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Foreword 

When it comes to natural disasters like hurricanes, earthquakes, floods, and wildfire, 313 million people in 

the United States are affected.  

More than ever, mitigating against these disasters is of paramount importance.  

In 2005, the National Institute of Building Sciences released a study called Natural Hazard Mitigation Saves: 

An Independent Study to Assess the Future Savings from Mitigation Activities. Since then, we’ve updated it 

and added necessary pieces to this ever-changing climate puzzle.  

Just in the last couple of years, the country endured some of its most devastating disasters. These include 

Category 5 hurricanes Michael, which struck the Florida panhandle in October 2018, and Maria, which 

devastated Dominica, U.S. Virgin Islands, and Puerto Rico in September 2017. Also in November 2018, the 

Camp Fire broke out in Northern California -- the deadliest and most destructive fire in California history. 

Most recently, around the Fourth of July holiday this year, the Ridgecrest earthquake struck Southern 

California, just north of Los Angeles. This magnitude 7.1 earthquake was the most powerful to hit California 

in more than 20 years. It was felt by millions of people, and already more than 80,000 earthquakes have 

since been recorded in the Ridgecrest area. 

Future disasters are inevitable, yet their growing frequency and magnitude of destruction substantially are 

exacerbated by the decisions Americans make in where and how they build. As cities and communities 

continue to grow, these events will affect more lives, businesses, and the nation’s economy. 

Fortunately, there are measures that individuals and communities can act upon to minimize destruction in 

hazard-prone areas.  

Pre-disaster mitigation—preparing in advance for future disasters—assures that hazardous events are 

short-lived and more manageable. Mitigation saves lives, and preserves homes, businesses, government 

facilities, utilities, and transportation infrastructure. It reduces damage to belongings, helps economies 

spring back faster, and lowers recovery costs.  

This report builds on where we started. It is our aim to help decision-makers build a mitigation strategy so 

they can protect lives, properties, and assets.  

Our findings are intended to inform future code changes to make communities more resilient and help 

jurisdictions make decisions on the codes to adopt and enforce. We also aim to assist policymakers to 

develop effective federal programs that support pre-disaster mitigation and encourage more mitigation 

investments from the public and private sector.  
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There were many involved in the production of this groundbreaking report. We offer a sincere thanks to 

the key stakeholder organizations identified at the beginning of this report – we could not have done this 

without you.  

We also must express our heartfelt appreciation for the efforts of the project research, management, and 

oversight teams, Multihazard Mitigation Council, and the reviewers for their endless efforts and 

contributions. 

And while we close the chapter on this iteration of the report, more work is needed to assess a broad suite 

of mitigation strategies. We hope you will consider supporting this project moving forward.  

The National Institute of Building Sciences encourages the President, members of Congress and the state 

legislature, leaders of federal and state agencies, communities, building owners, and officials within the 

private finance, insurance, and real estate sectors to review this report and use the results to initiate a 

greater mitigation dialogue, increasing awareness and encouraging mitigation activities to help develop a 

more resilient nation. 

 

Sincerely, 

 

 

 

Lakisha Ann Woods, CAE 

President & Chief Executive Officer 
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Summary of Findings 

 

BCRs for Mitigation Strategies Studied 

(from Highest to Lowest) 

• Adopting Model Codes Saves $11 per $1 Spent 

        • Federal Mitigation Grants Save $6 per $1 Spent 

        • Exceeding Codes Saves $4 per $1 Spent 

        • Mitigating Infrastructure Saves $4 per $1 Spent 

 

Natural hazards present significant risks to many communities across the United States. Fortunately, there 

are measures that governments, building owners, developers, tenants, and others can take to reduce the 

impacts of such events. These measures—commonly called mitigation—can result in significant savings in 

terms of safety, and preventing property loss and disruption of day-to-day life. 

Given the rising frequency of disaster events and the increasing cost of disaster recovery across the nation, 

mitigation actions are crucial for saving money, property, and, most importantly, lives. Activities designed 

to reduce disaster losses also may spur job growth and other forms of economic development. 

Mitigation represents a sound financial investment. This study examined five sets of mitigation strategies 

and found that society enjoys a benefit-cost ratio (BCR) of 11:1 for adopting the 2018 International 

Residential Code (IRC) and International Building Code (IBC), the model building codes developed by the 

International Code Council (also known as the I-Codes), versus codes represented by 1990-era design; a 

BCR of 4:1 for investments to exceed select provisions of the 2015 IRC and IBC; a BCR of 4:1 for a variety of 

common retrofit measures for private-sector buildings; a BCR of 4:1 for a select number of utilities and 

transportation infrastructure study cases; and a BCR of $6 for every $1 spent through mitigation grants 

funded through select federal agencies. 

Just implementing above-code design for one year and carrying out the last 23 years of federally 

supported mitigation grants will ultimately prevent 600 deaths, 1 million nonfatal injuries, and 4,000 cases 

of post-traumatic stress disorder (PTSD) in the long term. In addition, designing new buildings to exceed 

the 2015 IRC and IBC would result in 87,000 new, long-term jobs, and an approximate 1% increase in 

BCRs for Mitigation Strategies Studied 

(from Highest to Lowest) 

• Adopting Model Codes Saves $11 per $1 Spent 

• Federal Mitigation Grants Save $6 per $1 Spent 

• Private-Sector Building Retrofit Saves $4 per $1 Spent 

• Exceeding Codes Saves $4 per $1 Spent 

• Mitigating Infrastructure Saves $4 per $1 Spent 
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utilization of domestically produced construction materials.1 Communities that consistently meet the latest 

editions of commonly adopted code requirements, culminating in the 2018 IRC and IBC, have added 

30,000 new jobs to the construction-materials industry and an approximate 0.3% increase in utilization of 

domestically produced construction materials for each year of new construction over what it would have 

been if buildings were designed as they were in 1990. 

The study examined four specific natural hazards: riverine and coastal flooding, hurricanes, earthquakes, 

and fires at the wildland-urban interface (WUI). The national-level BCRs aggregate the study findings 

across these natural hazards and across state and local BCRs. Table 1 provides BCRs for each natural 

hazard the project team examined. 

Table 1: Benefit-Cost Ratio by Hazard and Mitigation Measure. 

 

The study quantifies many, but not all, of the important benefits of mitigation. Mitigation activities save 

more than what is estimated in this report. Disasters disconnect people from friends, schools, work, and 

familiar places. They ruin family photos and heirlooms and alter relationships. Large disasters may cause 

permanent harm to one’s culture and way of life, and greatly impact the most socially and financially 

marginal people. Disasters may have long-term consequences to the health and collective well-being of 

those affected. Such events often hurt or kill pets and destroy natural ecosystems that are integral parts of 

                                                 
1 Higher construction costs might also cost jobs if they make new homes less affordable, unless the higher 
cost of homes is offset by incentives as described in the section, “Incentivization Can Facilitate Ideal Levels 
of Investment.” 
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communities. Disasters clearly disrupt populations in ways that are difficult to articulate, let alone assign 

monetary worth. 

This study updates and expands a 2005 study conducted by the National Institute of Building Sciences 

(Institute) Multihazard Mitigation Council (MMC), at the direction of the U.S. Congress, entitled Natural 

Hazard Mitigation Saves: An Independent Study to Assess the Future Savings from Mitigation Activities (the 

2005 study), which found, among other things, that every $1 of natural hazard mitigation funded by the 

Federal Emergency Management Agency (FEMA) between 1993 and 2003 saved the American people an 

average of $4 in avoided future losses.2 

This study provides an updated examination of the benefits of federal agency grant programs. It utilizes a 

more-realistic economic life span for buildings (75 versus 50 years) and takes advantage of a more 

advanced Hazus-MH flood model and improvements in FEMA’s Benefit-Cost Analysis Tool, which, among 

other things, allows quantification of the benefit associated with enhanced service to the community 

provided by fire stations, hospitals, and other public-sector facilities. The 2005 study did not estimate the 

economic costs associated with PTSD. The 2005 study also did not calculate avoided insurance 

administrative costs, overhead, and profit, the reduction of which can add significant benefit in some 

situations. The ability to estimate urban search and rescue costs is introduced here. 

                                                 
2 National Institute of Building Sciences. Natural Hazard Mitigation Saves: An Independent Study to Assess the Future 

Savings from Mitigation Activities (2005). http://www.nibs.org/mmc_projects#nhms 

http://www.nibs.org/mmc_projects#nhms
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BCRS IN GREATER DEPTH 

This study examines the savings (benefit) associated with an identified level of investment (cost). The ratio 

of the former to the latter is the BCR, which is one of many measures that decision-makers can use to 

judge the desirability of an investment. Here, “cost” means the up-front construction cost and long-term 

maintenance costs to improve existing facilities or the additional up-front cost to build new ones better. 

“Benefit” refers to the present value of the reduction in future losses that mitigation provides. For the 

results presented in this report, a real, after-inflation, cost-of-borrowing discount rate of 2.2% is used. At 

higher discount rates, including those used by the Office of Management and Budget (OMB), such 

measures remain cost effective.3 

                                                 
3 Consult Section 2.11 in the full report for an in-depth discussion on discount rates. 

Mitigation Strategies Studied 

The Institute’s MMC undertook a study to update and expand upon the findings of its 2005 

Mitigation Saves study on the value of mitigation. The Interim Study analyzes four sets of 

mitigation strategies: 

Adopting I-Code Requirements: Design based on meeting the 2018 IRC and IBC versus codes 

represented by 1990-era design and National Flood Insurance Program (NFIP) requirements—

results in a national benefit of $11 for every $1 invested. 

