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Abstract. HTTP session-id’s take an important role in almost any web
site today. This paper presents a cryptanalysis of Java Servlet 128-bit
session-id’s and an efficient practical prediction algorithm. Using this
attack an adversary may impersonate a legitimate client. Through the
analysis we also present a novel, general space-time tradeoff for secure
pseudo random number generator attacks.
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1 Introduction

At the root of many security protocols, one finds a secret seed which is supposedly
generated at random. Unfortunately, truly random bits are hard to come by, and
as a consequence, often security hinges on shaky, low entropy sources. In this
paper, we reveal such a weakness in an important e-commerce building block,
the Java Servlets engine.

Servlets generate a session-id token which consists of 128 hashed bits and
must be unpredictable. Nevertheless, this paper demonstrates that this is not
the case, and in fact it is feasible to hijack client sessions, using a few legitimately-
obtained session-id’s and moderate computing resources.

Beyond the practical implication to the thousands [16] of servers using
Servlets, this paper has an important role in describing an attack on a pseudo-
random-number-generator (PRNG) based security algorithm and in demonstrat-
ing a nontrivial reverse engineering procedure. Both can be used beyond the
Servlets attack described henceforth.

Web server communication with clients (browsers) often requires state. This
enables a server to “remember” the client’s already visited pages, language pref-
erences, “shopping basket” and any other session or multi-session parameters.
As HTTP [9] is stateless, these sites need a way to maintain state over a state-
less protocol. Section 2 describes various alternatives for implementing state over
HTTP. However, the common ground of all these schemes is a token traversing
between the server and the client, the session-id.

The session-id is supported by all server-side frameworks, be it ASP, ASP.net,
PHP, Delphi, Java or old CGI programming. Session-id’s are essentially a random
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value, whose security hinges solely on the difficulty of predicting valid session
id’s. HTTP session hijacking is the act where an adversary is able to conduct
a session with the web server and pretend to be the session originator. In most
cases, the session-id’s are the only means of recognizing a subscribing client
returning to a site. Therefore, guessing the unique session-id of a client suffices
to act on its behalf.

Driven by this single point of security, we set out to investigate the security of
session-id’s deployments, and as our first target, we have analyzed the generation
of session-id’s by Apache Tomcat. Apache [2] is an open-source software projects
community. The Apache web server is the foundation’s main project. According
to Netcraft [16] web study of more than 48,000,000 web servers, the Apache
web server is used by more than 67% of the servers and hence the most popular
web server for almost a decade.

At the time of this writing (April 2004), sites such as www.nationalcar.com,
www.reuters.com, www.kodak.com and ieeexplore.ieee.org are using Java
Servlets on their production web sites.

In many of these sites, the procedure for an actual credit-card purchase re-
quires a secure TLS [8] sessions, separated from the “browsing and selection” ses-
sion. However, this is not always the case. For example, Amazon’s patented [10]
“one-click” checkout option permits subscribing customers to perform a purchase
transaction within their normal browsing session. In this case, the server uses a
client’s credit-card details already stored at the server, and debits it based solely
on their session-id identification.

In either of these scenarios, an attacker that can guess a valid client id can
easily hijack the client’s session. At the very least, it can obtain client profile data
such as personal preferences. In the case of a subscriber to a sensitive service
such as Amazon’s “one-click”, it can order merchandize on behalf of a hijacked
client.

Briefly, our study of the generation of Java Servlets’ session-id’s reveals the
following procedure. A session-id is obtained by taking an MD5 hash over 128-
bits generated using one of Java’s pseudo-random number generators (PRNG).
Therefore, two attacks can be ruled out right away. First, a brute force search of
valid session-id’s on a space of 2'2® is clearly infeasible. Second, various attacks
on PRNGs, e.g., Boyar’s [6] attack on linear congruential generators, fail because
PRNG values are hidden from an observer by the MDJ5 hashing.

Nevertheless, we are able to mount two concrete attacks. We first show a
general space-time attack on any PRNG whose internal state is reasonably small,
e.g., 264280 Our attack is resilient to any further transformation of the PRNG
values, such as the above MD$ hashing. Using this attack, we are able to guess
session-id’s of those Servlets that use the java.util .Random package, whose
internal PRNG state is 64-bits. Beyond that, our generic PRNG attack is the
first to use space-time tradeoffs, and may be of independent interest.

