my customer wants," rather than just being like,
"We should just use this technology because it's cool.”

– Principal Architect, IT

Third, great software engineers used knowledge about customers and business to appropriately

test and validate their software products, ensuring that the software worked for their customer’s

scenarios:

Basically think of all the scenarios to cover, let's say I have some feature that I think I
have test cases to cover, how the customer uses it. They should be able to figure out the
issues before they go to the customers.

– SDE2, Enterprise

In addition to benefit to customers, several informants talked about benefit to the

organization. Informants felt that individual software products often needed to integrate together

into broader business solutions or for larger business objectives. Therefore, knowing the overall

business intent enabled decisions that fit within the long-term vision of the company:

…Requirements that are created by the environment, and I actually believe that
understanding those things are as important as good engineering because when you miss
them those are the kinds of things that can set you back for years if you don’t understand
the environment you’re in… Within five years of him pushing, the government began to
require this and had we not done that work we would have basically lost an incredible
amount of sales.

 – Software Architect, Applications

The concept of employees having sufficient business knowledge about their company is

discussed in Administrative Behavior (Simon, 1976), Herbert Simon’s seminal work on

organizations. The sentiment in Simon’s work is the same as those of our informants: employees

needed knowledge about the organization’s objectives (at the sufficient level) in order to make

their own decisions effectively.

Knowledgeable about people and the organization

The nice thing about some of the companies like Microsoft, there's literally people here
who have created a world, the technological world that we live in today. They’re stars in
that regard. We can learn a lot from people in these companies who have more of the
resources of people, I guess. Just trying to tap into this wealth of knowledge that Microsoft
brings to the table, the talent pool that’s here.

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 33

– SDE2, Gaming

Informants described great software engineers as knowledgeable about people and the

organization: informed about the people around them—responsibilities, knowledge, and

tendencies. Knowing ownership (i.e. areas of responsibility), enabled great software engineers to

determine key stakeholders for decisions and to align their work with the appropriate teams:

Make sure that you are aware of that big picture, you know where you fit in and how you
interact with everyone else to optimize what you are doing.

– Principal Dev Lead, Web Applications

Knowing who had expertise enabled great software engineers to find the right people for help—

often domain experts. For software engineers in leadership positions, this knowledge also

enabled them to take corrective action to address knowledge gaps within the team (e.g. assigning

a more senior person):

[This great software engineer] would go through his organization and looked very
carefully at the tasks that were being assigned and whether people had the right level of
training and understanding and if they didn’t, who their supervisor and whether that
person did and would demand code reviews...

– Software Architect, division removed to preserve anonymity

Finally, knowing people’s tendencies enabled great software engineers to adapt their engagement

techniques to obtain desired outcomes:

You have to understand people so that you can influence or impact them... You have to do
that both down and up and out.

– Principal Dev Lead, Devices

Identification of expertise and assignment of responsibility is frequently discussed in

research studies that examine everyday activities of software engineers, notably in studies

examining bug triage/assignment processes of software engineering teams. Multiple studies

found determination of responsibility—bug assignment—as well as expertise as key steps in the

bug-triaging process (Anvik, Hiew, & Murphy, 2006) (Aranda & Venolia, 2009). Identifying

who has technical knowledge, who has ultimate decision-making power, and the methods for

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 34

locating that information (e.g. ‘bug tossing’ (Jeong, Kim, & Zimmermann, 2009)) are all

important to the bug triaging/assignment process of software engineering teams.

Grows their ability to make good decisions

There's a way to look at a problem and get a pretty accurate reading on how much work is
involved to solve it to a certain level of satisfaction…learning where the hard parts of the
problems are probably lurking and what trouble they might cause you or something like
that… Maybe having a good pattern of recognition from that standpoint is important too.

– Principal Dev Lead, IT

Our informants’ descriptions of great software engineers suggest that they grow their ability to

make good decisions: building their understanding of real-world situations including alternatives,

outcomes, and values of the outcomes. Great software engineers effectively identified and

understood aspects of the context that impacted alternative choices and probable outcomes,

which entailed the ability to identify when decisions were needed, available alternative choices

(including how to search for options), probabilistic outcomes (including things what can go

wrong), and the value of the outcomes (including identifying the dimensions of the value vector).

The underlying idea was that great software engineers’ experiences evolved into predictive

models over time; they grew their ability to make good decisions. Our informants rarely used

academic terms such as ‘models’, ‘alternatives’, ‘states’, or ‘outcomes’; they commonly used

terms like knowing ‘what to do’ or ‘what works’:

…Transition from being driven by intuition versus experience is kind of evaluating… The
growth that you're going to experience, it's kind of like the science project, right. When
you're operating on intuition, you're soon to be operating on theory about how things
should work… Like a real scientist, also set expectations about what the outcome should
be and measure those expectations and all that stuff. Kind of reworked that theory until
you converge at something that’s functional, I guess, working.

– SDE2, Gaming

Our informants felt that by growing their decision-making abilities, great software

engineers became progressively better at making decisions, taking actions that were likely to

succeed and avoiding actions that were unlikely to work. Great software engineers also became

better at preparing for things that could go wrong and put appropriate contingency plans in place:

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 35

[Great software engineers] can predict, or they can forecast what's the future… And he
also can predict, say, what's the challenge in the implementation, implemented into this
design. So he can predict how much time you will use, how much developer should be
involved is one, and how much tester [sic], and how long to ship it, something like that.

 – Senior Dev Lead, Web Applications

The outward manifestation of this attribute is improvements in interactions with

teammates and in engineering of their software products. Nonetheless, the sentiment among our

informants was that the underlying genesis of those improvements is the mental ability of great

software engineers to make better decisions over time.

Updates their decision-making knowledge

Unlearning. That's like, the things that I used to do five years ago that make me
successful don't matter anymore; in fact, they can get me into trouble right now… I start
to get to a point where I would assess [an engineer’s] ability to unlearn after a while, like
two thirds or three quarters of what you know is still valuable, quarter to a third is the
wrong thing in this world…

– Technical Fellow, division removed to preserve anonymity

Several informants described great software engineers updated their decision-making knowledge,

not allowing their understanding and thinking stagnate. Informants felt that great software

engineers evaluated changes in their context and updated their mental models (i.e. how they

would make certain decisions), sometimes throwing away obsolete knowledge and building new

mental models:

…it's a constant improvement and constant evolution of what you're doing by learning
how your product is functioning and how it's being used. You then are able to get
feedback and put it back into the product.

– Principal Dev Lead, Web Applications

The two areas that most commonly required updating were knowledge about tools and

building materials and knowledge about the limitations/restrictions of existing technologies.

Informants felt that new and evolving technologies would frequently impact both the available

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 36

engineering choices as well as the expected outcomes of those decisions. Great software

engineers incorporated those evolving circumstance into their decision-making models:

Doctors always need to know about the newest medical treatments, the newest drugs and
interaction between the drugs. Lawyers have a similar thing, they always need to keep
reading, keep understanding what new precedents have been set in the law journals and
stuff. I think the same is true for us. We need to know what problems are solved. I think
we are at a point in software development where we have a lot of options for
implementations, those kinds of things. If we're not current, you just pick the thing you
always work with and it may not be the best tool for the job. I think staying current helps
you know what's the best tool for the job.

 – SDE2, Web Applications

Informants felt that updating decision-making knowledge was essential for great software

engineers to continue being great. Software engineers that failed to update their thinking would

begin to make suboptimal decisions, losing the respect and confidence of their peers:

…Software engineering is one area where probably it has changed the most if you look at
an engineer who started in 2000…Good [engineers] know how to keep learning because
this is an area it doesn't matter how smart you are; things just change all over… back in
2000 lot of things mattered and you were doing lot of, writing a code in a way this buffer
that buffer. Today it's just stupid.

 – Senior Dev Lead, Web Applications

Mentally capable of handling complexity

There are engineers who are frighteningly intelligent, and smart, and they just walk
around with this picture in their head all the time of how everything fits together, and
they get stuff done.

– Principal SDE, Windows

Many informants described great software engineers as mentally capable of handling

complexity: able to comprehend and understand complex situations, including multiple layers of

technology and interacting/intertwining software. Informants felt that some software engineering

problems were inherently complex, necessitating software engineers who can mentally keep

track of all the considerations and implications. This might have been especially salient at

Microsoft, where products were often constructed on top of multiple layers of technologies and

interacted with many other components. Informants felt that the ability to build an accurate

mental model of the interconnections and to be being able to reason about the various options

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 37

and outcomes was critical for great software engineers, especially those in technical leadership

positions.

To solve the problem, [great software engineers] have to have the ability to connect
things… You are always debugging layers of stacks of code… this layer talks to some
other layer in the horizontal...

– Senior SDE, Web Applications

Informants felt that great software engineers needed to be able to handle complexity

because they are commonly assigned the difficult problems. Many great software engineers had

to tackle complex problems where having any solution was an accomplishment. Informants felt

that some software engineering problems were unconstrained messes—often resulting from years

of engineering debt—where software engineers could struggle to simply understand the full

extent of the problem, let alone come up with a solution. Great software engineers are often

assigned those tasks:

The [great software engineers] who tend to move up though, you can give them a
complete mess. Problem is not well defined; maybe somebody’s tried to solve it six
different ways. There’s just all this ambiguity about it… [great software engineers that
can address these issues are] high up in the chain or they will be. If you really need your
problem constrained for success, you’re never going to grow out of that [lesser] role.