Beyond code requirements: The costs and benefits of designing all new construction to exceed 

select provisions in the 2015 IBC and the 2015 IRC and the implementation of the 2015 

International Wildland-Urban Interface Code (IWUIC). This results in a national benefit of $4 for 

every $1 invested. 

Private-sector retrofit: By far the dominant source of natural-hazard risk today is the existing 

building stock of older buildings that predate modern codes. Performing some of the most 

common or practical retrofit measures on the existing residential building stock produces $4 

of national benefit for every $1 invested.  

Infrastructure:  Case studies for utility and transportation infrastructure based on Economic 

Development Administration (EDA) grants and California projects result in a national benefit of 

$4 for every $1 invested. 

Federal grants: The impacts of 23 years of federal mitigation grants provided by FEMA, EDA, 

and the Department of Housing and Urban Development (HUD), result in a national benefit of 

$6 for every $1 invested. 
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All mitigation produces benefits, so BCR is always greater than 0; there are no negative BCRs. A BCR over 

1.0 signifies that the mitigation measure has an up-front cost, but after accounting for the time value of 

money and inflation, the future societal losses are reduced more than they cost on average. Thus, the 

return on investment (ROI), calculated by subtracting 1 from the BCR, is positive at the societal level. This 

means that the long-term cost of ownership at the societal level is lower with the mitigation than without 

it. The higher the BCR, the more cost effective is the measure. 

The study includes the benefits associated with avoided cases of post-traumatic stress disorder, PTSD. 

The project team considered the cost of mental health impacts similarly to costs related to injuries as a 

whole; that is, as an acceptable cost to avoid a future statistical injury, as opposed to the expense 

associated with a particular injury. The costs consider direct treatment costs where treatment is about 10% 

of the overall costs of the incidence, and the other costs include things like lost wages, lost household 

productivity, and pain and suffering. Because few benefit-cost analyses (BCAs) even attempt to include 

these costs, the additional of acceptable costs to avoid a statistical instance of PTSD is a conservative but 

innovative addition to the 2005 Mitigation Saves study.4 

                                                 
4 See Sections 3.10 and 4.18 of the Technical Documentation for an in-depth discussion on the calculation of PTSD. 
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Figure 1 shows the overall ratio of costs to benefits for adopting the 2018 IRC and IBC as compared to 1990 

design. Figure 2 shows the overall ratio of benefits to costs of designing new buildings to exceed the 

select 2015 I-Code requirements that the project team studied and meeting the 2015 IWUIC. The costs 

reflect only the added cost relative to the 2015 IBC and IRC, or the adoption of the 2015 IWUIC. Where 

communities have an older code or no code in place, additional costs and benefits will accrue. Figure 3 

shows the overall benefit-cost ratio of the leading private-sector residential retrofit measures considered here. 

Figure 4 shows the overall ratio of costs to benefits for implementing select utility and transportation 

Why Five BCRs? 

This report features five high-level BCRs representing the benefits of mitigation achievable 

through exceeding code provisions, meeting the latest editions of commonly adopted code 

requirements, select utility and transportation infrastructure mitigation strategies, and federal 

grant programs. While the project team recognized the desire to have a single BCR that would 

facilitate widespread dissemination of the project results, providing such an aggregate number 

will be more useful when other leading mitigation measures are considered, especially retrofit of 

commercial buildings, business continuity planning and disaster recovery, and direct mitigation 

activities by federal agencies. 

The 2005 study produced the widely cited results that showed a $4 benefit for every $1 invested 

in mitigation. Despite the specific guidance that the result represented only a single, very narrow 

set of mitigation strategies, specifically those funded through FEMA mitigation grants, the BCR 

has been used to justify all types of mitigation strategies.  

This report includes the results from the examination of a new set of mitigation measures: 

exceeding the 2015 IBC and IRC and implementing the 2015 IWUIC that provides an aggregate 

BCR of 4:1; meeting the 2018 IRC and IBC that provides an aggregate BCR of 11:1; private-sector 

retrofit of residential buildings that produces an aggregate BCR of 4:1; and utility and 

transportation infrastructure case studies that provide an aggregate benefit of 4:1. While these 

mitigation measures are an important addition to the dialogue around mitigation, they still only 

represent a subset of many practical strategies. 

This report also provides an updated examination of the benefits of federal agency grant 

programs (including the addition of EDA and HUD grants), resulting in a $6 benefit for every $1 

invested. While not a direct replacement, when used to describe federal grant programs, the 6:1 

BCR can be used in place of the original 4:1. 

In lieu of providing a result based on a limited set of mitigation measures, with the result likely to 

change as new mitigation strategies are studied and added to the aggregate number, the 

project team elected to provide BCRs for each strategy individually. Once the project team has 

identified BCRs for a sufficient number of mitigation strategies, it will provide an aggregated 

number representing the overall benefit of mitigation. 
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infrastructure mitigation strategies. Figure 5 shows the overall ratio of costs to benefits for identified 

federal agency mitigation programs. 

Figures 1, 2, 3 and 4 show that benefits extend beyond the property lines of the mitigated buildings and 

the lives of occupants. Mitigation frees up resources that would otherwise be spent on insurance claims 

and administrative fees. Mitigation helps to assure critical post-disaster services to the community (e.g., fire 

stations and hospitals). Benefits and costs are rounded to no more than two significant figures to reduce 

the appearance of excessive accuracy. 

 

Figure 1: Total costs and benefits of meeting the 2018 IRC and IBC. 

 

 

Figure 2: Total costs and benefits of new design to exceed select 2015 I-Code requirements and meet the 

2015 IWUIC. 
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Figure 3: Total costs and benefits resulting from leading private-sector residential retrofit measures. 

 

Figure 4: Total costs and benefits resulting from select utility and transportation lifeline mitigation efforts. 

 

Figure 5: Total costs and benefits of 23 years of federal mitigation grants. 

Table 2, Table 3 and Table 4 provide details on the costs and benefits. The costs would be experienced 

mostly at the time of construction. 
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Table 2: Costs and benefits associated with constructing new buildings in one year to exceed select 2015 I-

Code requirements or adopt the 2015 IWUIC (in $ billions). 

  Mitigation Category Cost Benefit BCR 

  Riverine Flood $0.91 $4.30 5:1 

  Hurricane Surge $0.01 $0.07 7:1 

  Hurricane Wind $0.72 $3.80 5:1 

  Earthquake $1.16 $4.30 4:1 

  Wildland-Urban Interface Fire $0.80 $3.03 4:1 

  Total for select measures to 

exceed code requirements 
$3.60 $15.50 4:1 

 

Table 3: Costs and benefits associated with constructing new buildings to meet the 2018 IRC and IBC (in $ 

billions). 

  Mitigation Category  Cost Benefit BCR 

  Riverine Flood $0.09  $0.55  6:1 

  Hurricane Wind $0.53  $5.55  10:1 

  Earthquake $0.58  $6.90  12:1 

  Total for adopting 2018 I-

Codes 
$1.20  $13.00  11:1 
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Table 4: Costs and benefits associated with 23 years of federal grants (in $ billions). 

  Mitigation Category Cost Benefit BCR 

  Riverine Flood $11.54 $82.00 7:1 

  Wind $13.60 $70.00 5:1 

  Earthquake $2.20 $5.73 3:1 

  Wildland-Urban Interface Fire $0.06 $0.17 3:1 

  Total for federal grants $27.40 $157.90 6:1 

 

MITIGATION BENEFITS AT THE STATE AND LOCAL LEVEL 

Just as the vulnerability to specific natural hazards varies geographically, so too does the BCR for specific 

mitigation measures to resist those natural hazards. Figure 6 through Figure 11 identify the state- or 

county-specific BCRs for designing to exceed select 2015 I-Code requirements, meeting the 2015 IWUIC, 

and meeting the 2018 IRC and IBC. See the chapter 2 of the study report for BCR maps of the 15 

private-sector building retrofit measures. 

Considering the past 23 years of federally-funded mitigation grants, every state in the contiguous United 

States is estimated to realize at least $10 million in benefits, with the majority of states exceeding $1 billion 

in benefits. Four states: Louisiana, New Jersey, New York, and Texas, will save at least $10 billion (See Figure 

12). 
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Figure 6: BCR of coastal flooding mitigation by elevating new homes above 2015 IRC requirements (by 

state). 

 

Figure 7: BCR of hurricane wind mitigation by building new homes under the FORTIFIED Home Hurricane 

Program above 2015 IRC requirements (by wind band). 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   12 
 

 

Figure 8: BCR of earthquake mitigation by increasing strength and stiffness in new buildings above the 

2015 IRC and IBC requirements (by county). 

 

Figure 9: BCR of WUI fire mitigation by implementing the 2015 IWUIC for new buildings (by county). 
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Figure 10: BCR of hurricane wind mitigation by increasing roof strength in new buildings to meet the 2018 

IRC and IBC (by wind band). 

 

Figure 11: BCR of earthquake mitigation by increasing strength and stiffness in new buildings (by county) to 

meet the 2018 IRC and IBC.  
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Figure 12: Aggregate benefit by state from federal grants for flood, wind, earthquake, and fire mitigation. 