Our second attack is on the seed-generation algorithm of Java Servlets. Using
intricate reverse engineering, we show a feasible bound for the seed’s entropy.
Consequently, we are able to guess valid session-id’s even when Servlets are
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using the java.security . SecureRandom secure PRNG (whose internal state is
160 bits).

The paper is organized as follows. In Section 2 we describe the HT'TP state
mechanisms. In Section 3 we describe and analyze the Tomcat session-id gener-
ation algorithm. Java hashCode() study is presented in Section 4. In section 5
we present our attacks on the session-id. We conclude in Section 6.

2 Stateful Web Browsing

HTTP is a client/server protocol designed for a light-weight and quick delivery
of content from servers to clients. HT'TP is stateless, in that a server responds to
a client’s request with a hypertext page and then breaks down the connection.
Any additional request from the same client requires the client to build a new,
seemingly unrelated connection with the server. Statelessness is part of what
makes HTTP efficient and fast to implement.

However, a typical client/server interaction entails repeated interaction. For
example, often a web page contains links to images and multi-media objects.
Obtaining each one of these is done in a separate TCP/IP connection to the
server, but they appear to be part of a single prolonged interaction. The new
HTTP standard [9] (HTTP 1.1) is already in place, allowing multiple retrievals
instead of a single one. Nevertheless, it is not meant to keep connections up
through an involved client/server interaction, which could span multiple screens
and forms. And it does not address clients returning to the same site after days
have passed.

Cookies [13] change this situation. Introduced originally by Netscape and
thereafter adopted widely and as part of HT'TP 1.1, cookies were designed with
the intention of solving the vexing problem of keeping long-lived relationships
between web servers and their clients. Cookies extend the HT'TP protocol by al-
lowing a server to hand a client certain information to keep. The client’s browser
automatically hands the server this information, the cookie, the next time it
connects to the same site. Cookies are used by servers to store a variety of in-
formation, from client membership identification to complete shopping basket
contents. They greatly enhance the web browsing experience, allowing a client
to be recognized by a server, accumulate shopping selections, and so on.

An analog mechanism to cookies is URL rewriting. In this framework, instead
of sending a fixed web page to the client the web server encodes the session
information as part of the page, e.g., within embedded URL links. URL rewriting
requires less from the client side, but as far as this paper is concerned is the same
session mechanism and our attack is equally applicable to it.

From a privacy point of view, it should be noted that the cookies mechanism
and likewise, URL re-writing were designed to prevent leakage of information
between sites, in that a cookie is returned only to the site that originally sent
it. In this way, a server may only obtain information that it already had about
a user. Unfortunately, there are examples of cookie-abuse, e.g., the infamous
doubleclick.com site, that collects client clicking-profile through its advertise-
ments on partner sites.



Hold Your Sessions: An Attack on Java Session-Id Generation 47

This work, however, is concerned with a different weakness of cookies, and
more generally, with stateful web browsing. True, recognizing a returning client
through cookies alleviates the need to tediously re-type a user name and a pass-
word upon each connection establishment to a site. Unfortunately, it also poses a
web-identity theft potential: If one can guess a valid cookie, one can impersonate
another client. As simple as that.

There is hardly a limit to what an attacker may obtain through such identity
theft: She may be able to learn private user data, such as names and addresses.
She could collect clients’ profile information, such as preferences and shopping
history. She could penetrate access protected sites. In a particularly vicious at-
tack, using Amazon’s “one-click” option, she might be able to order merchandize
on behalf of impersonated customers. Essentially, there are limitless hazards.

3 Tomcat Session-Id Generation Algorithm

In this section, we describe our study of Tomcat 5 [1], the Apache Java imple-
mentation for Servlet 2.4 [19] and JSP 2.0 [14] specifications. We study version
5.0.18, which was released on January 2004. Our full study involves additional,
and more challenging reverse-engineering of relevant modules of the JVM which
are written in native-code. This part is deferred to the next section.

The remainder of this section describes the Tomcat session-id generation
scheme, which includes two parts. One is a session-id allocation used during
the set up of each new session. The second is an initialization phase that is
executed once when the server comes up. We hint about potential weaknesses as
we go along. The description omits unimportant implementation details such as
irrelevant Java class names.

3.1 Allocation

We begin by examining the algorithm for generating new sessions-id’s dur-
ing the set up of new sessions. Session-id’s are allocated within method
generateSessionld(), and consists of 16 bytes, or equivalently, 128 bits.