 – Senior Dev Manager, Windows

Though some informants felt that the ability to handle complexity was a natural ability,

others felt that great software engineers could effectively augment their natural abilities using

tools and processes (e.g. externalize their knowledge by writing it down):

Ability to capture… simulate the architecture in their head… there's probably a little bit
of innate skill and cognitive ability… That said, the fact that you don't have that skill
doesn't mean that there's no other ways of doing it that may be more brute force…
writing things down and studying very carefully the architecture you've put down is
putting the brute force time into studying a problem.

– Partner Dev Lead, Windows

The externalization of knowledge discussed by our informants differed in intent from

most research on the topic, such as ‘knowledge sharing’ within free/open source projects (Sowe,

Stamelos, & Angelis, 2008). Whereas knowledge seekers were commonly the audience of the

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 38

knowledge externalization in related work, the software engineer him/herself was the audience of

the externalized knowledge in our study. Great software engineers were helping themselves

reason better about the situation by externalizing their understanding.

Sees the forest and trees

[A great software engineer] has to have both a very, very narrow extremely technical
prospective on his code, but also know where it fits in with the bigger picture, and to be
aware of how it affects even our major external customers, and the company vision.

– Principal SDE, Windows

Many informants described great software engineers as being able to see the forest and the trees:

reasoning through situations and problems at multiple levels of abstraction, including technical

details, industry trends, company vision, and customer/business needs. Informants felt that

mental models could exist at various levels and that great software engineers reasoned at all

levels quickly and accurately:

What differentiated [this great software engineer] from other people in management
positions… capability to zoom into the details, and he was not just a high level guy…
know the reality of the stack or the reality of the software…

– Senior Dev Lead, Web Applications

Our informants commonly discussed three reasons why software engineers needed to be

able to see the forest and the trees. First, many informants felt that some objectives, while

seemingly simple, were technically difficult (or impractical); therefore, great software engineers

needed a working understanding of the implications of their decisions at multiple levels in order

to make optimal choices. Second, most informants felt that engineering of software was usually

in service of some higher business objective and that these objectives could be met in a variety of

ways, some may not involve software. Great software engineers that saw the forest and the trees

were able to make globally optimal decisions, avoiding local optimizations (e.g. focusing only on

code solutions). Finally, related to the previous point, being able to see the big picture helped

great software engineers avoid getting enamored with technologies: the ‘if all you have a

hammer, everything looks like a nail’ problem:

It’s making sure they understand both the big picture and the details at the same time. The
people that are really good have enough hands-on [knowledge] to be able to identify and

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 39

solve problems and see the problems and stuff, but they also have a high enough view that
they’re not just chasing interesting problems to solve

 – SDE2, IT

Interacting with Teammates

The way [this great software engineer] just kind of touches people, just dissolves the
conflicts right there… that magic to make people respect him. That’s fun magic, I think
that not everyone possesses.

– Senior SDE, Windows

Informants mentioned 17 attributes that we felt pertained to engineers’ interactions with

teammates. Most informants believed that great software engineers positively influenced

teammates. For many of our informants (whose titles contained ‘Lead’ or ‘Manager’), this was

an important part of their job as managers of other software engineers.

Attributes concerning interactions with teammates generally revolved around four

concepts: being a reasonable person, influencing others, communicating effectively, and building

trust. These concepts are frequently mentioned in the literature, but often without clear

definitions and with little contextual understanding of their importance, as evident in several

survey papers involving interactions with teammates (Radermacher & Walia, 2013) (Cruz, da

Silva, & Capretz, 2015). In our discussions, we deconstruct these four concepts into their

constituent attributes and then examine each attribute separately.

Is a good listener

One of the most frequently discussed soft skills of software engineers is communication skills .

Ahmed et al. found communication skills to be the most commonly cited soft skill in job

advisements for software engineers (Ahmed, Capretz, & Campbell, 2012). Our findings were

similar; many of our informants discussed how great software engineers communicated. Within

these discussions, we discerned effective communications as comprising of three connected

attributes: is a good listener, integrates understandings of others, and creates shared context. We

will explain each of these attributes in turn.

Being a good listener is important, that you’re really hearing the other person’s concerns
and opinions…

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 40

– Senior Dev Lead, Windows

Many informants described great software engineers as being good listeners. For our

informants, this entailed effectively obtaining and comprehending others’ knowledge about the

situation. This knowledge may include static information, e.g. people/organizations and

technologies, as well as dynamic mental models about actions and consequences.

Informants discussed three reasons why software engineers needed to be good listeners.

First, since software engineers needed to be continuously learning—both to become and to

continue being great—acquiring knowledge from others is essential. This commonly helped

software engineers avoid mistakes of the past by knowing the approaches that others had

attempted. Central to that process is being a good listener:

[Great software engineers] don't have to make the same mistakes that other people made
and you can also, you can learn from some of these mistakes by talking to people. It is a
very less expensive way to pick up, you know, valuable experience and knowledge and all
that stuff... engaging people and like learning from them, it's good to be like very active,
like active listening and all that kind of stuff and ask them questions.

– SDE2, Gaming

Second, informants felt that the complexities of software systems today often exceeded

the mental capacity of a single engineer or a single team. Therefore, to make decisions, software

engineers needed to gather knowledge from multiple people:

As the company got big, that role broke down because it did get too big for being able to
hold it in their head. Dave Cutler, when he came on, had that capability as well, but even
today, Cutler, there are parts that he doesn't know about. So that broke down that role.

– Partner Dev Lead, Windows

This need was even greater when collaborating with external teams (e.g. other divisions or teams

outside of Microsoft), since external people, in addition to having different technical knowledge,

often had different contexts. Because of these differences, our informants felt that the ability to

acquire the understand others was important:

[This great software engineer] really listens to other very important customers, and he's
not just listening to what they're saying, but he's listening to what they're trying to say.
He's trying to get a sense for what is the real big problem that they're trying to solve, and
where does Microsoft fit into this…

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 41

– Principle SDE, Windows

Finally, informants felt that great software engineers’ efforts needed to align with

organizational goals. Therefore, they needed to acquire directional guidance and input from their

managers/leaders as well as peers:

[Great software engineers] need to have the connections with the right people because
priority is important. Talk to manager, talk to peers, talk to whatever connection you
need to find that's your priority.

–SDE2, Devices

Though the need to be a good listener seems obvious, many informants lamented that

some software engineers—even experienced engineers—were poor listeners, thus limiting their

potential for growth. Some of the causes that our informants associated with poor listening

included the listener as egotistical, non-native English speakers, and ‘mentally wired’ in a

different, inexplicable way:

I think what was hardest for me was the interaction with other people… Learning to...To
understand what my managers or the company needed.... I don't think I could have
changed what I felt but if I could acquire better skills to communicate with people. To
listen to people… It does create problems I think because you can still be successful in
the right field writing good software. I think you're perceived as someone that just solves
those problems but not someone that can help see the bigger picture.

 – Principal Dev Lead, Web Applications

Integrates the understanding of others

If they say something that doesn't really line up with your intuition, like that's another
time would want to ask questions and like try to figure out, you know, where the
discrepancies lie… To really get it, internalize it and connect it with the way you think
about things. So I think that is when you really are benefiting from the people around
you, you're not just getting good answers from them but you are also being incorporated
into your own, like, mesh it with you own knowledge base.

– SDE2, Gaming

Many informants felt that integrating the understanding of others was another component of

‘effective communications’. This entailed combining and integrating the knowledge of many

people into a more complete understanding of the situation, and then noticing and asking

questions about the gaps. Informants discussed an ‘integration’ process during which great

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 42

software engineers considered conflicting views of involved parties or gaps in

actions/considerations, and rectified inconsistencies in understanding.

Informants felt that integration of understanding was an important attribute because many

poor decisions resulted, not from lack of communication, but rather from lack of clarity.

Integrating understandings was especially challenging for great software engineers in leadership

positions, who need to integrate the understanding of many engineers, with disparate

understandings and perspectives, in order to make advantageous decisions:

I think some of it is a willingness to ask questions and also perhaps figuring out a way to
have clarity of thought… oftentimes lots of disparate ideas and pieces of information
have to be collected and the ones who are able to recognize patterns and put pieces
together can see the picture more clearly. You get some of that through asking good
questions, but you also have a way to organize your thoughts that will help you make
those connections…

– Principal Dev Lead, Enterprise

An interesting benefit of the integrating understanding of others attribute was that it often

benefited others as well the great software engineers. Informants felt that the process of asking

questions and clarifying understanding helped all involved parties gain a better understanding or

new perspectives on the situation:

… you say 10 things, you learn two new things yourself because either people will say,
“Hey, do you think about it this way” or they might just come back and say, “Hey, I also
thought of this way.” It’s almost always whenever you share, you also get better. It gives
you more clarity on what you’re sharing and also makes you learn new things with what
other people are basically thinking.

– Principal Dev Lead, Web Applications

Creates a shared understanding with others

An exceptional engineer will understand how to most compellingly relate the value of
that abstraction as it goes to non-abstract to very abstract to each person in the
communication chain: their peers, as developers, their testers, their PMs, their designers,
their management or if they were to speak at a conference or do demos or interviews of
that nature. It's not merely recognizing it but also being able to empathize with your
audience, whether they are groups or individuals, in order to get them to get it...

– SDE2, Windows

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 43

For many informants, creating a shared understanding with others was the most important

component of effective communication. This involved a great software engineer molding another

person’s understanding of the situation, tailoring communications to be relevant and

comprehensible to others. Informants felt that great software engineers could effectively get

others to see the situation as they saw it. Beyond simply speaking clearly, great software

engineers grasped the level of understanding of others and adjusted their communications—often

simplifying the message—so that others can understand and incorporate the information into

their thinking:

You perceive who you are talking to, and you are able to judge on those levels that they
are, or you just ask important questions. Do you know about this? And then, be able to
simplify the problem to the level that they’re working in, or you estimate the amount of
information given to them.