 

BUILDING ON THE 2005 MITIGATION SAVES STUDY 

In recent years, with the growing interest in the concept of resilience and the rising costs of disaster 

recovery, the MMC and industry stakeholders contemplated updating and expanding the 2005 study to 

address hazard-mitigation investments made by additional federal agencies, examine fire at the WUI, and 

examine mitigation measures undertaken by the private sector. 

In 2017, the Institute, through a team of researchers, began a new, multi-year effort to develop an updated 

and expanded look at the benefits of hazard mitigation. This 2019 Report includes the results from the 

study of four sets of mitigation measures. This Summary of Findings is the third edition of multiple 

documents that will ultimately examine the value of many kinds of natural hazard mitigation at the 

national level. The mitigation measures discussed are described in detail in the Technical Documentation. 

MITIGATION MEASURES STUDIED 

The Study uses the same independent, transparent, peer-reviewed methods from the 2005 study. Where 

practical, the study advances the prior work utilizing newer or more effective techniques. 
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The project team considered the benefits that would result if all new buildings built in one year were 

designed to exceed select I-Code requirements where it is cost effective to do so. If accomplished, the 

benefits would be that much greater in proportion to this quantity of new buildings. The stringency of 

codes adopted at the state and local level varies widely. To set a consistent starting point, the project team 

used the 2015 IRC and IBC as the baseline minimum codes. While minimum codes provide a significant 

level of safety, society can save more by designing some new buildings to exceed minimum requirements 

of the 2015 IRC and IBC and to comply with the 2015 IWUIC in others. Strategies to exceed minimum 

requirements of the 2015 I-Codes studied here include: 

 For flood resistance (to address riverine flooding and hurricane surge), build new homes higher than 

required by the 2015 IBC. 

 For resistance to hurricane winds, build new homes to comply with the Insurance Institute for Business 

& Home Safety (IBHS) FORTIFIED Hurricane standards. 

 For resistance to earthquakes, build new buildings stronger and stiffer than required by the 2015 IBC. 

 For fire resistance in the WUI, build new buildings to comply with the 2015 IWUIC. 

The project team also considered the benefits that would result if all new buildings built in one year were 

designed to meet 2018 IRC and IBC versus codes represented by 1990 design and NFIP requirements. 

Across the country, code adoption is not uniform—the code editions in place vary widely from jurisdiction 

to jurisdiction. Some jurisdictions adopt new editions on a regular cycle, while others remain on older 

editions. With each new edition, additional benefits accrue. Some jurisdictions may capture these benefits 

in incremental pieces with each adoption, while others update their codes less frequently, during which 

time the benefits from more recent codes are not realized. Code-based mitigation strategies include: 

 For flood resistance, incorporate at least one foot of freeboard into the elevation requirements to 

comply with the 2018 I-Codes. 

What Benefits are Counted? 

The report quantifies a number of benefits from mitigation, including reductions in: 

 Deaths, nonfatal injuries, and post-traumatic stress disorder. 

 Property repair costs for damaged buildings and contents. 

 Additional living expenses: sheltering costs for displaced households. 

 Direct business interruption: loss of revenue and other business-interruption costs to businesses whose 

property is damaged. 

 Indirect business interruption: loss of economic activity in the broader community. 

 Loss of service to the community when fire stations, hospitals, and other public buildings are damaged. 

 Insurance overhead and profit costs other than insurance claim payments. 

 Urban search and rescue costs. 

 Environmental losses in limited cases. 
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 For resistance to hurricane winds, build new roofs to comply with the 2018 I-Codes and comply with a 

variety of openings and connection detailing requirements added since 1990. 

 For resistance to earthquakes, build new buildings stronger and stiffer relative to 1990 construction to 

comply with the 2018 I-Codes. 

The project team evaluated the costs and benefits of 15 retrofit measures for existing (mostly residential) 

buildings: 

Flood retrofit 

1. Acquisition and removal of buildings from the floodplan, often called buyouts 

2. Elevation of existing buildings 

3. Wet floodproof basements 

4. Elevation of air conditioning equipment and ductwork 

5. Elevation of water heaters and furnaces  

Hurricane retrofit 

6. Retrofit to comply with IBHS FORTIFIED Home Hurricane 

7. Add engineered tie-down system to manufactured homes 

Earthquake retrofit 

8. Add steel frame and structural sheathing to soft-story wood-frame apartment builingd 

9. Add engineered tie-down system to manufactured homes 

10. Secure water heaters to the building frame 

11. Add child safety latches to kitchen cabinet doors 

12. Secure tall bookcases to the building frame 

13. Strap freestanding monitors and televions to shelves 

14. Secure fragile items to shelves with museuam putty  

Retrofit buildings in the wildland-urban interface 

15. Retrofit buildings to comply with the International Wildland-Urban Interface Code 

The project team used 12 EDA grants and additional mitigation measures as case studies to show the 

degree to which mitigation of utilities and transportation lifelines can be cost effective.  The project team 

estimated BCRs for several categories of infrastructure: water, wastewater, electricity, telecommunications, 

roads, and railroads. The measures studied include: 

 Elevating roads and railroads; elevating water treatment plant electrical equipment; and relocating to 

higher ground electrical substations, telephone substations, water treatment plants, and wastewater 

treatment plants to better resist flood.  

 Protecting water and wastewater treatment plants with berms. 

 Moving electrical transmission lines underground to better resist wind loads. 
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 Strengthening bridge structures to better resist earthquake forces. 

 Strengthening substation buildings and equipment to create a more earthquake-resilient electric grid. 

 Hardening selected water pipelines to create a more earthquake-resilient water-supply grid. 

The federal agency strategies consider 23 years of public-sector mitigation of buildings funded through 

FEMA programs, including the Flood Mitigation Assistance Grant Program (FMA), Hazard Mitigation Grant 

Program (HMGP), Public Assistance Program (PA), and Pre-Disaster Mitigation Grant Program (PDM), as 

well as the HUD Community Development Block Grant Program (CDBG) and several programs of the 

EDA. Barring identification of additional federal data sets or sources of federal mitigation grant and loan 

funding, these analyses represent essentially a comprehensive picture of such mitigation measures. In the 

future, the project team might also look at mitigation measures directly implemented by federal agencies.5  

Results represent an enhanced and updated analysis of the mitigation measures covered in the 2005 

study. Public-sector mitigation strategies based on federal grants include: 

 For flood resistance, acquire or demolish flood-prone buildings, especially single-family homes, 

manufactured homes, and 2- to 4-family dwellings. 

 For wind resistance, add hurricane shutters, tornado safe rooms, and other common measures. 

 For earthquake resistance, strengthen various structural and nonstructural components. 

 For fire resistance, replace roofs, manage vegetation to reduce fuels, and replace wooden water tanks. 

MULTIPLE STAKEHOLDERS BENEFIT FROM ADOPTING OR 

EXCEEDING I-CODE REQUIREMENTS 

Designing new buildings to exceed select 2015 IBC and IRC requirements (where it is cost effective to do 

so) for flood, hurricane wind and earthquake; designing new buildings in parts of the WUI to meet the 

2015 IWUIC to better resist fire; and meeting the 2018 I-Code requirements for flood, hurricane wind and 

earthquake affect various stakeholder groups differently. The project team considered how each of five 

stakeholder groups bears the costs and enjoys the benefits of mitigation for the natural hazards under 

consideration. Stakeholders include: 

 Developers: Corporations that invest in and build new buildings, and usually sell the new buildings once 

they are completed, owning them only for months or a few years. 

 Title holders: People or corporations, who own existing buildings, generally buying them from 

developers or from prior owners. 

 Lenders: People or corporations that lend a title holder the money to buy a building. Loans are typically 

secured by the property, meaning that if the title holder defaults on loan payments, the lender can take 

ownership. 

                                                 
5 Such measures include U.S. Army Corp of Engineers levees and other water management programs; National 

Oceanic and Atmospheric Administration early warning systems for weather; and U.S. Department of Agriculture 

(USDA) Forest Service prescribed burns. 
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 Tenants: People or corporations who occupy the building, whether they own it or not. This study uses 

the term “tenant” loosely, and includes visitors. 

 Community: People, corporations, local government, emergency service providers, and everyone else 

associated with the building or who does business with the tenants. 

When one subtracts the costs each group bears from the benefits it enjoys, the difference—called the net 

benefit—is positive in each category. Figure 13 and Figure 14 reflect long-term averages to broad groups, 

so it only speaks to the group as a whole, on average, rather than to the experience of each individual 

member of the group. 

 

Figure 13: Stakeholder net benefits resulting from one year of constructing all new buildings to exceed 

select 2015 IBC and IRC requirements or to comply with 2015 IWUIC. 
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Figure 14: Stakeholder net benefits per year of new construction resulting from meeting the 2018 IRC and 

IBC. 

ADDITIONAL MITIGATION MEASURES 

The project team analyzed a number of mitigation measures, but they do not represent all of the 

measures that could ultimately be applied to address the natural hazards studied. Recognizing the current 

limited applicability of the data provided here, the project team identified additional mitigation measures 

but their analysis remains unfunded, such as retrofit of commercial private-sector buildings, business 

continuity planning and disaster recovery, and direct mitigation action by government entities. 

BENEFITS ACCRUE ACROSS A SPECTRUM OF DESIGN 

OPTIONS 

The selected options to exceed 2015 I-Code requirements for flood, wind, and earthquake offer a range 

of design levels. The project team, as an example, analyzed these ranges, which include different 

elevations above base flood elevation (BFE), different IBHS FORTIFIED Home Hurricane design levels 

(Silver, Bronze, and Gold), and different strength and stiffness factor Ie for seismic design. The project team 

identified the point on a geographic and mathematical basis where the last incremental improvement in 

the design cost effectively captures the last incremental benefit, here called the incrementally efficient 

maximum or IEMax.  