Inside generateSessionId(), the allocation consists of the following steps:

1. Method getRandomBytes fills a sixteen bytes array. If /dev/urandom exists
the bytes are read from it. If not, a Java pseudo-random number generator
(PRNG) is invoked. Method getRandom() is invoked to obtain a handle
either to Java.Security.SecureRandom or Java.Util.Random. Figures 1,2
presents these functions.

2. The 16 bytes obtained from getRandomBytes are mixed using a digest func-
tion which is MD5 [18] by default.

3. The result is the 128-bit session-id. For convenience, it is converted into 32
ASCII characters, where each 4 bits are mapped to a matching character
between 0 ... F".
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R initial seed n=20
™) (25,214,903,917 X 2,1 + 11) mod (2 —1) n >0

Fig. 1. java.util. Random. x,, holds the PRNG next output.

Tn = SHAL(sp) n=20
| initial seed n=>0
Sn 1= (Zn—1 4 sn—1 + 1) mod 2! n >1

Fig. 2. java.security.SecureRandom. x, holds the PRNG next output and s, is the
internal state.

3.2 Initialization

Given that generateSessionld() employs a Java PRNG for allocating session-id’s,
the next thing to investigate is how it is initialized inside the Tomcat package. We
had initially hoped to find a simple weakness, e.g., initialization by a hard-wired
constant, which would render session-id’s easily predictable. Such weakness were
found frequently in the past, e.g, [12].

That is not the case here, and the seeding of the PRNG within Tomcat is an
intricate, thoughtful process, consisting of the following steps.

1. Set C' = System.current TimeMillis(). This is 64 bit field measuring the time
since January 1, 1970 in milliseconds.

2. Set Entropy = toString(org.apache.catalina. session . ManagerBase.java).
The value of Entropy is equal to the Java String org.apache.catalina.session.
ManagerBase.java@X. The prefix of the term is always the same, and the
part following the @ sign is variable. Section 4 describes our study of the X
value and how we can predict it.

3. Set Seed = f(C, Entropy). The function f is depicted in Figure 3. It takes
the Entropy and spreads it byte by byte (letter by letter), with 8 bytes per
row (or 64 bits per row). It computes a xor of all the rows, xor’ed also with
C, yielding a 64-bit value.

4. Seed is used for initializing the PRNG.

Despite the intricate seeding process above, this is the important part where
our attack will take place. As we show below, we can indeed predict with reason-
able effort the Seed value. As all other steps are deterministic and known from
the server code, once we find the Seed we can predict each session-id value. This
will be later presented in Section 5.

4 Java Object.toString() Algorithm

The Java Object.toString() function is used by the initialization algorithm pre-
sented in Section 3 for generating the PRNG seed. In this section, we take a
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| System.currentTimeMillis (64 bit) |

@
[‘c[a|p a ] ]g]r]0o]

@
\II \al | \t/ I \a/ I \CI \./ \el \hl

@

[s'['s e ['s | [a '] ]
[T o [w T o ]
b= 1 I o O - A\ A B o W Ao O

@
v ‘e’l‘sll‘a’I‘B’ r' | e’ ‘g’|

@
@ |'a’ [V [a' |

@

| Seed (64 bit) |

Fig. 3. The function f() employed to generate a seed out of C, the time in milliseconds,
and Entropy, a string containing org.apache.catalina . session . ManagerBase.java@QX,
where X is the hashCode 32 bit field marked as scattered area.

close look at Object.toString(), and show that this value is actually a very low
entropy source.

The Java Object method toString returns the value
getClass (). getName()+”@Q” +Integer.toHexString(hashCode()); Hence, the re-
turned string has a fixed prefix, which is the class name, followed by the @
sign and a 32 bit field which is the result of the method hashCode.

The function java.lang.Object.hashCode() is a native one, which requires
each Java virtual machine implementor to bring its own implementation.

According to the Java documentation the hashCode method must have the
following properties.

1. Whenever it is invoked on the same object more than once during an exe-
cution of a Java application, the hashCode method must return the same
integer (32 bit).

2. If two objects are equal they return the same hashCode

3. it is not required that two object which are not equal return distinct values
of hashCode.

4. As much as is reasonably practical, the hashCode method defined by class
Object does return distinct integers for distinct objects (this is typically
implemented by converting the internal address of the object into an integer,
but this implementation technique is not required by the Java programming
language).