– Senior SDE, Windows

Generally, three themes emerged to describe why creating shared understanding was

important. First, as leads or as managers, great software engineers often marshalled efforts of

other engineers to achieve engineering objectives, which closely aligns with the notion of

establishing and maintaining ‘conceptual integrity’, as discussed by Brooks in the Mythical Man

Month (Brooks, 1995). Creating shared understanding was requisite for aligning everyone

toward shared objectives:

One person can only accomplish so much so you've always got to be working as part of
the bigger group. People who can't communicate are only going to be sort of so-so
effective…

– Principal Dev Lead, IT

Second, engineering teams (especially teams at Microsoft) needed to coordinate efforts

with other engineering teams. For example, Windows application team working on the Edge

internet browser had dependencies on the Windows platform. Therefore, creating shared

understanding with engineers in other areas was often necessary in order to make decisions about

where and how to make changes to software:

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 44

…bring partners, especially difficult issues when people have different opinions… It
really depends on your personality and how you communicate.

– Senior SDE, Web Applications

This theme is close to the concept of information sharing reported in studies that examine

‘negotiation’ processes of software engineering teams (Sandusky & Gasser, 2005). Software

engineers must be able to communicate their understanding and perspective to partner teams in

order to achieve good outcomes.

Finally, great software engineers often need to communicate with important stakeholders

who are not engineers, including executives, experts in other areas (e.g. marketing), and external

customers. These people may not have a similar or complete understanding of the situation, but

are critical to the success of the software engineering effort. Therefore, great software engineers

need to adjust their messaging to fit both their audience as well as the intent of the

communication:

Our areas where the things are inherently difficult to talk about… business partners or
with a customer… When you go outside and you talk to customers, they think about
things in much different terms and so in some ways you have to kind of switch gears…
why you should care about it and here is how you should think about it.

– Principal Dev Lead, IT

This attribute is closely related to the concept of ‘grounding’ proposed by Clark and

Brennan, which, when done successfully, requires parties to coordinate the content and the

process of communication (Clark & Brennan, 1991). Since the engineering of software often

involves many people, getting everyone to have a shared understanding considered essential:

…communicate about software design really well, and they're able to simplify their
language around what needs to be accomplished in a way that makes it quick and easy to
get to the heart of a particular solution… you don't speak to each other in code. You
speak to each other in human language.

– Principal Architect, IT

Honest

Another commonly discussed concept in our interviews was ‘trust’; others trusted great software

engineers. Examining the discussions about ‘trust’, we discerned three central attributes: honest,

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 45

manages expectations, and has a good reputation. We will explain these three attributes in the

next three sections.

The thing is everybody make mistakes. When you do make mistakes, you've got admit you
made a mistake. If you try to cover up or kind of downplayed mistake, everybody will see
it, it's super obvious. It affects your effectiveness, no question about that.

– Partner Dev Manager, IT

Informants felt that being honest was the most important aspect of ‘trust’. This attribute

was about great software engineers being truthful—not sugarcoating or spinning the situation to

their own benefit—and providing credible information on which others can act.

Informants disdainfully viewed software engineers who presented distorted versions of

the situation to suit their own benefit. Informants needed to trust the information that the

software engineer provided in order to take appropriate action:

Influence comes to someone else trusting you, part of that trust is that they go, ‘You know
what? I know that this person always speaks the truth.’ As a result of that, when they say
something is good, I will totally believe them because they are not trying to kind of
misrepresent something or make them look better or whatever.

– Principal Dev Manager, Web Applications

Our informants did not appreciate wasting time shifting the blame for problems. Many

informants discussed software engineers spending significant time avoiding responsibility for

mistakes; in contrast, great software engineers accepted responsibility and focused their attention

and efforts on addressing the problem:

Rather than thinking about how to actually fix the problem at hand, [other engineers
were] more like ‘How do I make sure that nobody will come back and think that maybe
that happened because of something that I might have done?’ [This great software
engineer] has a way of kind of saying: It doesn't matter…What matters is right now. How
do we actually work through it?

– Senior SDE, Windows

Additionally, software engineers need to ‘speak the awful truth’ in order to help the team

forestall problems. Our informants felt that great software engineers need to be honest when they

saw problems, even if the bad news might not be welcomed:

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 46

…you really want to have [great software engineers] have a lot more input. If someone
disagrees with the tradeoffs that we’re making, have a voice... They really do participate
and give their opinion.

– Principal Dev Manager, Web Applications

Honesty is the attribute most closely related to trust; many informants felt strongly that

they would leave teams (or have left teams) that lacked honesty. Many informants discussed

frustrating situations where they were unable to make engineering progress because they could

not trust the information that was provided by team members. Furthermore, there was also a lack

of respect for leaders who tolerated (or were incapable of discerning) dishonesty.

Manages expectations

It’s really about making sure that your leads, your managers … setting expectations, they
know what you’re going to do, you do it...

– SDE2, Enterprise

This was the second attribute that contributed to ‘trust’. Informants described great software

engineers as managing expectations: setting forth what they are going to do and by when,

updating expectations (e.g. explaining the implications of unexpected problems), and then

delivering on promises. Great software engineers made sure that stakeholders—usually their

managers, but also other teams and their teammates—knew what they intended do and by when.

Managing expectations is related to the self-reflecting attribute; great software engineers self-

initiated corrective action when necessary, and then proactively notified others of changes and

made them aware of the consequences:

[Great software engineers] take ownership of the project, whatever it is, and they state
their deadlines properly. I think accountability is another aspect, like a good software
developer is usually very accountable. If you slip on deadlines more than once, or that
kind of stuff, I think your credibility is hurt and I think that's a big detriment to software
engineers.

– SDE2, Web Applications

For our informants, the most important reason for managing expectations was that it

enabled others to set and adjust their plans accordingly. This was especially important for teams

with many interconnected components or external dependencies, since delays or changes could

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 47

have significant impact on the plans of others. Our informants’ sentiments about this attribute

reflect findings in the paper by Poile et al. (Poile, Begel, Nagappan, & Layman, 2009):

coordination—especially involving changes in plans—was both critical and difficult for large-

scale software engineering efforts at Microsoft. Our informants, many of whom were in

leadership positions, appreciated software engineers who proactively made them aware of

changes in expectations:

Some people have that awareness and a lot of people don't… this is the one that you
should be done by and if we're not going to be there, what are we going to do to correct
that… That'll be more about telling the managers, this is what we need to do rather than
the managers saying to the individual contributor, this is what needs to happen.

– Principal Dev Lead, Enterprise

A rarely discussed but interesting aspect of managing expectations is maintaining

direction during times of uncertainty. One informant described a great software engineer setting

expectations and establishing ‘north stars’ during times of organizational flux. This kind of

expectation management helped the team to maintain its focus and direction to deliver their

software product:

You have to give a really clear vision of goals that what you are going to achieve, by
merging projects, software or the teams… In either case, I think it's very, very important
to be very clear about what is the role, by merging those projects with technology… Then
those leaders must be able to communicate all the way up and all the way down,
technically if necessary, and be able to complete a clean architectural view of what the
future of the merging teams going to be.

– Principal SDE, IT

Has a good reputation

Well it was because of a combination of things, but one of it is because I trusted, I've seen
his previous work, I knew about it, I've seen him probably make other recommendations
that turned out to have good outcomes… And I think that is exactly what I tell some of my
other senior people. You have to build up that reputation and that trust through your
years or whatever, how long worth of good deeds essentially, so that when you make that
recommendation, they go, I am going to listen to him

– Principal Dev Manager, Web Applications

Many informants felt that having a good reputation also contributed to ‘trust’. This attribute was

about great software engineers having the respect and confidence of others. Informants felt that

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 48

great software engineers needed those around them to trust and believe in them. Great software

engineers that had a track record of success were entrusted to make current and future decisions.

Beyond organizational imperatives, a track record of success was often seen as a “difference

maker” in engagements with others; software engineers that had good reputations were treated

favorably by others:

It wasn't like [this great software engineer] was just some guy walking off the street
throwing off this confidence because that could just be ignorance, but it was...he had
done, he wrote the whole...for this product was this thing… And so again, I knew he
had that track record and history of doing some pretty impressive things by himself…

– Principal Dev Manager, Web Applications

Informants felt that the upshot of having a good reputation was that the team made better

decisions. When other engineers sought out and heeded the advice of the great software

engineers, the whole team benefitted from the expertise of that great software engineer.

Some informants had mixed feelings about having a good reputation, because they

believed that it was often due to chance and somewhat beyond one’s control. The informants felt

that most engineers were competent but often lacked the opportunity to demonstrate their

competence:

I think just the realization that it's not an ideal world... Are you visible to the right
people? Are you at the right place at the right time? Are you getting the right
opportunities?... There might be two people who have the same and equal talent. But if
one person is at the right place at the right time happens to get that opportunity and
another doesn't, tough luck. Life is not always fair.

– Senior Dev Manager, Windows

Walks the walk

In our interviews, we discerned four attributes contributing to the concept of ‘positively

influencing others’: walks the walk, mentoring, challenging other to improve, and creates a safe

haven. Commonly associated with great software in leadership positions, the underlying

sentiment for these attributes was that great software engineers helped others to improve.

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 49

I would like to model myself against that behavior [of a great software engineer]. Like it
inspires me to do the same thing.