In all cases, significant benefits can be achieved cost effectively at various levels of design up to this 

identified point, meaning that one can enjoy cost-effective improvement without designing all the way up 

to the IEMax. The ideal level of mitigation for a specific project will vary. The benefits and costs of 

mitigation measures at the project level should be evaluated based on the specific characteristics of the 
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project and the needs of the owner and users. This study does not address project-level conditions or the 

decision-making required at an individual project level. 

Table 5 provides BCRs at the state level that correspond to a range of elevations above BFE. Figure 15 and 

Figure 16 illustrate where the two IBHS FORTIFIED Home Hurricane and High Wind programs and the 

range of earthquake strength and stiffness factors result in cost-effective design. 

Table 5: BCRs for various heights above BFE for new coastal V-zone buildings. 
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Figure 15: Maximum level of the IBHS FORTIFIED Home Hurricane design for new construction where the 

incremental benefit remains cost effective. 

 

Figure 16: Maximum strength and stiffness factor Ie to exceed 2015 IBC and IRCseismic design 

requirements where the incremental benefit remains cost effective. 
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UTILIZING THE BEST AVAILABLE SCIENCE 

To provide meaningful results within a reasonable timeframe and budget, the project team identified and 

used the best available, yet practical, science. For example, to estimate how earthquakes damage 

buildings, the project team used a 20-year-old method of structural analysis. Despite the existence of 

newer tools, this older approach was the only practical way to proceed given the enormous variety of 

building types, heights, occupancy classes, and design requirements that exist in the built environment. 

Focusing on single mitigation strategies provides a means for understanding mitigation options, but does 

not capture the nuances of individual buildings and the hazards they may face. The report examines the 

overall average cost effectiveness of mitigating broad classes of buildings, but does not address unique 

features of individual buildings. The details of a particular building can make a big difference in the cost 

effectiveness of mitigation. Elevating buildings reduces the chance that they will be flooded; however, 

people can still be stranded in elevated buildings. Designing new buildings to be stronger and stiffer in 

resisting earthquake loads reduces structural damage, but can increase the damage to acceleration-

sensitive components such as furniture and other contents, unless one also takes care to properly install or 

secure those components, such as by strapping tall furniture to the building frame. Furthermore, using a 

simple factor for greater strength and stiffness may cost more or save less than a design that uses base 

isolation or another design technique, or it may be more cost effective and more practical than using 

more sophisticated but less appropriate mitigation measures. It is probably far simpler, more practical, and 

more cost effective to add more steel or concrete to a strip mall than to base isolate it or fine-tune the 

structural design. Each approach has its advantages and disadvantages, conditions under which it works 

better or not as well as competing alternatives. 

Mitigation decisions take place in contexts that involve more than tangible costs and benefits. Other 

decision-maker preferences; available financial resources; legal and time constraints; justice and equity; 

and other variables also matter. The project team did not examine these other considerations, which 

could matter more than BCR. Furthermore, this study offers BCR estimates as one consideration for a wide 

variety of possibly complex decision situations that community leaders often face. 

INCENTIVIZATION CAN FACILITATE IDEAL LEVELS OF 

INVESTMENT 

Not everyone is willing or able to bear the up-front construction costs for more resilient buildings, even if 

the long-term benefits exceed the up-front costs. Different stakeholders enjoy different parts of the costs 

and benefits, and the people who bear more of the costs may argue more urgently against mitigation 

than the people who enjoy more of the benefits. However, one set of stakeholders may be able to offer 

incentives to others to decrease the cost or increase the benefit, and better align the competing interests 

of different groups. The MMC and the Institute’s Council on Finance, Insurance and Real Estate (CFIRE) 

have proposed a holistic approach to incentives that can drive coordinated mitigation investments, 
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aligning the interests of multiple stakeholder groups so that they all benefit from a cooperative approach 

to natural hazard mitigation.6 

RESULTS INFORM MITIGATION DECISION-MAKING 

This Summary of Findings and the study report add to the growing body of scientific evidence that 

demonstrates that mitigation lessens the financial impact of disasters on local businesses, communities, 

taxpayers, and governments, and thus enables individuals and communities to recover more rapidly from 

these events when they do occur. Additionally, it affirms that decision-makers, including governments, 

building owners, developers, tenants, and others, should consider opportunities for implementing 

mitigation activities to reduce the threat to lives, homes, businesses, schools, and communities, while also 

reducing future repair and rebuilding costs. 

EXPERT CONTRIBUTIONS TO THE INTERIM STUDY 

NIBS’s project team, which consisted of five leaders (the principal investigator and four co-principal 

investigators) and eight co-authors, developed the methodology with oversight by four committees, with 

a combined membership of 24 independent experts, who peer-reviewed the work and confirmed the 

results. Institute staff directed and managed the overall effort. FEMA provided additional review by 20 

subject matter experts. Other agencies of the federal government, including EDA, HUD, and OMB, 

contributed a total of nine experts who provided input in developing the project, its methods, data, and 

products, or reviewed the study for reasonableness and usefulness. In particular, HUD, along with FEMA, 

provided economic input to the benefit-cost methodology. Four experts from ICC conducted several 

reviews. A total of 43 other representatives from 32 other organizations and stakeholder groups, 

including banking, insurance, government, construction, natural hazards, economic policy, environmental 

science, and structural engineering, provided oversight and peer review. The project team is well-known 

for expertise in earthquake engineering, fire, flood, and wind risk, as well as engineering economics and 

disaster sociology. Several of the authors participated in or helped lead the 2005 study. In total, the 

Interim Study represents the combined effort of over 100 experts in virtually all fields relevant to natural 

hazard mitigation in the United States. 

FEDERAL- AND PRIVATE-SECTOR SUPPORT FOR THE INTERIM 

STUDY 

A number of public- and private-sector organizations interested in expanding the understanding of the 

benefits of hazard mitigation generously funded the research presented here, as well as the project team’s 

ongoing work. Funders to date are Premier Plus Sponsor FEMA; Premier Sponsors EDA and HUD; Lead 

Sponsor ICC; Sponsors IBHS and National Fire Protection Agency; and Supporter American Institute of 

                                                 
6 National Institute of Building Sciences, Developing Pre-Disaster Resilience Based on Public and Private Incentivization 

(2015). http://www.nibs.org/resource/resmgr/MMC/MMC_ResilienceIncentivesWP.pdf 

http://www.nibs.org/resource/resmgr/MMC/MMC_ResilienceIncentivesWP.pdf
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Architects. While representatives from these organizations provided data and expertise to the project 

team, their input was largely informative, resulting in a truly independent study. The Institute seeks 

additional funders to support the study of additional mitigation measures. 
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1. Introduction 

1.1. BACKGROUND 

Hurricanes, tornadoes, floods, earthquakes, and wildfires are inevitable. Because of a variety of factors, the 

impacts of these events are expected to increase—particularly during the useful life of much existing and 

most new U.S. infrastructure. These environmental stresses will damage property, injure, and kill people, 

threaten the viability of entire communities, and severely impact the U.S. economy. Increased density and 

complexity of the urban environment also increase the likelihood of larger, more costly disasters. Society 

will certainly bear the costs to respond to such events.  

Fortunately, there are measures governments, building owners, developers, tenants, and others can take 

to reduce the impacts of hazard events. These measures—called mitigation—can result in significant 

savings in terms of safety, and prevention of property loss, and disruption of day-to-day life. Data should 

inform decision-making around the level and timing of mitigation investments. Important data include the 

increase in safety, decreased economic impact and human misery, jobs saved or created, and the speed 

of business activity recovery associated with a particular level of investment.  

The National Institute of Building Sciences (Institute), through its Multihazard Mitigation Council (MMC), 

works to advance the utilization of cost-effective solutions to reduce the impacts of hazards. In 2005, the 

Institute published the results of a study, Natural Hazard Mitigation Saves: An Independent Study to Assess 

the Future Savings from Mitigation Activities, which examined the benefits of investments by the Federal 

Emergency Management Agency (FEMA) in disaster mitigation (Multihazard Mitigation Council 2005). The 

results presented in this Interim Study, which is an update and expansion of the 2005 study, attempt to 

answer questions that inform mitigation and present the first broad set of hazards and mitigation 

measures. The project team will evaluate additional mitigation measures and provide BCRs on such 

measures once available. 

The Summary of Findings is accessible to the general public and policymakers, while the Technical 

Documentation presents a detailed technical analysis of these questions. The Technical Documentation 

speaks specifically to specialists: scientists, engineers, architects, and social scientists who want to 

understand the Interim Study’s objectives, mathematical methods, and findings in great detail. Appendix L 

provides a series of stand-alone documents that will be useful in communicating Interim Study results to a 

widespread audience of policymakers, businesspeople, and homeowners who make decisions on how to 

implement natural hazard mitigation strategies.  

Both volumes seek to provide insight to those who will make hazard-mitigation investments based on the 

benefit-cost ratio (BCR) of their investment by answering the following questions:  

 What is the overall average BCR for U.S. natural hazard mitigation efforts?  
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 Under what conditions—what locations, what hazards, what particular mitigation measures, what 

categories of infrastructure—is the BCR higher or lower?  