It is important to note here that reading the Java documentation may lead
the reader (and maybe also the Tomcat implementor) to think that the hashCode
is hard to predict.
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However, this is not always the case. In particular, the Microsoft Windows
platform [15] does not follow the recommendation to use the pointer address
space in generating the hashCode. Instead the JVM uses a linear congruential
generator (LCG) to get the different hash codes. Using the IDA-Pro [7] disas-
sembler we get

(a X Ty, +b) mod m first object access
hash is given from a history table otherwise
(1)

We can now predict the hashCode value using the LCG values. What we
need to know is the server boot sequence where our object will be called. This
information should usually be available for an attacker, which in most cases
can deploy the same server and verify the class loading sequence. Even when
this procedure is hard to perform an adversary can narrow the valid range into
256 possible values with only few trials. This brings the Java hashCode into 8
entropy bits or less, which is far lower entropy than the presumed 32 bits and
will take part in our general attack scheme.

hashCode(object) := {

5 Attacks

We remind the reader that the goal of an attacker in our settings is to predict
legitimate session-id’s that are allocated to clients, and impersonate these clients
over HTTP connections with servers.

We describe two attacks. The first one is a generic attack on any PRNG
whose internal state is feasibly small, e.g., 264280, The second is an attack on
the seeding procedure of Java Servlets.

5.1 Space-Time Tradeoffs for PRNG Attacks

A space-time tradeoff attack is the notion of using a large space of pre-computed
values in order to reduce the time of an online attack. Ours is the first general
space-time tradeoff on secure PRNG based protocols. In the following, we first
present the general attack and then tailor it for the session-id’s case. Our at-
tack is a direct adaptation of a space-time tradeoff attack on stream-ciphers,
recently demonstrated by Biryokuv and Shamir in [4]. For completeness, we first
introduce space-time tradeoffs for block and stream ciphers.

Background. A block cipher space-time attack lets an adversary tune the
values of memory M and online attack time T for a given key space K of size
N = |K|. Hellman [11] introduced this method with a TM? = N? tradeoff.

Hellman’s space-time tradeoff block cipher attack is made of two parts. We
first conduct a pre-computation stage to set the memory tables, with computa-
tion cost P = N. The second stage includes the online attack. Given a cipher-text
y the online stage returns the key k € K such that y = Fx(p), where E is the
encryption function and p is a pre-chosen plain text.

The pre-computation includes building several tables of chains as follows. For
the first element in the chain, we first randomly select a key k° € K. The second
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chain element is k! = R(Ejo(p)), where R(y) € K is an arbitrary reduction
function which maps a cipher text block to a valid key value. The reduction
function can be simple truncation, or a selection of |k| bits from the cipher text
y, but as explained below, it is important that R is uniformly distributed over K.

A chain of length ¢ contains repeated invocations of R(FEy:(p)). We mark SP
and EP as the start and end points. The resulting length ¢ chain, with reduction
function R() is as follows:

SP =k — k' :== R(Ej(p)) — ... — EP = k"' := R(E,.(p)) (2)

The goal is to cover K with the different chains and with low or no collisions at
all. Each chain starts with a different SP, and we assume that the application
of R(E)()) over the initial random starting points is like a random selection of
elements from K.

We can repeat the chain building procedure and make m such chains. In
order to complete our attack these chains must cover K. However, some collisions
will occur, i.e., a chain will occasionally reach a key that already appears in a
previous chain. Once such a collision occurs, the remainder of the chain, which is
computed in a deterministic way, will repeat the same, already computed chain.
Furthermore, when existing chains cover as little as N/t out of the N elements,
the probability for collision in the next ¢ elements is a non negligible constant.

Hellman suggested to solve the collision problem using r different reduction
functions Ry, ..., R,. Each reduction function is chosen as a different selection
of |k| bits out of the cipher text y. For each reduction function we build a table
with m chains, each of length ¢, such that mt = N/¢ (the point beyond which
producing additional chains is wasteful). The different reduction functions ensure
that even when an element occurs in two different tables, the next element in
the chains will be different in the two tables, hence the total number of collisions
is low.

The assignment of m, t and r such that mtr > N solves both our collision
and coverage concerns. In the rare occasion that during our pre-computation
two chains end with the same EP we select the longer chain.