– Senior Dev Lead, Web Applications

Informants felt that walking the walk was one way that great software engineers

positively influence others. This attribute was about being an exemplar for others—being a great

software engineer—letting others see their actions and inspiring other to follow. Informants

discussed this attribute as passive; great software engineers did not explicitly try to walk the

walk:

But [this great software engineer] was so highly competent and so thoughtful and
thorough and basically excellent at everything that he did that he just attracted people to
him and he attracted people through his work.

– Principal Dev Manager, Web Applications

While the primary benefit discussed by our informants was improving the capabilities of

the team by inspiring teammates to improve, some informants also saw walking the walk as

requisite for engineers in leadership positions. Great software engineers were expected practice

what they preach and led their team with their own actions:

Then I think one weekend [this great software engineer, who was a manager of other
engineers] just sat down and was like, "I'll figure it out"... He actually did figure out
some things. He did not figure out everything but some of these things is also about
leadership by example… you are part of it, and that also pulls the team forward.

– Senior Dev Lead, Web Applications

Many informants felt that passively walking the walk was insufficient; great software

engineers also needed to actively pass on their knowledge and ability to others. This commonly

involved mentoring and challenging others to improve:

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 50

…how a great software engineer should make other people better around them … there’s
different levels to that. There’s the level of you’re just so great at what you do that
people can watch and learn from you, but you don’t take the time to really help. You are
a leader by example instead of actually really going out and doing the teaching and
mentoring…I think it’s even better… if you actually like teaching, and mentoring, leading
that you spend the time to truly coach and mentor folks. I do believe that to really call
yourself a master in a subject or discipline or whatever it is you’re working with, it’s
another level to be able to teach it to someone…

– Senior Dev Lead, Windows

Mentoring

A mentor is, he’s somebody that’s got more experience, and he’s seen stuff that you
haven’t seen yet, and he’s willing to share his knowledge. The kind of people that horde
their own knowledge; I have no time for that. It’s great that they have the knowledge and
they can be successful, but we’re a company, we’re trying to survive, let’s spread some of
that good knowledge around.

– Senior SDE, Applications

Informants felt that mentoring was a common way that great software engineers actively

positively influence others. This attribute was about great software engineers teaching, guiding,

and instilling knowledge into others, helping others—often new team members—improve and to

be more productive. Informants often drew on their own experiences to describe great software

engineers that helped them when they first joined the team:

Being helpful as a developer… You are willing to sit down with them and kind of show
them how it works, maybe get them started in the code a little bit and kind of send them
off on the right path.

– Senior SDE, IT

While mentoring was commonly discussed in the context of helping to integrate new

team members, several informants also discussed great software engineers mentoring others as

replacements so that the great software engineer could move to new teams/projects. The implied

understanding was that, if their software was important/critical, then the software engineer may

not be allowed to take on other challenges without a replacement. This concept was similar to the

‘hand it off to a competent successor’ theme discussed in The Cathedral and the Bazaar

(Raymond, 2001). Our informants felt that, as the great software engineers grew in their career,

they had succession plans in place and groomed another to take over:

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 51

Yeah. I think sharing/mentoring is very important… He took the time to teach as well as
manage, and he influenced many people, more than me, because of that. There was an
interesting aside from him though. I think that in return, he had an expectation of
loyalty... You were going to see the project through. You weren't going to immediately
hop on the next most interesting thing that came around. It took some investment on your
… if he was going to invest in you, he expected you to invest in the project as well.

– Partner Dev Lead, Windows

Challenges other to improve

...the way he communicates implies that he believes that you can do it. There's this
shared confidence so it's like he's done it and so you can do it…. passion lead
organizations, like this guy starts, he has to be able to spark your imagination and your
sense of self confidence for you to boot strap yourself up to being a productive developer.

– SDE2, Windows

Another way that great software engineers positively influenced others was by challenging them

to improve. This attribute was about great software engineers challenging others to take actions

to expand their limits and capabilities, such as doing something new or taking on more

responsibilities. The great software engineer usually knew that the goal was achievable, having

achieved similar objectives themselves, and pushed others to grow professionally:

I had never done anything quite like that. But, he was like oh yeah, we can do that, it's no
problem. I ended up writing it. He didn't write it, but it was his confidence and his ability
to know that we will walk into that problem and we will get it done somehow that really
inspired me.

– Principal Dev Manager, Web Applications

The sentiment among informants was that great software engineers enjoyed being

challenged. Many (as indicated in the quotations above) recounted growing in their capabilities

and self-efficacy as a result of completing challenges. Likely necessitating the great software

engineer to create a safe haven (discussed in the next section), informants felt that challenging

others to improve was an effective way of improving the team:

Good developers want to work on teams with great developers and so having a great
developer in your team is something that is important and that more junior developers
look for and desire in a group and so they have to kind of play this role of being a
positive influence to other developers. Other forms of leadership are introduction of
ideas, development changes, tools change, practices change. Leaders are trying to help

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 52

lead change. Trying to help make the team better, trying to help socialize and introduce
new ideas, new tools, new techniques, new ways of thinking.

– Principal Dev Manager, Enterprise

Creates a safe haven for others

I think failing is good. If you learn something from a failure, that’s a wonderful sort of
thing.…. [but] If you’re afraid of getting smacked upside the head because you made a
failure, you’re taking a small risk there, but most good managers don’t behave that way,
right. They encourage the people to experiment, possibly succeed, possibly fail.

– Senior SDE, Applications

Several informants described great software engineers as creating a safe haven for others, so that

other software engineers—commonly subordinates or junior software engineers—were not afraid

of making mistakes; this empowered young software engineers to do what they felt was right and

learn from their actions. Informants felt that, if software engineers were afraid of mistakes, then

their development would be stunted:

Chasing after a career path or something… you will deliver your best performance if you
are not insecure… One of the challenges as a manager people face these days is
retaining talent because there is so much attrition all over.

– Senior Dev Lead, Web Applications

Many informants saw the absence of this attribute as a major contributing factor for

dysfunctional teams and talent loss. They believed that the fear of being punished for mistakes

often caused software engineers to lie, causing problems for the entire team because their

information could no longer be trusted (honest). Our informants felt that software engineers did

not want to work in environments where they felt insecure, and often avoided those

teams/organizations:

If you make one mistake or don’t know something and you’re sort of dinged by that… and
you’re only judged if you say everything’s perfect even if it isn’t… Then you start to have
this really kind of I think dysfunctional environment set up where everybody just doesn’t
say the truth.

– Principal Dev Manager, Web Applications

Though informants felt that having a safe haven was important, many expressed the need

to balance a safe environment with feeling the pain of mistakes. Their reasoning was that the

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 53

pain from mistakes was the best teacher. If an engineer was hurt by a wrong decision, then the

engineer quickly learned to avoid it in the future; informants felt that completely removing this

educational mechanism was undesirable:

I believe in having people feel the pain of their own mistakes… dealing with the
ramifications of the decisions that are being made, I guess is the best way to learn.

– Principal Dev Lead, Applications

Asks for help

Yeah. Ask for help immediately. I do that mistake. I don't ask for help sometimes
because I'm just so focused on debugging or like learning some concepts and don't you
forget about the big picture. Someone has to come back and come and pull me out of
this. I'm like "Oh, OK, we went way too far. Just come up." If you don't ask for help,
you don't know what's going on outside… it's super easy to get lost in a company like
Microsoft.

– Senior SDE, Web Applications

Informants felt that great software engineers were willing to ask for help: willing to find and

engage others with needed knowledge and information. Great software engineers know the limits

of their knowledge and actively seek to supplement their own knowledge with the knowledge of

others.

Informants felt that asking for help was important in three ways. First, informants felt that

the willingness to ask for help led to greater productivity and faster learning. Great software

engineers recognized when asking others for help allowed them to acquire the necessary

information significantly faster than they could by themselves:

Without asking for help, you cannot navigate all the way to the bottom. If you become
Nancy Drew and start looking for clues every single layer, sure you will reach there, but
it's not fruitful if you reach there four days from now…

– Senior SDE, Web Applications

Second, informants believed that asking for help was often necessary for software

engineers to correctly leverage components produced by other teams. This was especially

important within Microsoft because many teams used ‘internal APIs’ or ‘internal tools’ produced

by internal partner teams that were not well documented or needed to be used in specific ways.

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 54

Informants felt that, to accurately understand the detailed behaviors of other components, great

software engineers sought out the owners of those components for help:

[This great software engineer will] take the time to go talk to all the other vested parties
and get their take on something, and get their feedback on why something would or
would not work. He does his homework and anything that he doesn't know he either goes
and learns it, or he goes and finds a person that does know. He doesn't try to know it all
himself.

– Principal SDE, Windows

Seeking information from other software engineers is a common activity reported in studies that

examine everyday activities of software engineers (Ko et al., 2007). Software engineers

commonly consult and confer with their colleagues before deciding if/how to change code.

Finally, in the context of great software engineers in leadership positions, some

informants felt that these engineers knew when to ask other engineers—typically experts—for

help in order to ensure that an area received sufficient technical oversight. This was typically

about great software engineers knowing that young/new software engineers needed oversight for

tasks, while recognizing that they—the great software engineers—did not have the available time

to help. Great software engineers asked other experienced engineers to provide the needed

guidance, ensuring the success of the project:

For me, as a dev manager, if someone's having a problem, I'm not sure that they're
struggling with a task, I grab a senior or a principle developer and say, “Hey, I need
someone to help work with this person to get them through the task.”