 Can one identify mitigation efforts not yet undertaken that would have a higher BCR, and use that 

information to make better investments in public and private infrastructure? 

Answers to these questions can inform a variety of mitigation decisions, but they do not touch on many of 

the relevant variables. Mitigation decisions take place in business, political, social, and personal contexts 

that involve benefits and costs, but also preferences, financial resources, legal and time constraints, justice 

and equity, and other variables that far exceed the scope of the Interim Study. The Interim Study only 

considers the benefits and costs of some leading mitigation options. It does not identify or examine the 

local context under which mitigation decisions are made. Local, regional, and even statewide factors may 

influence mitigation decisions. The project team therefore makes no recommendations nor does it 

advocate for one mitigation option over another, or advocate for mitigation over not mitigating. The 

Interim Study offers benefit and cost information merely to serve as a resource in making complex 

mitigation decisions.  

People commonly measure benefits and costs with BCRs. Other metrics besides BCR can quantify the 

desirability of mitigation, including the degree to which mitigation reduces total cost of ownership. 

Mitigation can reduce the probability of catastrophic outcomes. A business decision-maker thinking about 

how mitigation affects profits might use BCR to decide whether an investment is worthwhile. On the other 

hand, if the decision-maker thinks that a natural hazard might threaten the survival of the business, a BCR 

is the wrong measure to use. The decision-maker should consider losses in a rare event, e.g., such as a 

low-probability event with major impacts, through loss-exceedance curves or, more qualitatively, by 

considering outcomes in a few disaster scenarios. The Interim Study does not quantify loss-exceedance 

curves.  

The Interim Study evaluates BCRs in large part because U.S. infrastructure investments must be “based on 

systematic analysis of expected benefits and costs, including both quantitative and qualitative measures” 

(Clinton 1994). BCR is straightforward and a commonly used metric of expected benefits and costs. The 

2005 Mitigation Saves study measured the efficacy of natural hazard mitigation in terms of BCR. 

The 2005 study resulted from a 1999 request by the U.S. Congress instructing FEMA to conduct an 

independent review of the benefits and costs of FEMA-funded natural hazard mitigation efforts. That study 

found, among other things that on average, FEMA-funded natural hazard mitigation saved $4 for every $1 

spent.7 The 4:1 study has subsequently been cited hundreds of times in scholarly literature, dozens of times 

in Congressional hearings, and many times in reports, public presentations, and elsewhere, as information 

to inform and support increased investment in natural hazard mitigation. 

                                                 
7 The ratio was shown to vary between perils and other factors, but people tend most often to quote the overall 

number. 
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As useful as the 4:1 ratio has proven to be in communicating the BCR of mitigation, FEMA-funded 

mitigation represents only a fraction of all natural-hazard mitigation in the United States. Intuitively, 

building a new facility to be more disaster-resistant is likely to cost less than retrofitting that facility to the 

same level of disaster resistance after the fact. The 4:1 ratio may underestimate the benefit of other classes 

of natural hazard mitigation. Current building codes have already substantially advanced safety and 

property protection relative to prior codes. 

Box 1-1. Mitigation Measures to be Examined in the Mitigation Saves Interim Study 

 Code adoption and design to exceed International Code (I-Code) requirements. What benefit can 

be provided by designing new buildings to exceed the requirements of the 2015 International 

Building Code (IBC) and 2015 International Residential Code (IRC) for flood, wind, and earthquake 

resistance? What benefit can be provided by adopting the 2015 International Wildland-Urban 

Interface Code (IWUIC)?  (Complete) 

 About one in seven people live in communities that have not adopted recent I-Codes (2012 or 

later), or in communities that have weakened their disaster-resistance requirements. Other 

communities have frequently updated their codes. What benefit is provided by adopting the 2018 

IBC and 2018 IRC for flood, wind, and earthquake resistance? Note that the study was performed 

in several stages, beginning before the release of the 2018 I-Codes and continuing afterwards, so 

earlier parts of the study deal with earlier code editions; later parts, later editions. (Complete) 

 Private-sector retrofit of existing facilities. FEMA guidelines and other common practices remediate 

deficiencies of existing facilities’ resistance to various natural hazards. What are some leading 

options and how cost-effective are they? (Complete) 

 Business continuity planning (BCP) and disaster recovery (DR). How cost-effective is BCP/DR in the 

private sector? (Future) 

 Utility and transportation lifeline mitigation. What are some leading options to make utilities and 

transportation lifelines more disaster-resistant, and how cost-effective are they? (Complete) 

 Public-sector grants to support mitigation. Since 1993, how cost-effective were natural hazard 

mitigation efforts undertaken with funding support from various federal agencies? (Complete) 

 Public-sector direct mitigation efforts. How cost-effective were various direct mitigation actions by 

federal agencies? Many government agencies engage in natural hazard mitigation as part of their 

mission, such as the U.S. Army Corps of Engineers (USACE) flood-control efforts, the National 

Weather Service (NWS) work on hurricane forecasting, and the U.S. Geological Survey (USGS) 

efforts to develop earthquake early warning systems. (Future) 
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The 2005 study focused solely on FEMA-funded mitigation activities. However, other federal agencies also 

perform or fund mitigation activities, such as the Economic Development Administration (EDA) and U.S. 

Department of Housing and Urban Development (HUD). 

1.2. OBJECTIVES 

The 2019 Report updates and expands upon the mitigation measures studied in 2005 by evaluating a 

broad suite of mitigation measures that can inform decision-making around investments to reduce the 

impacts of natural hazards. The 2019 Report includes the work of the team for the past two year and 

compiles the results from three specific strategies: the benefits and costs of new buildings designed to 

exceed select model building code requirements provided by the International Code Council (ICC); the 

benefits and costs of adopting ICC’s model building codes, relative to some older code edition; and the 

cost effectiveness of grants by federal agencies. Box 1-1 summarizes the natural hazard mitigation topics 

identified for study, those covered to date, and those funded for study. See Section 1.3 for additional 

details on these Interim Study topics. Ongoing research will examine additional mitigation measures that 

will be incorporated into future reports. 

The project team has studied five categories of natural hazard mitigation efforts to date: 

1. Design of typical new buildings to exceed certain requirements of the 2015 IBC and IRC, and to 

conform to the 2015 IWUIC (International Code Council 2015a, b, c). Model codes represent minimum 

requirements, not maxima. What might be the costs and benefits of exceeding those minima? The 

Interim Study addresses that question by estimating the costs and benefits of exceeding code minima 

in a few particular ways. This is not to say there is anything wrong with current codes, which offer 

great improvements in performance relative to older codes. I-Codes aim largely, though not 

exclusively, to protect immediate life safety. For example, the intent of the 2015 National Earthquake 

Hazards Reduction Program (NEHRP) Recommended Seismic Provisions (Federal Emergency 

Management Agency 2015d), which underpins the I-Code seismic requirements, is “to provide 

reasonable assurance of seismic performance that will avoid serious injury and life loss … preserve 

means of egress, avoid loss of function in critical facilities, and reduce structural and nonstructural 

repair costs where practicable.” Its provisions allow for substantial damage at the levels of shaking 

that approach the risk-targeted maximum earthquake considered in the codes and underlying 

standards. Recent earthquakes have shown that buildings in the epicentral region can experience 

ground motion exceeding the risk-targeted maximum considered earthquake (MCER) motion. For 

example, in the moment magnitude (Mw) 7.0 Anchorage, Alaska Earthquake of November 30 , 2018, 

the U.S. Geological Survey’s National Strong Motion Project Station 8047 recorded a peak 5% 

damped spectral acceleration response at 0.17-sec period of 3.2 g and 5% damped 0.2-sec spectral 

acceleration response of 2.1 g. Its ASCE 7-16 mapped value SMS was 1.5 g (COSMOS Strong Motion 

Center 2018). Even in a relatively modest event, ground motions can exceed design values. In the Mw 

6.0 South Napa Earthquake of August 24, 2014, station CE.68206 recorded a maximum-direction 5% 
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damped short-period spectral acceleration response of 1.32 g; its ASCE 7-16 design value SDS was 

1.2g. 

 

As leaders work to improve the resilience of their communities, the long-term, ongoing safety and 

operations of buildings will require consideration of measures that enhance current code minimums. 

 

The Interim Study addresses whether it is economical to exceed life safety by reducing damage and 

perhaps increasing the likelihood of immediate occupancy of buildings after a natural disaster. The 

Interim Study examines the risk-category II buildings of the 2015 International Building Code (IBC): the 

homes, strip malls, office complexes, industrial buildings, and so on that comprise the vast majority of 

new buildings. The Interim Report does not address the less-common (though still important) 

buildings of risk categories I (e.g., minor storage facilities), III (e.g., auditoriums) or IV (e.g., hospitals). 

 

2. Design of typical new buildings to comply with the 2018 IBC and IRC, compared with 1990-era design 

requirements. For earthquake loads, 1990-era design is represented by the 1988 Uniform Building 

Code (UBC). For hurricane loads, 1990-era design is represented by the 1990 National Building Code 

and 1991 Southern Standard Building Code. For flood, 1990-era construction is represented by NFIP 

requirements for elevation of the first floor above base flood elevation. Building codes have long been 

recognized as mitigation tools. However, the benefits of their adoption have not been quantified. This 

study looks to quantify the benefits accrued since the establishment of modern building codes. 