An additional important technique which can improve the table lookup per-
formance is due to Rivest. Instead of stopping after ¢ steps we can stop at a
Distinguished Point which is a point with some easy to verify property, e.g.,
all its log, t first bits are zero. As R;(Fx(p)) is distributed uniformly, the av-
erage chain length will be ¢. In this way, instead of looking up each key value
in the pre-computed endpoints, we will only need to look for values which are
Distinguished Points.

Here, care should be taken to avoid loops. When building a chain, there is
a small probability of a loop, in which case we may never reach a distinguished
point. In this rare event we just keep any such loop chain. The additional com-
putational and storage complexities are negligible.

The second part of the space-time attack is the online attack. At this stage
we assume that r tables with m different chains, each of length ¢ were computed
and stored. Each such chain is stored as a pair of SP and EP.
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Given a cipher text 3’ we can now find a key k such that E.(p) =4y as
follows. The idea is to find the chain in which 3’ appears, and then find y’’s
predecessor in the chain, which is &’. We locate the chain by setting k° = R;(y),
and then repeatedly applying R;(E}; (p)) with the r different reduction functions.
Once getting to a distinguished point we look it up in the i-th table. If matched,
we found the chain represented as SP,EP. We can now repeat the R;(Fyi(p))
invocation starting from SP, until we find &’ such that ¢y’ = Ej/ (p).

Neglecting logarithmic factors, we can conclude Hellman’s space-time attack
for block ciphers with online cost T' = ¢r (though only r expensive table lookups),
space M = mr, pre-computation P = trm = N. Together, these yield TM? =
N2,

Hellman’s attack can be quite practical. In fact, Oechslin demonstrates in [17]
a very feasible implementation of Hellman’s space-time attack for breaking Win-
dows passwords. That work is based on the fact that the key space is rather small,
237 and on the fact that Windows password encryption uses the password to
encrypt a fixed known plain text.

That said, Hellman’s method has two main drawbacks. The first is the pre-
computation cost, which is equal to the entire key space size N. The second is
that it is a chosen plain-text attack. All the table values were computed using a
chosen plain text and are relevant only for attacking that plain text cipher.

Recently, Biryokuv and Shamir [4] extended space-time attacks for stream
ciphers. A stream cipher works as a state machine that is initialized with a secret
key and outputs a keystream sequence that contains bits from the internal state
of the machine. Encryption consists of xor-ing the keystream bits with the plain
text. Once we find a correct state of the stream cipher machine, not necessarily
the initial key or the first state but any state, the remainder of the stream
cipher output is predictable. Hence, the search space K is no longer the initial
key space but rather the internal stream cipher state. That is, given a state s
of the stream cipher, the next keystream k(s) (of some pre-determined length)
produced by the stream cipher is determined. Now, given a known plain-text p’
and its cipher-text ¢/, we can determine whether k(s) is the key producing the
cipher and conclude that the stream-cipher’s internal state is s. This may be
done for any known plain-text, not a specifically chosen plain-text p as before.

Hellman’s attack framework presented above is used in a similar way here
with one important change. The chain step maps an internal state of the stream
cipher into the appropriate keystream it generates, and from the keystrem is
reduces back using a reduction function to an internal state. The rest of the
parameters — N, m, t, r and the distinguished points can be used in the same
way.

When working on stream ciphers, Biryukov and Shamir explain how the two
main drawbacks for block ciphers are solved. Cipher stream encryption is used
as a one time pad for the plain text. Therefore, given any exposed plain-text, we
recover the keystream with which it is encrypted. This keystream is the same for
a given internal state of the streamcipher, regardless of the plaintext it encrypts.
Given an exposed cipher text, we first (trivially) find the keystream that encrypts
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it, and then we attempt to recover the stream-cipher’s internal state that results
in this keystream. Hence, this is a known plain text attack and not a chosen
plain text attack as in the block cipher case. The distinction is huge, since we
can use a one-time preparation stage for all future attacks on the stream-cipher.

We can also use this fact to reduce the search space using multiple known
plain-texts. Let us denote the number of exposed cipher texts given to the ad-
versary by D. Since every exposed cipher text (equivalently, every keystream)
corresponds to some unknown internal state of the stream cipher, we can find
one of the keystreams with good probability if we cover only N/D of the states
space. Thus, if an adversary can expose D cipher texts, it is enough to pre-
compute only N/D of the states space. We therefore set r = ¢/D instead of
r = t, and compute only r different tables.