– Principal Dev Manager, Enterprise

Does due diligence beforehand

I don't respect people who don't do their homework... they don't read the MSDN article,
they don't download the SDK, they don't read the help files, they don't read the sample
code... they just shoot off an email to the distribution list…

–Senior SDE, Windows

Informants agreed that great software engineers did due diligence beforehand: searching

for and examining available information before engaging. Informants felt that great software

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 55

engineers are prepared when they discuss situations or ask for help, not wasting other people’s

time.

Informants discussed two main reasons why software engineers need this attribute. First,

our informants felt strongly that great software engineers did not waste other people’s time.

Related to the asking for help attribute (discussed in the previous section), informants expected

great software engineers to do some preliminary investigations prior to engaging with others.

This typically involved identifying the right people and formulating thoughtful questions.

Furthermore, software engineers were expected to provide justification for seeking help from

other engineer and evidence of preliminary investigations. Informants felt that this was common

courtesy when asking other to for their time:

Yes, it's just about [software engineers] coming to me… So if an ops person walked into
my office ... There's just this intuitive set of things they would have to know to convince
me that they know the whole ops thing.

–SDE2, Windows

Informants felt that great software engineers need to be credible when engaging with

others. By doing their homework ahead of time to ensure that concerns and questions of others

are addressed, great software engineers were positioned to get the desired responses from others:

Basically he has an idea, to improve the search quality and he needs to sell his idea to
the managers and he does a lot of homework to prepare all the data and he presents to
the managers and he finally, the project get approved.

– Senior Dev Lead, Web Applications

In addition to seeking information from others (discussed in the previous section), Ko et

al. also reported software engineers seeking some information by themselves (Ko et al., 2007). It

appears from our findings, that there sometimes was a dependent relationship between seeking

information by oneself and seeking information from others. Great software engineers might

usually first seek out information by themselves, prior to seeking information from others.

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 56

Does not make it personal

You can have a very open and heated discussion... But it is all very professional; none of
this is ever taken personally. So you can have a very good discussion. When you ask all
of us being human beings, we have our moments when we are very enamored with an
idea, and want to see that it sort of carries the day, but you have a very good strong
debate of it and then you come to the right conclusion. There's no hard feelings, it never
gets personal; oh, this is your idea, and it's good or it's bad. It's all very professional.

– Principal Dev Lead, Enterprise

Several informants mentioned that great software engineers did not make it personal: acted and

reacted based on fact and reason, avoiding personal biases and perceived slights. Informants

commonly discussed this attribute in the context of reacting to others. Great software engineers

neither took personal offense to communications nor reacted disproportionally to affronts,

avoiding unreasonable behaviors:

I think that it is not effective to try to give it right back to them. Trying to one up them
often does more harm than good… Your ability to listen to others and to give useful
feedback in a way that’s respectful, it matters in our ability to ship the product on time
with high quality.

– Principal Dev Lead, Enterprise

Benefits of this attribute were commonly discussed negatively; informants discussed toxic

situations when software engineers made it personal. Some other informants discuss unpleasant

work environments where software engineers took personal umbrage to feedback and discussion;

the situation would typically escalate to shouting matches, causing others on the team to feel

uncomfortable:

They think these people are after them, to show them that they're bad or stupid or not a
good engineer and it's not that way at all…you get one person trying to help, another
person saying “You're not helping me, you're making fun of me.” Then, it gets elevated
and gets ugly and production goes bad and if something like that gets so verbal or loud
that it causes a mix in the entire group not just between these two people, it's not a good
thing.

- Senior Dev Lead, Gaming

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 57

Some other informants discussed poor performing teams: some software engineers were

making decisions and actions that were meant to discredit adversaries, rather than for the good of

the project:

You try to discredit and discard his input just to prove your point. One program manager
told me that “Whatever is great for Microsoft is not necessarily great for your career and
whatever is good for your career is not necessarily good for Microsoft.”

–Principal Dev Lead, Devices

Resists external pressure for the good of the product

[This great software engineer] will say no, if he has to. If what they're asking him to do
jeopardizes something else, he'll say no. He can stand up and be brave about it.

– Principle SDE, Windows

Informants described great software engineers, when necessary, resisting external pressure for

the good of the product: articulating and advocating actions to ultimately benefit the product.

Informants felt that software engineers were frequently pressured, by external partners, by

internal partners, by management, and by team members, to take action that may not be good for

the software product (e.g. add features, change behaviors, go faster, won’t fix bugs, etc.). Great

software engineers were willing to take a stand—backed by sound reasoning—whenever those

demands jeopardized the long-term success of the software product. Though this may lead to

unpleasant situations including escalations, slipping schedules, and negative reviews; great

software engineers would stand up for what they felt was right:

I think one attribute which is not always seen is like to always do the right thing. At one
time you may be forced to make a decision which you feel is not right or you think is not
right and just trying to stand up for that decision and be able to articulate or to try to
explain to people what they may change is also I think would play a big factor.

– Principal Dev Lead, Devices

Interestingly, not all pressure originated from partner teams and management; many

informants discussed pressure from teammates. Multiple informants discussed great software

engineers demanding sound technical solutions or extra quality assurance processes, despite

higher costs and tighter schedules for the team. Great software engineers sometimes advocated

actions that, though painful in the short term, would be better for the product in the long run:

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 58

[This great software engineer] was very insistent that we have provable security... He
wasn't satisfied until we had that proof because he didn't want to replace something that
had been cracked by another system which wasn't theoretically secure. It took an
enormous amount of work. It took about two years to generate the proof and we actually
found some vulnerabilities, fixed them… The system has never been cracked.

– Software Architect, Applications

Interestingly, even though the benefit of this attribute was seemingly obvious—the good

of the software product—some informants felt that the attribute and the derived benefit was an

oxymoron. The informants felt that great software engineers produced software products that

aligned with the goals/objectives of their organization. Therefore, resisting the desires/wishes of

the organization could not be good for the software product.

Creates shared success for everyone

[Great software engineers] having the skill to be able to find the common good in a
solution, be able to say, “I’m pushing for a solution but here’s the value for me,” and
also express here’s the value for you. Even though you’re still accomplishing the goals
you want. They’re feeling like they’re winning. It’s a win-win situation.

– Senior Dev Lead, Windows

Many informants said great software engineers created shared success for everyone: win-win

situations that are beneficial to everyone. This often involved great software engineers

establishing common big picture or long-term goals that everyone can support. Informants felt

that people and teams involved in software engineering efforts commonly had different personal

motivations and organizational objectives; great software engineers could effectively align

everyone toward shared goals:

No matter how good is our code, if our partner [sic] cannot give it a good product for us
then we cannot share our greatness to the whole world. A lot of time I see our support to
our client is not very well [sic]… we should have a good result combined together.

– Senior SDE, Devices

Informants commonly discussed creating shared success in three scenarios. First, great

software engineers often needed actions by partner teams to deliver the final product. For some

teams like Windows and Windows Phone, this involved working with external partners (e.g.

equipment manufacturers like Dell and HTC) to deliver a complete product; for other teams, like

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 59

Office, creating shared success involved working across feature teams on interdependent features

and functionalities. Great software engineers needed to establish shared objectives among the

stakeholders for optimal outcomes:

Like integrating works from different teams, and being able to like stop and understand
how these two systems interact with each other… many times it's very easy for the
platform or app dev, when there's a problem, you say, "Oh, you should fix it, go to it."
Really if you step back and think of whose responsibility like who's that person in terms
of that code. I'm being able to say, "Yeah, you're right. This should be done by [our
component], the platform, not by the app.

– SDE2, Applications

Second, great software engineers—frequently in leadership positions—needed to put

other software engineers in positions to succeed. This generally involved assigning them projects

that matched their interests and providing them the appropriate training and guidance:

That's individual attention from a manager to an individual contributor, especially
initially that helps them get better and learn some of these things that they need to do,
and that allows them to be more adventurous and figure out a number of these things
themselves.

– Principal Dev Lead, Enterprise

Third, great software engineers needed to proactively manage up to ensure that their

leaders made good decisions and that their own actions best contributed to the success of the

team. Great software engineers commonly had better understanding of the ‘ground truth’; the

leadership often had better awareness of the higher level considerations. Therefore, for the team

to be successful, great software engineers needed to proactively create shared success with their

leaders:

 It's a two-way communication… there's something going to happen down the road, this
piece of code or this feature going to have some issues, need to make your manager
aware.

– SDE2, Devices

As discussed in Perlow’s work The Time Famine (Perlow, 1999), a time famine is when

crises arise in teams due to a lack of shared understanding about status and objectives. This

attribute likely helped to avoid dysfunctional ‘time famine’ situations by establishing common

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 60

objectives and priorities, software engineers were less-prone to spend their time on nonessential

tasks:

… try to understand what other people need from you…You are really willing to make
compromises sometimes, sacrifices to really collaborate with other people to succeed as
a team.

– SDE2, Enterprise

Well-mannered

I think [this great software engineer] is also smart but not cocky. He’s not arrogant.
He’s very down-to-earth... you know he’s the one who knows all the information. He
doesn’t show it that way. He never come across that way. And the way he sort of
communicates ideas and maybe proposals. People would just show respect like, “Oh
wow! That is a great idea!” But then, he would never, you know, kind of like drive the
conversation in a way that makes the other people seem like, “Oh, I feel so stupid.” Or,
like, “I feel so belittled in the presence of you because the way you portray that pride or
maybe arrogance, sometimes.”

– Senior SDE, Web Applications

Many informants described great software engineers as well-mannered: treats others with

respect, not obnoxious about title, accolades, or knowledge. Informant sentiments about this

attribute were rarely about specific actions, rather they were characterized an overall feeling.