Seismic design has continually evolved over the past century, including notable changes in the mid-

1980s. Wind design likewise improved over a long period of time, including some particularly notable 

improvements following Hurricane Andrew in 1992. In the years since, codes have improved 

substantially through updates on a three-year review cycle. Flood design has been modernized from 

NFIP standards through the I-Codes’ requirement that buildings at risk of flooding have a first floor 

at least 1 foot above base flood elevation (BFE). The present study therefore seeks to estimate the 

benefit resulting from updates in seismic and wind design since approximately 1990, and from NFIP 

to 2018 I-Codes for flood design. 

 

3. Mitigation of existing buildings funded by FEMA, EDA, and HUD. The federal agency strategies 

consider 23 years of public-sector mitigation of buildings funded through FEMA programs, including 

the Flood Mitigation Assistance (FMA) Grant Program, Hazard Mitigation Grant Program (HMGP), 

Public Assistance (PA) Program, and Pre-Disaster Mitigation (PDM) Grant Program, as well as the 

HUD Community Development Block Grant Program (CDBG) and several programs of the EDA. 

Barring identification of additional federal data sets or sources of federal mitigation grant and loan 

funding, these analyses represent essentially a comprehensive picture of such mitigation measures. 

Mitigation efforts within other federal agencies, including the U.S. Department of Transportation 

(DOT), and within agencies where measures are implemented directly (e.g., U.S. Army Corps of 

Engineers (USACE) for flood control) may be the subject of future study. Some of the mitigation work 

funded by grants from these agencies may have used criteria from the IBC and International 
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Residential Code (IRC), but also the International Existing Building Code (IEBC) and additional criteria 

such as that identified in Chapter 2.8  (2015d and older editions). 

4. Natural-hazard mitigation for utilities and transportation lifelines. The Economic Development 

Administration has provided grants to several communities to enhance utility and transportation 

lifeline facilities. Notable among these grants are efforts to raise the elevation of roads, railroads, 

electrical substations, water pumping stations, and other infrastructure to better resist flood, and to 

move electrical transmission lines underground to better resist wind and ice loads. Furthermore, some 

utilities and transportation lifelines have performed costly mitigation with EDA funding. The California 

Department of Transportation (Caltrans) strengthened more than 2,200 bridge structures to better 

resist earthquake forces, at a cost of more than $12 billion. Electricity retailers in earthquake country, 

such as Los Angeles Department of Water and Power, have strengthened substation buildings and 

equipment, creating a more-resilient electric grid. Water agencies have begun similar efforts to create 

resilient water-supply grids, for example the East Bay Municipal Utility District and the Los Angeles 

Department of Water and Power. The project team sought to estimate the benefits and costs of 

various kinds of natural-hazard mitigation measures for utility and transportation infrastructure: all 

those represented by EDA grants, plus highway bridge seismic mitigation and resilient grids for 

electricity and water supply. 

5. Retrofit of existing private-sector buildings. Throughout the country, private-sector building owners 

have been retrofitting existing buildings to better resist floods, hurricanes, earthquakes, and fires. This 

study seeks to estimate the benefits and costs of some of the most common retrofit measures, 

focusing on residential buildings.   

The Interim Study does not address all categories of natural hazard mitigation, so inferences about the 

cost effectiveness of those other categories should not be made. For example, the study does not address 

exceeding code requirements either to resist tornadic winds or to further elevate structures in Coastal A 

zones. As it continues its work, the project team will address many of these categories of natural hazard 

mitigation, as discussed in the next section. 

The project team estimated the benefits of natural hazard mitigation in terms of avoided future losses. The 

team considered reductions in all major loss categories: property repairs, casualties, and direct and indirect 

business interruption (BI). Several benefit categories could not be readily quantified in dollar terms, so the 

project team acknowledged them qualitatively. (See Box 1-2 for benefit categories, both tangible and 

intangible.) Not every benefit category in this list can be quantified, and some of the remainder are 

notoriously difficult to estimate. The project team also distinguished BCRs by peril, focusing on four of the 

most common and damaging sudden-onset hazards that damage property and hurt people across the 

United States: flood, wind, earthquake, and fire at the wildland-urban interface (WUI). These are the same 

perils examined in the 2005 Mitigation Saves study, with the addition of fire at the WUI. As in the 2005 

Mitigation Saves study, this Interim Study limits its estimates of avoided future losses mostly to the owners 

                                                 
8 The IEBC establishes target performance levels for existing buildings and ensures a more consistent degree of 

performance. 
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and tenants of mitigated buildings, and ignores the fact that when those people lose money, for example, 

to pay for repairs, the money gets transferred to somebody else, such as construction contractors. 

 

The project team examined design objectives for new buildings from the perspective of an owner or 

developer who is choosing to either meet or exceed the 2015 I-Codes, or, in the case of the 2015 

International Wildland-Urban Interface Code (IWUIC), simply adopting it. The project team used the 2015 

editions as the baseline to examine the costs and benefits of exceeding code requirements for new design. 

Where a community adopted an older version of the code or no code, the BCR will change. 

A few owners have chosen to exceed code minima, such as the California Institute of Technology 

(Caltech), which for several decades constructed its buildings to be 50% stronger than the code required. 

At least two consulting clients of project team members currently design some of their new buildings to be 

25% stronger than the code requires. A local jurisdiction could make the same choice for portions of its 

community. Its decision-makers would benefit from knowing: (1) the reasonable options; (2) the costs and 

benefits of such options; and (3) who would bear or enjoy the costs and benefits. Costs include the up-

front expenses required to enjoy the possible benefits. Up-front expenses might include higher costs of 

Box 1-2. Benefit Categories Considered 

1. Reduced future property repair and reconstruction costs. 

2. Reduced additional living expenses (ALE) and other costs of residential displacement. 

3. Reduced future losses associated with direct BI, meaning the loss of revenue resulting from 

damage at the facility in question that prevents it from being used for production, or in the case 

of transportation infrastructure, the added costs associated with longer travel times. 

4. Reduced future losses associated with indirect BI, meaning the loss of revenue resulting from 

damage at other facilities. 

5. Lower insurance costs. 

6. Reduced costs for emergency response. 

7. Reduced loss of service to the community, especially for fire stations and hospitals. 

8. Lower maintenance costs. 

9. Improved public-health outcomes, especially deaths, nonfatal injuries, and post-traumatic stress 

disorder (PTSD). Public health outcomes are expressed in terms of incidents and are then 

monetized using the acceptable cost to avoid future statistical deaths and injuries. Note that one 

can estimate the acceptable costs to avoid mental-health impacts (not addressed in the 2005 

study), which Bloom et al. (2011) suggest is a dominant contributor to the global economic burden 

of non-communicable diseases. 

10. Fewer job losses and some job creation. 

11. Lower environmental impacts. 

12. Reduced historical and other cultural impacts. 

13. Impact on tax revenues. 
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design, construction, enforcement and maintenance. Stakeholders would realize different benefits; 

building owners would benefit from reduced building repair costs, tenants would benefit from reduced 

content repair costs, and the broader community would benefit from reduced indirect BI losses.  

Results might vary by peril, geographic location, socioeconomic status, and economic sector. The project 

addresses these questions by imagining a future building stock composed entirely of buildings that 

comply with the current I-Codes (especially the 2015 IBC, IRC, and IWUIC), and alternatively, a different 

future building stock composed of buildings designed to exceed I-Code requirements, such as with 

greater strength, stiffness, height above BFE, etc. In the case of the 2015 IWUIC, the project team 

addressed the questions by imagining that new buildings do not comply with that code, and then again 

supposing that new buildings do comply. The Interim Study identifies locations where designing to exceed 

I-Code requirements appears to be cost effective, and estimates the degree to which designing to exceed 

I-Code requirements in those locations makes economic sense on a BCR basis. Box 1-3 explains how the 

project team’s approach to consider only measures that appear cost effective do not produce bias. 

For designing to exceed the 2015 I-Codes (or designing to comply with the 2015 IWUIC), the project team 

estimated the costs and benefits for 1 year of new buildings, e.g., assuming that all new buildings built in 

2018 are built to comply with the stricter requirements, but only where it is cost effective to do so.  

For design to exceed 2015 I-Code requirements, the Interim Study estimates the costs and benefits of 

narrowly defined changes. For example, what if a California city required that all new buildings must be at 

least 50% stronger and stiffer than the I-Codes require. In that case, the ASCE 7-10 (American Society of 

Civil Engineers Structural Engineering Institute 2010) parameter SDS could be calculated as equal to SMS, 

rather than 2/3  SMS, with an unchanged drift limit.  Such a narrowly defined enhancement would not 

involve other requirements, such as changes in wind resistance that might be stated elsewhere in the 

code. The project team estimated the costs and benefits associated with just the one enhancement, 

ignoring how the enhancement for seismic resistance might affect wind resistance. 