The space-time tradeoff for stream ciphers can now be written as time T =
Dtr = t? (as in Hellman’s attack), space M = mt/D, where mt*> = N which is
better than before, and likewise the pre-computation P = N/D is lower. We get
a tradeoff of TM?2D? = N2, which is much better than the block-cipher tradeoff
of TM? = N?2.

Session-Id’s Space-Time Tradeoffs Attacks on pseudo random generators
can be addressed in a similar way to stream ciphers, thus we attack the PRNG
internal state using a space-time attack. Below, we demonstrate the attack using
the specific example of the Tomcat session-id generation algorithm. However, the
same principles can be applied for other uses of the bits produced by a PRNG.

We can describe a PRNG as a state machine with states 1, x2, x3, . ... In any
state x,, some bits are made available as output, and then the PRNG shifts to
state x,41. Consequently, there is a deterministic sequence of bits by, bs, b3, . ..
produced by the PRNG from any particular state z,, onward. For example, in
java. util .Random(), the bits produced by the LCG state x,, are z,, itself. We
denote f(x,) the deterministic 128-bit sequence produced by the PRNG from
state . The Tomcat session-id is generated as follows:

y := session_id := M D5(f(zy)) (3)

Although the MD5 transformation (or any other transformation, for that
sake) effectively masks the values of the PRNG, we do not need to break MD$5 in
order to predict session-id’s. The session-id generation algorithm is deterministic
and has no additional entropy sources along the algorithm. In this sense, our
PRNG algorithm is similar to the stream-cipher where the encryption is based
on the internal state cipher. Once we break any session-id value and reverse it
to its state value x,, we can generate the entire series of next values.

Assume for the sake of demonstration that states are 64 bit values. The space-
time attack we employ targets the “key space” K of PRNG internal states. Thus,
N = |K| = 254,

We denote the transformation of Equation 3 by F. Given a value y, our goal
is to find z such that z = F~1(y). We do this with a time-space tradeoff as
follows. The start-point of chains are m randomly selected values k representing



54 7Zvi Gutterman and Dahlia Malkhi

states of the PRNG. The chaining step from k; to k;41 is the transformation
F followed by reduction functions R;, j = 1..r. We use for R; a truncation
and a simple xor in order to reduce the 128 bits F' values into a 64 bits internal
PRNG states: R;(yo—127) := yYo—63 D@ where i € {1...7}. As before, we maintain
r tables, each containing m chains, and each terminating with a distinguished
end-point (e.g., whose lowest log, ¢ bits are zero). For each chain, we store only
the start and the end points.

Suppose we are able to obtain D distinct valid session-id’s. In practice, col-
lecting session-id’s from a working web-server is easy, and even a large number of
sessions requested by the same client over a short time frame may not raise sus-
picion. Note that, these session-id’s need not be consecutive, which is important
in the framework of current distributed clients accessing a web server.

Our attack is then mounted as follows: For each of the D known session-
id’s y, and for j = 1..r, apply R;(F()) repeatedly until a distinguished point
is reached, and search for it in the j’th pre-made table. If found, then go back
to the start point, and reach the state x; such that F'(z;) = y. From state z;
onward, the session-id’s generated by this server are predictable.

Letting r = ¢/D as in the stream cipher attack, we obtain a tradeoff of
P = N/D pre-computation time, space M = mt/D where mt? = N, and on-line
computation time T = t2. This yields TM?D? = N2.

For concrete numbers, we assume that it is possible to obtain D = 1000 valid
session id’s without raising suspicion. We put ¢ = 222. Then our space of N = 264
PRNG states can be broken with storage M = 264722-10 — 232 and an on-line
computation time T = t? = 2% both very feasible today with a moderately
powerful workstation.

5.2 The Seed Attack

Some installations of Java Servlets use the java. security . SecureRandom PRNG,
rather than java. util . Random. As outlined in Section 4 above, SecureRandom
has an internal state of 160 bits. Hence, the general PRNG attack we described so
far is not feasible against it. Here, we attack the protocol using another weakness,
a low-entropy seed.