Informants felt that great software engineers made others feel respected—their ideas, opinions,

and actions mattered. Well-mannered was the best known and easily identified attribute among

our informants; even software engineers who did not discuss this attribute immediately

recognized well-mannered when we asked them about this attribute. Though, in interviews, this

attribute was discussed using the less polite but more common terminology of ‘not being an ass-

hole’. The ease of recognition among informants indicated that they perceived that many

engineers may lack this attribute:

Even though I was the most talented, I was also the last person that people wanted to go
to for assistance, because being not humble could alienate them… Even though I had the
talent, people did not want to use me as a leader because of the not being humble...
Humble is a way of making a person accessible, and creating a favorable experience
when people are interacting with your expertise.

–Principal Dev Manager, Enterprise

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 61

The consensus among informants was that no one wanted to work with ‘assholes’. This

attribute is closely related to the concept of ‘psychological safety’—mutual respect and trust

among team members— and contributes to effective teams in many industries (Edmondson,

1999). However, in our study, many informants indicated that if the software engineers were

truly gifted, they would probably still acknowledge ‘assholes’ as great. This sentiment seemed

counter-intuitive since greatness was a peer bestowed designation and promotion/review

processes at Microsoft involved feedback from peers/partners; it was difficult to envision how an

‘asshole’ could be recognized as a great software engineer. One possible explanation might be

that the community of software engineers does not value EQ; literature indicates that maverick

geniuses may be revered, like Dave Cutler at Microsoft (Zachary, 1994):

… unless you’re extremely productive and extremely gifted, you generally can’t do too
well at a company like Microsoft if you’re a real asshole. There are people like that, I
know that are partner level, they got that from pure talent… you take your super geeks
and the ones that are doing extremely well in computer science, they usually are
somewhat lacking in social skills.

– Principal Development Manager, Applications

Another contributing factor might be that software engineers were more results- and facts-

oriented, as insinuated in the does not make it personal attribute, such that software engineers

that produced the best results—even ‘assholes’—were acknowledged. Finally, the scarcity of

great software engineers, requiring employers to trade off technical ability for other

qualifications.

…it’s okay to be an asshole if you’re really, really good… it is somewhat true in the
profession. Maybe there’s a shortage of software engineers so management tolerate
assholes, but that’s definitely not the way to go…

– Senior SDE, Windows

Personable

I look for in every person that I get, coder or not, but definitely if it was a coder is: can I
have a beer with this guy?... That’s important, because if I can’t then we can’t really
work together because there’s going to be some point where … they’re very, very
stubborn and you know that you can only put them on one thing and that’s it.

– SDE2, Enterprise

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 62

Informants described great software engineers as personable: people with whom others enjoy

interacting. This attribute is a step beyond well-mannered (discussed in the previous section)

and commonly entailed social settings. Informants implied that a certain level of personal

relationship and understanding was needed for successful collaborations:

[Great software engineers] have to be clear, you have to be respected, you have to get to
know people. I think a lot of the personal relations that you can develop you spend a lot
of time doing that. That's really helped me and I see that in other good managers that
they're very personal. They connect to people well.

– Principal Dev Lead, Devices

The underlying sentiment was that social engagement helped software engineers to better

understand the context of fellow software engineers. This understanding likely helped

interpretations of communications and facilitated collaborations. Informants felt that teams in

which coworkers enjoyed each other’s company were more likely to be successful:

…a hobby or just be a people skill or just be networking with people or build a good
relationship with friends, whichever. They all help.

– Senior SDE, Web Applications

Trades favors

It’s [the great software engineer] returning a favor here and there… I’ve seen that
through a number of cases where someone goes above and beyond to help somebody else
out and then somewhere down the road that person has that extra good will to come help
you out at some point.

– Senior Dev Lead, Windows

Several informants described great software engineer trading favors, building personal equity

with others; the great software engineer can call upon others for personal favors in order to

accomplish goals. The informants felt that by leveraging help of others with whom they had

personal relationships, great software engineers with this attribute were able to solve problems

that other software engineers could not.

The need to trade favors might be especially important within Microsoft due to the large

number of teams and the interdependent nature of the software products. Software engineers

commonly needed assistance from other engineers (or teams) that had no organizational

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 63

obligation to cooperate. Therefore, the ability of great software engineers to get another software

engineer (or engineering team) to take action might have been critical to achieve successful

outcomes:

You can’t just sit in your office and code, you need to get out and network. It really
facilitates collaborations. When you need something, they will get it done for you.
Otherwise, they’ll just put you off.

– SDE2, Enterprise

Informants also felt that the back-and-forth between teams promoted better collaboration.

By doing favors for another team and having them reciprocate helped both teams to work better

together:

We talk about trade favor… We're one team, and the core team sometime they help us to
do some things, and we help them to do some other things… We help them to make their
code better…we help them connect between the customer and the core team.

– SDE2, Devices

There was also a latent sentiment among informants that official organizational

processes/policies can be circumnavigated by trading favors. While it was not clear what kinds

of policies or decisions can be subverted, several informants hinted that to get things done

despite managerial opposition at Microsoft sometimes required calling in favors:

When my management reached out to his management, they said no, you can’t borrow
him because we need him right now. So, I said wait a minute, and I went up the chain;
ah-huh, this guy owns me a favor. So, I sent him a really nice email, and he said sure you
can have him for a couple of days, and he solved our problem. We were in a real sticky
position, and that worked out really rather nicely.

– Senior SDE, Applications

Engineering the Software Product

The style… always, an idea, and it was all clean… very concise. Just looking at it, you
can say, "Okay, this guy, he knew what he was doing."… There's no extra stuff.
Everything is minimally necessary and sufficient as it should be. It's well thought out off
screen.

– Senior SDE, Windows

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 64

Informants discussed 9 attributes that we felt pertained to the software that great software

engineers produced. Like artists appreciating masterpieces of other artists, our informants, many

of whom were great software engineers themselves, saw beauty in the software produced by

other great software engineers.

Pays attention to coding details

But when we talk about the quality of the code, performance, space, and how many bugs
it has – how robust it is – and how it handles exceptions [code of great software
engineers] will have great differences…For example, when I used to make games back in
China, I worked on a board partitioning program that… took about 3 hours. Then my
CTO took the program to optimize. When he was finished with it, the program took 10
minutes to run. That’s the amount of difference it can be between people…

– SDE2, Enterprise

Many informants felt that a great software engineer paid attention to coding details: including

error handling, memory consumption, performance, security, and style. Taken as a whole and

considering the tone in which informants discussed this attribute—negatively when software

engineers neglected to take into account something obvious leading to problems—we saw this

attribute as about great software engineers not writing shoddy code. Informants felt that most

software engineers—if they put in thought and effort—should be able to write ‘good’ code. The

underlying sentiment was that ‘greatness’ was a peer-bestowed recognition and that software

engineers did not respect other engineers that could not get the basics right:

You’ve got to do the best in whatever you do … you want to try your best, not just get it
done, not just finish it, try your best, that’s what differentiator between great software
engineer and average software engineers… whether it’s adaptable, maintainable,
scalable all these tricks, performance, security all these. Some are tangible some are less
tangible and tractable. Like what is maintainable, you need time to figure it out.

 –Principal Dev Manager, Web Applications

Informants also felt that software engineers that paid attention to coding details produced

quality software with fewer issues. Great software engineers avoided obvious problems and

accounted for likely issues:

Attention to detail, it almost sounds cliché, but I view this much deeper than cliché in the
software world. I've seen lots of software where yes it works in this scenario, but what if
you introduce this thing here. Will it still work? No, we didn't really think about that…

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 65

make sure that it can either handle everything that gets thrown at it or it properly
recovers or reports or does something useful other than just ignore it… the good
engineer will produce maybe quite similar code but will take and have handled a lot of
the details and made sure that it's structured in a way that's for the future and considered
a whole lot more than just getting the job done for that.

– SDE2, IT

A common extension of discussions of this attribute involved having code in place to localize

and debug issues in case unexpected failures occurred. Informants felt that when unexpected

issues arose, the code written by great software engineers handled problems gracefully, typically

involving having support in place to easily diagnose the problem:

Graceful failure handling is crucial at that point because it's always really hard to go
back after the fact, it's a natural human tendency to want to write the feature first and get
results and then go back and bolt on all the things you need to actually kind of make it
useable in the long term. I don't think that's a good way to approach things… designing
how to handle these things so that you build them in as you write your code will make
your life infinitely easier.

– Principle SDE, Windows

Fits together with other pieces around it

Because [great software engineers] understand better, interactions around you or
around your code. How your code is supposed to work. Why your code should do one
thing as opposed to another thing? When you’re off implementing or fixing bugs, you
realize if I tweaked this here I’m not going to break something else in some other part
that I didn’t really know about… people continue to be able to look at the entire
package…

– Senior Dev Lead, Gaming

Informants felt that great software engineers produced software that fit together with other pieces

around it, such as environmental constraints, complementary components, and other products.

Beyond integration with surrounding components and meeting their own requirements,

informants often discussed this attribute at inter-organizational levels. Software built by great

software engineers fit with software and hardware products built by other (internal and external)

organizations.

This attribute might have been especially important at Microsoft where many software

products were tightly integrated as platforms (e.g. Windows, .NET) or as interconnected

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 66

offerings (e.g. SQL DB and Dynamics); furthermore, some products were consumer electronics

with physical constraints (e.g. XBox, Windows Phone). Great software engineers made

appropriate design choices based on the boarder context, assuring that their software worked well

in real-world environments with other software and underlying hardware components:

If they're making a car part for a car, they'll say, "These are the operating
requirements…”… If you have an environment where memory's stringent, it's not very
appropriate to use this piece of coding. That would be something that's well documented
and well understood from a code.