The Interim Study examines the cost-effectiveness of adopting 2018 I-Codes, relative to codes in force 

in 1990 or that approximate time. It measures the costs and benefits of building all new buildings in 

one year to comply with certain aspects of the 2018 IBC and IRC, compared with building the same 

buildings as if 1990-era codes applied. (Note that the analysis assumes all new buildings are built to 

comply with 2018 I-Codes, not just those where it is cost effective to do so.) In particular, 1990-era 

construction in earthquake-prone regions would comply with strength and stiffness requirements of 

the 1988 Uniform Building Code (International Conference of Building Officials 1988). In hurricane-

prone regions along the Gulf and Atlantic coasts, 1990-era construction is represented by detailing 

requirements of the National Building Code (Building Officials and Code Administrators 1990) and 

Southern Standard Building Code (Southern Building Code Congress International 1991). For buildings 

subject to riverine flooding in special flood hazard areas, 1990-era construction is represented by 

requirements of the National Flood Insurance Program (NFIP) that buildings be built so that their first 

floor is at least at base flood elevation, as opposed to 1 ft higher, as required by 2018 I-Codes. 
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The Interim Study examines the costs and benefits of a variety of mitigation measures for utilities and 

transportation infrastructure, focusing on grants offered by the Economic Development Administration of 

the U.S. Department of Commerce. These grants supported mitigation of roads, railroads, water and 

wastewater facilities, and power and telecommunications facilities to better resist flooding, wind, and ice 

loads. In addition, the Interim Study examines the cost effectiveness of a program by the California 

Department of Transportation to seismically retrofit southern California highway bridges. It also examines 

the cost effectiveness of some hypothetical but highly realistic measures to make electric and water 

distribution systems more seismically resilient by the hardening of key elements: electric substations and 

select buried pipes in the water system, creating so-called resilient grids. 

The Interim Study examines the cost effectiveness of 23 years of federal mitigation grants, mostly for the 

retrofit of existing public-sector buildings. Cost effectiveness for each kind of mitigation activity accounts 

for the benefits to all of society, considering benefits to building owner, tenants, and the community in 

general. In the case of federal grants, the beneficiaries include the funder, grant recipient, tenants, and the 

community near the mitigation activity. 

A number of different stakeholders might be interested in the results of the Interim Study. Box 1-3 

identifies categories of stakeholders and intended audiences.  

Box 1-3. Stakeholder Categories and Intended Audience 

Insurers: Primary and reinsurance companies, state insurance authorities 

Finance: Mortgage companies, appraisers and real estate brokers 

Loan organizations: Property Assessed Clean Energy (PACE), tax increment financing, American 

public-private partnership (P3) model, Community Development Financial Institution (CDFI), green 

banks, cat bond issuers, real estate investment trusts (REITs), bond rating agencies 

Designers: Architects, land use planners, structural and civil engineers and their professional societies 

Builders: Developers, builders, contractors, and their trade associations 

Public 

sector: 

Mayors, county supervisors, city and county council members, building officials, community 

development agencies, fire departments, emergency responders and managers, state legislatures, 

other state agencies utility commissions, state architects, state departments of transportation, housing, 

school boards, U.S. Congress and federal agencies: FEMA, HUD, Small Business Administration (SBA), 

EDA, DOT, Fannie Mae, Federal Housing Administration (FHA), Freddie Mac, Department of Veterans 

Affairs (VA), Department of Energy (DOE), Department of Agriculture (USDA) 

Private 

sector: 

Homeowners, large businesses, small businesses, and utilities 

Outreach: Media, universities, hazard-related organizations, building-related organizations 
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The project team aimed first to produce the Interim Study, documenting its methodologies and findings. 

The project team set out to assure quality through a rigorous peer review process, in which each section 

was reviewed by highly qualified experts working independently of the project team. The Interim Study 

represents an “independent inquiry,” meaning the authors are independent of the funding organizations 

for the Interim Study. 

Among its next steps, the project team will begin estimating the cost effectiveness of retrofits of existing 

private-sector buildings to enhance their resilience to natural disasters. The project team will consider 

mitigation efforts to reduce risk from flood, wind, earthquake, and fire at the WUI that meet at least two of 

three criteria: 

 Commonly implemented, but probably cost effective. 

 Conducive to reducing uninsured losses. 

 Of particular interest to the National Fire Protection Association (NFPA) and HUD, because the retrofit 

solves a deficiency in many HUD-funded buildings, the retrofit is affordable to HUD occupants, or HUD 

provides funding for the retrofit measure. 

Mitigation strategies for potential study are identified and prioritized in Table 1. In its ongoing research, the 

project team will examine all priority-1 measures, at least one priority-2 measure for each peril, and, 

possibly, priority-3 perils if it is found that the priority-1 and priority-2 measures can be evaluated without 

exhausting the available time and budget. Based on input from sponsors, oversight committee members, 

and stakeholders, the project team will determine which priority-3 measures to examine. 

Table 1-1: Retrofit measures to be examined in the ongoing study. 

Peril Mitigation Measure Priority 

Flood Building elevation 1 

 Land use planning  1 

 Buyout 1 

 Wet flood proofing  2 

 Dry flood proofing of commercial buildings  3 

Wind Manufactured housing engineered tie-down system (ETS) 1 

 IBHS FORTIFIED Home-Hurricane for existing homes 1 

Earthquake  Retrofit of soft-story wood frame multifamily dwellings 1 

 Manufactured housing engineered tie-down system (ETS) 1 

 Restrain furnishings, fixtures, and equipment  1 

 Foundation anchors & strengthen cripple walls to older wood buildings  2 

 Seismic gas shutoff valves  3 

 Stronger unreinforced masonry bearing-wall (UMB) buildings  3 
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Peril Mitigation Measure Priority 

WUI  Retrofit to approach IWUIC  1 

 Land use planning 1 

The Institute will release data on additional mitigation measures as they become available. Additional 

future work, pending identification of funding resources, will examine business continuity planning (BCP) 

and disaster recovery (DR), as well as mitigation activities performed by federal agencies, such as the 

National Oceanic and Atmospheric Administration (NOAA) early warning system and the USACE levee 

programs. 

1.3. ORGANIZATION OF INTERIM REPORT 

Chapter 1 introduces the project team’s objectives and some of the important considerations in 

quantifying the costs and benefits of mitigation. Chapter 2 summarizes the findings for buildings. Chapter  

3 briefly recaps past efforts to perform similar or related studies. Chapter 4 presents the methods selected 

to meet the Interim Study objectives for buildings. Chapter 5 summarizes the data acquired for buildings. 

Chapter 6 presents methods, data, and findings of an analysis of the costs and benefits of natural-hazard 

mitigation for utilities and transportation lifelines. Chapter 7 lists the references cited elsewhere in the 

Interim Study. Miscellaneous additional documentation appears in the appendices with the aim of 

informing decisions by a particular stakeholder group. 
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2. Findings 

2.1. SUMMARY OF RESULTS 

Based on the mitigation measures the project team examined for the Interim Report, mitigation remains a 

solid investment. Table 2-1 summarizes benefit-cost ratios for mitigation measures the team examined. 

Box 2-1 explains the mitigation categories and what the BCRs mean. The sections that follow provide more 

details about the results and key considerations in determining mitigation measure- and hazard-specific 

BCRs. 

Table 2-1: Benefit-cost ratio by Hazard and Mitigation Measure. 

 

The project team selected the mitigation measures examined here in collaboration with an oversight 

committee of technical experts, a group of stakeholders who participated in a workshop in February 2017, 

and the sponsors’ leaders and subject matter experts. They selected some measures to be directly 

comparable to the 2005 study. Other measures were selected because they are widely used within the 

private sector. Still others were deemed to be highly promising. The group selected code adoption 

because the I-Codes represent one of the most effective methods to build resilience into the building 

stock.  

Though some mitigation categories may be highly cost-effective, the project team has not examined them 

because the necessary funding has not yet been secured. For example, the project team has not examined 

business continuity planning (BCP) and disaster recovery (DR) or direct actions by the federal government, 

such as flood control by the U.S. Army Corps of Engineers or earthquake early warning by the U.S. 

Geological Survey. 
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Box 2-1: What the BCR Numbers Mean 

Exceed Commonly Adopted I-Code Requirements. Most states and communities adopt recent editions of 

the IBC and IRC, typically one of the most recent three editions. The IWUIC, on the other hand, is not as 

widely adopted. The project estimated the benefits and costs if communities exceeded certain aspects of 

the commonly adopted requirements, that is, if they exceeded some aspects of the 2015 editions of the 

IBC and IRC, or adopted the (less-frequently used) 2015 IWUIC, and built all new buildings for one year 

accordingly. For riverine and coastal flooding, the research considered building homes higher than the 

required 1-foot above BFE. For earthquake: building all new buildings (residential, commercial, industrial, 

etc.) stronger and stiffer. For hurricane wind: complying with IBHS FORTIFIED Home and Commercial 

Hurricane programs. In some places, doing so would be cost effective, in others, not. If communities 

exceeded the commonly adopted requirements only where it were cost-effective to do so, society would 

pay $3.7 billion more construction and maintenance costs, but avoid $15.9 billion in future losses, for a 

BCR of 4:1. When considered singly, each peril offers its own costs and benefits, with BCRs between 4:1 

and 7:1. (In this and the following categories, the total BCR is not the average of peril-specific BCRs, but 

rather is the ratio of the sum of the peril-specific benefits to the sum of their costs, which mathematically 

does not have to equal the average of the peril-specific BCRs.) Summary information can be found in 

section 2.2. 

 

Meet the Latest Editions of Commonly Adopted Code Requirements. Codes develop over time. The project 

team compared costs and benefits of one year of new construction to comply with the 2018 I-Codes 

versus design requirements in codes used in 1990. The project team examined code aspects related to 

riverine flood (building homes higher above base flood elevation), wind (a number of detailing 

requirements for residential and commercial buildings), and earthquake (requirements for all new 

buildings that made them stronger and stiffer). In total, these aspects of the 2018 I-Codes make new 

buildings cost about $1.2 billion more than they would under 1990 design requirements, but avoid $13 

billion in future losses, for a BCR of 11:1. Considered separately, the perils produced BCRs of 6:1 to 12:1. 