According to the description in Section 3, the space of seeds for the PRNG
is determined by combining the range of possible clock readings in milliseconds
(counted from 1970), and a value set by the method hashCode(). A day has
about 226 milliseconds and a year has about 23°. Hence, the entropy of this
value is between 26 to 35, depending on how accurately we can estimate a server’s
uptime. As for the value of hashCode(), Our reverse engineering of this method
constrains it to within a small set of values, typically less than 128 different
ones. Thus, the effective total range size of seeds is bounded between 233 and
242, Certainly this is a space that can be searched exhaustively with a moderate
computation power, especially if the uptime of a server is estimated relatively
accurately.

While this is a weakness of the session-id generation algorithm, in itself it
does not lead to a practical attack. The difficulty is in verifying the correctness
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of a guessed seed. The naive way is to involve the server. That is, one can guess
a seed value, generate one or several “session-id’s” originating with the seed
value, and attempt to “hijack” a customer session with this session id. As this
procedure involves an interaction with the server for each guessed value, even
for for a space of 232 values it is very time consuming. Moreover, it would be
very easy to detect that such an attack is going on at the server side. The server
can protect itself against repeated connection attempts from the same domain
over a short period of time by slowing down its response or refusing recurring
attempts, and thus thwart the entire attack.

Our strategy is therefore to mount an almost entirely off-line attack as follows:

1. Get a valid session-id by connecting to the attacked web server. Mark this
valid session-id as Sid.

2. Set T as an upper limit for the server uptime, since the last reboot. The
value is in milliseconds.

3. Set hash_min, hash-max as the lower and upper limit on the JVM
hashCode(). Mark Apqsn = hash-maxz — hash_min.

4. Set sid_min, sid_max as the minimal and maximal number of valid session-
id’s assigned so far by the attacked server. Mark Ag;q = sid_max — sid_min.

5. Generate all the possible session-id’s using all the possible T' x (hash_-max —
hash_min) seeds, and for each potential seed, producing (sid_max—sid_min)
session-id’s. Compare Sid against this space, until a valid seed is revealed.

The above ignores the variability that different architectures and JVM ver-
sions may have in generating hashCode() values. If that is not known by the
attacker, this should incur a multiplicative factor over the range of possible
hashCode() values.

In the above attack, the size of the potential sessions-id’s space is 27, where
the exponent F is given by the following sum:

E = log,(T) +10g5(Anasn) + 1082 (Asia) (4)

If we take fairly conservative values, a server up-time of a month, hash values
range 128, and valid session-id range 32,000 we get £ = 29+ 7+ 15 = 51. This
is certainly a searchable space.

6 Conclusions

This paper presents a practical attack on one of today’s main E-commerce build-
ing blocks, the session-id. Our attack shows that the presumably secure 128 bits
can be broken using 2% or less computation steps. Our attack can be mounted
using limited computing resources, and has the same communication fingerprint
of a legitimate user accessing the attacked web server. Hence, it is difficult for a
server to detect and stop such an ongoing attack.

We implemented the attack and tested it under distilled environment con-
ditions. In our case, we set up a Tomcat server and obtained session-id’s from
it. We staged our attack on the same machine, so any uncertainty about Java
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versions and platforms was completely alleviated. Given the session-id’s we ob-
tained, we were able to predict the PRNG sequence within a day of CPU time.
We did not try our attack on working servers to avoid legal complications.

Beyond the attack on session-id generation, we present a general scheme with
a space-time tradeoff for attacking pseudo random number generators. To the
best of our knowledge, this is the first space-time tradeoff for PRNG attacks. The
attack may have important ramifications on presumably secure uses of PRNGs,
such as BlumBlumShub [5], and emphasizes the need for deploying these with a
large internal state.

This paper proves again a common cryptographers’ knowledge. The complex-
ity of a security scheme does not make it secure; nor is it made secure by using
building blocks such as one way functions and secure pseudo random number
generators.

It is important to note that Tomcat bring web server administrator the option
to harden the session-id generation. The simple option is to add secret entropy to
the seed. Other options require either using a different random number generator
or a different session-id scheme.

The Tomcat web server is an open-source project. As such, it is an easy
target for analysis, through both dynamic and static reverse engineering. The
equivalent “binary only” attack requires more sisyphean work, usually through
the low level assembly code. In a sense, this is the Achilles’ heel for the security
aspects of open source code. We believe that this is true only for the short term.
In the long term, an open source project can benefit from a large audience testing
its security, while closed projects might wrongly be presumed secure just because
their study is complex. One such example is the GSM encryption scheme, which
was considered secure for long, but was recently proven not so [3].
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