– Senior SDE, Windows

Furthermore, great software engineers ensured that their technology choices and product

decisions aligned with what other partner teams were choosing and the overall direction of the

organization. Their software products enhanced and built on other efforts within the

organization, making the whole better:

…recognizing all of the pitfalls around it. It’s not so hard to come up with an idea that’s
very forward thinking but absolutely doesn’t fit anything. It doesn’t fit the current
dynamics of … at least, if you were to use Microsoft as an example, it doesn’t fit with
anything Microsoft’s doing. … whatever you’re doing has to be able to fit within the
dynamics of whatever environment you’re in… Whatever we come up with, whether it’s
great or not great, has to fit within that environment.

– Principal SDE Lead, Windows

Makes informed tradeoffs

[Great software engineers are] quick on pros and cons, I think. Being able to say, these
are the tradeoffs. Almost no solution is perfect, but if you can list three and say here are
the tradeoffs, and I’m explicitly choosing to give up on a few things in order to gain other
things so you go with the solution, that’s good problem solving. Relatively fast. Quick
thinking in these situations because you run into it so frequently.

– Senior Dev Lead, Web Applications

Many informants described great software engineers making informed tradeoffs with their

software (e.g. code quality for time to market), meeting critical needs of the situation.

Overwhelmingly, informants felt that few software engineering decisions were black and white;

informants could envision or had experienced situations where a desirable attribute—elegant or

anticipates needs—was traded for more important objectives. Great software engineers

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 67

understood the situation and made effective, and sometimes difficult, tradeoffs to meet critical

needs.

The most frequently discussed tradeoff was optimizing for deadlines, which was critical

in many situations, such as securing continued funding for project, be first to market, fixing a

critical customer problem, etc. Informants expressed willingness or having personally traded

almost anything for time:

I think with a company like Microsoft versus a startup, with a company like Microsoft
you've got the luxury of doing things the right way. Whereas with a startup it's the fast
way. We do take time here to do design reviews and peer reviews and unit tests. They're
the first things to go when you've got next Tuesday it's got to be working and it's got to be
out there on the web. You don't spend all your time doing nice design documents and
having a big peer review and then going back and iterating on that a couple of times to
get it exactly right. You don't have the luxury.

– Principal SDE, Gaming

Some informants also discussed great software engineers considering the longevity of the

software product. Informants often contrasted long-living software (e.g. Windows) with evolving

online services, which are frequently updated and rewritten; they felt that software engineers

took the lifespan of the software into consideration, enabling some attributes—especially

anticipates needs—to be traded:

Part of answering this question requires knowing what is the longevity, what is the
lifetime of the software to be developed. If you’re talking about developing a system, like
where we work, any system we develop lives on forever, for a long time. Relatively
speaking then, there's a maintenance cost, there's a scalability cost, there's a future
proofing cost.

– SDE2, Enterprise

Evolving

I really want to put ideally something out, very small changes, in front of users every
couple of weeks… Starting from there, can we actually break that down into what are the
individual components that would take… Just being able to have a very clean step-wise
process moving forward… What are the immediate steps to that, how can we break this
down so that we have really concrete deliverables on an ongoing basis?

–Senior Dev Lead, Web Applications

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 68

Some informants felt great software engineers produced software designs that were evolving:

structured to be effectively built, delivered, and updated in pieces. This closely resembled the

‘evolvability’ software attribute (Myers, 2003).

Informants agreed on two common situations where the software design needed to be

‘evolvable’. First, even great software engineers may not be able to predict user reactions to new

software/features; therefore, great software engineers needed to be able to iteratively learn and

adapt their software according to customer reactions. Second, many Microsoft product were very

large, necessitating the ability to replace or update parts of the system while the entire software

system continued to function. This second need was commonly compounded by tight schedules;

therefore, great software engineers needed to be able to structure their software for effective

incremental changes.

It's kind of like evolution. You start with a strong component with a good idea and slowly
you move forward. Slowly adjust the system or the requirements are coming, more like a
market or industry is changing. You adapt.

 – Senior SDE, Windows,

Informants felt that evolving software designs limited risks associated with wrong design

decisions and provided agility to meet changing demands. Informants felt that the designs

enabled great software engineers to quickly adjust or reverse directions when decisions resulted

in negative reactions from users, thus limiting the impact of problems.

It's a constant improvement and constant evolution of what you're doing by learning how
your product is functioning and how it's being used. You then are able to get feedback
and put it back into the product.

– Principal Dev Lead, Web Applications

Delivering updates/changes incrementally enabled great software engineers to reevaluate and

adjust investments frequently, adapting to emerging needs of the users or market conditions:

I always believe in iterating quickly. The worst thing in the world is going in the wrong
direction for a long, long time…losing lots of money for a long period of time, feels pretty
bad to me. So, I try to iterate quickly all the time.

– Senior SDE, Applications

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 69

Elegant

Sometimes when you look at the code that [this great software engineer] developed, you
feel, first of all, it’s very easy to read his work, it’s highly structured… they are simple.
It’s very easy to understand in a sense that it’s very simple. Doing something well and in
a very simple way is very very hard.

Lot of times, it’s very easy to just put down your thoughts and be done with it and then to
look at his work and when you see the way he solves the problem, it’s very
straightforward. When I discuss with him, you see that the simplest solution is, sometimes
it’s not the first solution he thought. This is improved through looking at a problem
closely and through a lot of optimization, eventually after you have arrived at a simpler
solution. Seeking that simple solution, I think is one way just to make a better software
engineer…

– Principal Dev Lead, Web Applications

Many informants described the software of great software engineers as elegant: intuitive

software design solutions that is easily understood. Informants recognized that some problems in

software were highly complex and constrained, making it difficult to have a simple solution that

met the requirements. Therefore, they admired great software engineers that produced easy-to-

understand solutions, elegant designs that others could easily reason about how the designs

addressed requirements and constraints.

The underlying sentiment was that avoiding complexity was critical. This is the same

thinking that underlies research into complex complexity metrics such as McCabe’s Cyclomatic

Complexity Measure (McCabe, 1976). Informants felt that complex solutions increased the

likelihood of bugs and increased maintenance costs (if problems were fixable at all):

Is this the simplest way to do things and the most skillful way to do things as compared to
making it overly complicated… It’s concise and clear. How easy is it to debug?
Debugging usually is harder than actually coding up those things first time around, so if
you’ve done it in a complicated way, then you’re probably not going to be able to debug
it…

 – Senior Dev Lead, Web Applications

Furthermore, complex solutions resulted in brittle code that were more costly to evolve and

maintain:

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 70

Never complicate any things… when you simplify things it becomes easier for you to
maintain, going forward for customers… You get lesser number of issues reported by a
customer.

– Senior Dev Lead, Enterprise

Despite being simple, informants made it clear that elegant software did not equate to

terse code. Great software engineers created software designs that were each to comprehend,

communicating intentions clearly. Simply having fewer characters often made the software more

difficult to understand:

[Some engineers], for whatever reason, want to type as little as possible, so their code is
always terse and these sorts of things. I think once you teach them, "Look, maintainability
matters and simplicity is good." And strive for that, then those things become details that
they need to work on…

 – Principal Dev Lead. Gaming

Long-termed

And then over time the whole health of your code base evolves because you've built in a
framework to handling failures, a solid framework, you're not trying to make something
up later and glue it into code that's already written… What you get if you don't do that is
a lot of spaghetti code where people try to go in after the fact and add in their own error
handling.

– Principal SDE, Windows

Several informants described great software engineers as long-termed with their software:

considering long-term costs and benefits, not just short-term gratification. Commonly associated

with bug fixes, informants felt that problems would arise that necessitated solutions spanning

disjointed places such as component/executable, software products, teams, etc. Great software

engineers would accurately recognize these situations to craft solutions that solved the problem

holistically, not simply shifting the manifestation of the problem to another location.

 The underlying sentiment was that ‘duct taping’ a solution together was tempting,

especially in situations where the software engineer may not completely understand the software

that he/she was repairing. However, these ‘kludges’ often did not address the root cause of the

problem. Informants felt that great software engineers fully understood the problems and

produced solutions that did not simply ‘kick the can down the road’:

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 71

They've got a bigger breadth or areas, if you've got a problem and you really have no
idea what it is… They can own it and work through it and drive it and be crossing the
technical boundaries in exploring it and trying to resolve it.

– Principal Dev Manager, Enterprise

Creative

[Great software engineers] can think outside the box. Being able to sort of like, hey,
here's a traditional solution, but guess what ... Usually with solutions we often have
constraints… Being creative is actually, I feel that, able to take these constraints, take the
difficult circumstance and actually make it into something that could actually still work,
but without a huge complex overhead...

– Senior SDE, Web Applications

Informants described software of great software engineers as creative: novel and innovative

solutions based on understanding the context and limitations of existing solutions. Informants

felt that there were two important interconnected aspects to creative solutions. First, software

engineers needed to understand the unique constraints and requirements of the problem. Great

software engineers comprehended how these contextual conditions affected possible solutions:

If you're looking for really an innovative …or just a solution that’s outside the current
norm… think through the problem…constraints that are currently imposed on the
environment.

– Principal SDE Lead, Windows

Subsequently, software engineers needed to know when to apply existing solutions. Informants

felt that great software engineers did not invent new solutions without reason; they used existing

solutions when appropriate. Informants stressed this point because they felt that known solutions

(e.g. standard libraries) were generally less costly and less error-prone:

You are now using all of your creativity to reinvent things that are already invented and
that is just basically wasteful.

– Principal Dev Manager, Web Applications

Nonetheless, most informants felt that novel problems occurred frequently in software

engineering, needing great software engineers with the ability to come up with innovative

solutions or adapting an existing solution:

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 72

Understanding patterns and understanding how to apply something is very important so
you don’t recreate wheels all the time… when there isn’t an obvious pattern… Are you
creative enough… come up with something new?

– Senior Dev Lead, Windows

Anticipates needs

[This great software engineer] would be like, "Now, imagine that you already have that
and you've built that and now you have a team that might come to you and say we'd like
to maybe use it for that and that… Now, a few years later, somebody else wanted to start
working with that."… examples of how people might want to use technology… How
would you maybe change your design with that in mind that we might somehow have to
accommodate inter-operating with that technology in the future? How might you do that?

– Senior SDE, Windows

Informants felt that great software engineers anticipated needs with their software designs:

problems and needs not explicitly known at the time of creation based on their knowledge and

understanding. Great software engineers accommodated possible future requirements not known

at the time of inception. Informants commonly mentioned scale (more users), feasibility

(technology advancing to the point where new things were possible), and integration

(interoperability with additional software products). This attribute is closely related to the

concept of ‘extensible’ designs (Krishnamurthi & Felleisen, 1998); however, while extensible

designs in the literature generally involves adding new features and functionality, informants

commonly discussed supporting the same requirements but at different scales, both smaller (e.g.

an operating system that runs both PCs and Phones) and larger:

QQ, the Chinese chat program. It now has hundreds of millions of users. That system was
designed fifteen years ago, when QQ only had a few million users. It still works today,
that’s amazing, to have a system that scales that well, to foresee all the issues it would
have to face.

– SDE2, Enterprise

More than any other attribute, informants discussed the propensity to go overboard with

anticipating needs. Many informants discussed software engineers attempting to anticipate needs

in the face of uncertainty, incurring high costs to add unneeded flexibility. Some thought that any

prediction of the future was foolish and preferred to design for current needs and being open to

rewrites:

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 73

Architect something now that's going to survive well 20 years from now? Nobody is that
smart to be able to predict the future that well, I will refactor towards new requirements
and I constantly do that.

– Senior SDE, Applications

Uses the right processes during construction

Unit testing, of the code. Well before that was fashionable. [This great software
engineer] must have been right on the leading edge of it, it was all about the code quality
and he had almost no bugs ever found in the product and that was actually his track
record, too.

– Senior Dev Manager, Windows

Informants described great software engineers as using the right processes during construction

(e.g. unit testing and code reviews), in order to prevent potential problems. Generally, these were

quality-control processes intended to discover problems before deployment; the three most

commonly mentioned processes were unit testing, test-driven development, and code reviews.

Informants felt that great software engineers effectively used these processes to ensure that

software engineers thought through their designs. For example, several discussed software

engineers who were pressured to produce high-quality code because they needed to present in

front of peers in code reviews:

Like the way we enforce it, the process really makes that happen… So you really have to
think through in order to stand up in front a room and defend the spec that you wrote and
similarly with code reviews, you push those things out and you don’t get to check in until
your peers sign off on. You really can’t do that without having thought through what
you’re doing.

– Principal Dev Lead, Web Applications

An important aspect of the using the right processes during construction attribute was

knowing how and when to use these processes. Informants felt that simply executing the

processes was not sufficient; software engineers needed to understand how to execute the

processes effectively. For example, some processes (e.g. test-driven engineering) could be

garbage-in-garbage-out if not executed correctly.

[Great software engineers] have to know the test cases, so you have to know how your
code is going to be used. … Those are all the areas and a good developer will know

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 74

those. That's why I say they need to know how to write their own specs, so that they can
design the right outcomes, implement it well, and then actually test their work.

– Principal Development Manager, Applications

This attribute appeared to be the manifestation of the knowledgeable about software

engineering processes attribute. Whereas knowledge was internal to the software engineer, this

attribute captured the effect on the software resulting from great software engineers appropriately

applying those processes.

BIBLIOGRAPHY

Ahmed, F., Capretz, L. F., & Campbell, P. (2012). Evaluating the demand for soft skills in
software development. IT Professional, 14(1), 44–49.

AMA. (2001). American Medial Association Principles of Medical Ethics. Retrieved January 1,
2016, from http://www.ama-assn.org/ama/pub/physician-resources/medical-ethics/code-
medical-ethics/principles-medical-ethics.page?

Anvik, J., Hiew, L., & Murphy, G. C. (2006). Who Should Fix This Bug? In Proceedings of the
28th International Conference on Software Engineering (pp. 361–370).

Aranda, J., & Venolia, G. (2009). The secret life of bugs: going past the errors and omissions in
software repositories. In Proceedings of the IEEE 31st International Conference on
Software Engineering (pp. 298–308).

Begel, A., & Simon, B. (2008). Novice software developers, all over again. In Proceedings of the
Fourth International Computing Education Research Workshop (Vol. 1, pp. 3–14).

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering (2nd ed.).
Addison-Wesley Professional.

Clark, H., & Brennan, S. (1991). Perspectives on Socially Shared Cognition. American
Psychological Association.

Cruz, S., da Silva, F. Q. B., & Capretz, L. F. (2015). Forty years of research on personality in
software engineering: a mapping study. Computers in Human Behavior, 46, 94–113.

Czerwinski, M., Horvitz, E., & Wilhite, S. (2004). A diary study of task switching and
interruptions. Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 6(1), 175–182.

Dabbish, L., Mark, G., & Gonzalez, V. M. (2011). Why do I keep interrupting myself ?:
environment, habit and self-interruption. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (pp. 3127–3130).

Edmondson, A. (1999). Psychological safety and learning behavior in work teams.
Administrative Science Quarterly, 44(2), 350–383.

Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., & Paulk, M. (1997). Software quality and
the Capability Maturity Model. Communications of the ACM, 40(6), 31–40.

Iqbal, S. T., & Horvitz, E. (2007). Disruption and recovery of computing tasks: field study,
analysis, and directions. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (pp. 677–686).

Jeong, G., Kim, S., & Zimmermann, T. (2009). Improving bug triage with bug tossing graphs. In

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 75

Proceedings of the 7th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (pp. 111–
120).

Joint Task Force on Computing Curricula. (2014). Software Engineering 2014: Curriculum
Guidelines for Undergraduate Degree Programs in Software Engineering. ACM Curricula
Recommendations.

Kidder, T. (2000). The Soul of a New Machine. Back Bay Books.
Ko, A. J. (2006). Asking and Answering Questions About The Causes of Software Behaviors.

Carnegie Mellon University.
Ko, A. J., & Chilana, P. K. (2010). How power users help and hinder open bug reporting. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp.
1665–1674).

Ko, A. J., DeLine, R., & Venolia, G. (2007). Information needs in collocated software
development teams. In Proceedings of the 29th International Conference on Software
Engineering (pp. 344–353).

Kohavi, R., Frasca, B., Crook, T., Henne, R., & Longbotham, R. (2009). Online experimentation
at Microsoft. In Proc ICDMW ’13.

Krishnamurthi, S., & Felleisen, M. (1998). Toward a formal theory of extensible software. ACM
SIGSOFT Software Engineering Notes, 23(6), 88–98.

Li, P. L., Ko, A. J., & Zhu, J. (2015). What Makes A Great Software Engineer? In Proceedings
of the 37th International Conference on Software Engineering.

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering, 2(4),
308–320.

McConnell, S. (2004). Code Complete: A Practical Handbook of Software Construction (2nd
ed.). Microsoft Press.

Myers, C. R. (2003). Software systems as complex networks: structure, function, and
evolvability of software collaboration graphs. Physical Review E, 68(4).

NSPE. (2007). National Society of Professional Engineers Code of Ethics for Engineers.
Retrieved January 1, 2016, from http://www.nspe.org/resources/ethics/code-ethics

Perlow, L. A. (1999). The Time Famine : Toward a Sociology of Work Time. Administrative
Science Quarterly, 44(1), 57–81.

Poile, C., Begel, A., Nagappan, N., & Layman, L. (2009). Coordination in Large-Scale Software
Development : Helpful and Unhelpful Behaviors. Microsoft Research Technical Report.

Radermacher, A., & Walia, G. S. (2013). Gaps between industry expectations and the abilities of
graduates: systematic literature review findings. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education (pp. 525–530).

Raymond, E. (2001). The Cathedral & the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. O’Reilly Media.

Sandusky, R. J., & Gasser, L. (2005). Negotiation and the coordination of information and
activity in distributed software problem management. In Proceedings of International
Conference on Supporting Group Work (pp. 187–196).

Schraw, G. (1998). Promoting general metacognitive awareness. Instructional Science, 26(1–2),
113–125.

Simon, H. (1955). A Behavioral Model of Rational Choice. Quarterly Journal of Economics, 69,
99–188.

Simon, H. (1976). Administrative Behavior (3rd ed.). The Free Press.

Microsoft Research. Technical Report. MSR-TR-2019-8

©2019 Microsoft Corporation. All rights reserved. Page 76

Sowe, S., Stamelos, I., & Angelis, L. (2008). Understanding knowledge sharing activities in
free/open source software projects: an empirical study. Journal of Systems and Software,
81(3), 431–446.

Zachary, G. P. (1994). Showstopper!: The Breakneck Race to Create Windows NT and the Next
Generation at Microsoft. Free Press.