See Section 2.3 for summary results. 

 

Retrofit of Existing Private-Sector Buildings. Building codes generally do not apply retroactively, so older 

buildings commonly suffer from deficiencies that newer building codes and construction practices 

mitigate. The project team examined 15 common or promising retrofit measures for existing, mostly 

residential, private-sector buildings: five measures to reduce flood damage, two to reduce damage from 

hurricane winds, seven seismic retrofit measures, and one measure to reduce damage to existing 

buildings in the wildland-urban interface. If implemented in all buildings where it would be cost effective 

to do so, these retrofit measures would cost $520 billion, but would ultimately save society $2.2 trillion, 

for a savings of $4 for every $1 spent. See Section 2.6 for details. 
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The perils examined here were selected to be comparable to the 2005 study. Others were added because 

they contribute substantially to nationwide losses (fire at the wildland-urban interface) or are important in 

certain regions (coastal flooding in the region subject to wave action, called the V-zone). Some important 

perils were largely neglected (e.g., tornado) because necessary hazard information was in flux at the time 

of writing, and any analysis might have quickly become obsolete. Other perils, such as heat events and 

drought have not yet been examined for lack of funding. 

Why does the study present features of BCRs that represent the benefits of mitigation achievable by 

various kinds of mitigation measures and various perils? While the project team recognized the desire to 

have a single BCR that would facilitate widespread dissemination of the project results, providing such an 

aggregate number might be more useful when other parts of the Interim Study are completed.  

The 2005 study produced the widely cited result that every $1 invested in mitigation produced $4 in future 

loss reduction. Despite the specific guidance that the result represented only a single, very narrow set of 

mitigation strategies, specifically those funded through FEMA mitigation grants, the BCR has been used to 

justify all types of mitigation strategies. The 2019 Report provides an updated examination of the benefits 

of federal agency grant programs (including the addition of EDA and HUD), resulting in a $6 benefit for 

every $1 invested. While not a direct replacement, when used to describe federal grant programs, the 6:1 

BCR can be used in place of the original 4:1.  

The report also includes the results from the examination of three new sets of mitigation measures: (1) 

exceeding the 2015 IBC and IRC and implementing the 2015 IWUIC, (2) Adopting current codes, (3) 

retrofitting existing private-sector buildings, and (4) retrofitting utilities and transportation infrastructure. 

While these mitigation measures are an important addition to the dialogue around mitigation, they still 

only represent a few of many practical strategies.  

Utilities and Transportation. Society relies on roads, electricity, water, wastewater, and other lifelines. The 

project estimated the costs and benefits of EDA-funded grants that mitigate flood and wind risk to utilities 

and transportation infrastructure. The team considered a large retrofit program by the California 

Department of Transportation that made Southern California highway bridges more earthquake resistant. 

Finally, it considered hypothetical but realistic retrofit programs to make the electricity and water grids 

more earthquake resilient. In total, the real (not hypothetical) efforts cost $590 million but will avoid $2.5 

billion in future losses, for a BCR of 4:1. Section 2.4 summarizes the results. 

 

Federally Funded Grants. The project team examined mitigation grants for buildings made between 1993 

to 2016 by FEMA and HUD. Grants mostly addressed risk from riverine flood, wind, earthquake, and fire 

at the wildland-urban interface. The project estimated the dollar benefit of all grant-supported mitigation 

to be $158 billion, at a construction cost of $27.4 billion, for a BCR of 6:1. BCRs for different perils range 

between 3:1 and 7:1. See Section 2.5 for summary results 
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In lieu of providing a result based on a limited set of mitigation measures, the project team elected to 

provide BCRs for each strategy individually, with the result likely to change as new mitigation strategies are 

studied and added to the aggregate number. Once the project team has identified BCRs for a sufficient 

number of mitigation strategies, it will provide an aggregated number representing the overall benefit of 

mitigation. 

2.2. RESULTS FROM DESIGNING TO EXCEED COMMONLY 

ADOPTED 2015 I-CODE REQUIREMENTS 

This section presents benefit-cost analysis (BCA) results of designing new buildings to exceed 2015 IBC 

requirements for riverine flood, hurricane storm surge in coastal V-zones, hurricane wind, and earthquake, 

or to comply with the requirements of the 2015 IWUIC (in the case of wildfire). Because the IWUIC is less 

widely adopted than the other codes, so the adoption of the 2015 IWUIC would represent an increase in 

common design requirements, and in many places would reduce losses to more than offset the increased 

construction cost. 

2.2.1. Designing to Exceed 2015 I-Code Requirements for Riverine Flood 

The cost to build all new homes to the BFE + 5 feet for 1 year is approximately $900 million. This would 

produce approximately $4.2 billion in benefits, for an aggregate BCR of approximately 5:1, e.g., $5 saved 

for every $1 spent to build new homes higher out of the floodplain. 

If all new residences in the United States in the 1% annual chance floodplain were designed to BFE + 5 and 

achieved the overall average BCR of 4.67 shown in Figure 2-2, what would be the total societal costs and 

benefits for 1 year of new construction? There are approximately 5.1 million National Flood Insurance 

Program (NFIP) policies currently in force in the United States.9 NFIP’s market penetration (ratio of houses 

that are insured to the total number that could be insured) is approximately 0.5.10 Together, these two 

statistics suggest approximately 10.2 million U.S. homes are currently in the 1% annual chance floodplain. 

On average, construction adds about 1% to the existing building stock annually, which suggests that 

102,000 houses will be built in one average year in the 1% annual chance floodplain (1% of 10.2 million = 

102,000). The additional cost to build to BFE + 5 rather than BFE + 1 is approximately $8,900 for a single 

house, or about $900 million for 102,000 new houses. With a BCR of 4.67, the benefits would total about 

$4.2 billion ($900 million  4.67). The benefit comes from reduction in property losses, additional living 

expenses (ALE), sheltering, and indirect BI, casualties and post-traumatic stress disorder (PTSD), and 

insurance, in the proportions shown in Figure 2-1. 

                                                 
9 https://www.fema.gov/total-policies-force-calendar-year 
10 https://www.fema.gov/media-library-data/20130726-1602-20490-2804/nfip_eval_market_penetration_rate.pdf, pg. 

xiii 
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Figure 2-1: Nationwide benefits by category for designing to exceed 2015 I-Code requirements for flood. 

In Figure 2-1, the label “additional living expenses and sheltering” means the cost to residents or to the rest 

of society resulting from the loss of use of residential property—the analog of direct BI in residential 

property. Indirect BI refers to the net reduction in economic activity resulting from the loss of use of the 

residential property, aside from the ALE. The same is true of several other pie charts in this chapter. In 

some cases, the living expenses and indirect BI are combined in a pie chart, or direct and indirect BI. 

Where practical, they are separated.  

The Interim Study estimates the nationwide effectiveness of designing and building all new homes in 1 year 

in the 1% annual chance floodplain to exceed 2015 I-Code requirements. It does not purport to present a 

precise estimate of benefits that might be realized on a case-by-case local basis (e.g., census tracts), or if 

such precise calculations were carried out on a local basis in every floodplain across the entire nation and 

then summed. Local results for a particular house or for all the houses in a particular community would 

probably differ from the average presented here. The true nationwide benefits and costs, if they could be 

calculated for every county in the United States, would also differ by some unknown amount from the 

estimates this report provides. However, more often than not there would probably be a benefit to 

mitigating. 

The project team used a purposive sampling technique of typical cases of communities that represent 

common floodplain conditions and residential structures found in riverine flooding across the United 

States, as described in Section 4.11.2. Table 2-2 summarizes the statistics for the four counties studied. 

Results are reported for each foot of increase in elevation at a 2.2% discount rate (the approximate cost of 

borrowing) and an assumed 75-year economic life of a residence. (See Appendices H and I for a 

discussion of the discount rate and of the economic life of a building, respectively.) The table shows the 

benefits and costs for additional elevation above code-minimum: BFE + 2 means new design to 2 feet 

above BFE, for example. “Cost” refers to the total additional cost of building to the specified height rather 

than I-Code minimum (BFE + 1). It is the difference in construction cost between BFE + n feet (e.g., “BFE + 

2 means 2 feet above BFE) and BFE + 1. Benefit means the present value of benefits resulting from the 
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additional elevation. BCR refers to the ratio of the two. Cost refers to the difference in additional cost to 

build to BFE + n feet rather than BFE + (n – 1) feet, or the additional cost of one additional foot of 

elevation from BFE + (n – 1) to BFE + n. Benefit refers to additional benefit of building to BFE + n rather 

than BFE + (n – 1). B/C refers to the ratio of Benefit to Cost. Each additional foot of elevation is 

considered cost effective if B/C > 1. 

B/C is greater than 1 for all elevations considered. Table 2-2 suggests that designing buildings with 

increased elevation above the I-Code 2015 requirement (BFE + 1 foot) is generally cost effective, at least up 

to BFE + 5 feet (4 feet more than the 2015 IBC requires) in these four counties. Figure 2-2 shows results for 

each county separately. Figure 2-3 shows average BCR and average B/C values, e.g., averaging over 

these four counties. While Monroe County, Georgia, has higher values of BCR and B/C than the other 

three counties, all four counties show consistent results, in that all suggest greater elevation passes the 

BCR > 1 and B/C > 1 tests of cost effectiveness. 

Table 2-2: Summary BCR results for sampled counties. 

Height Cost Benefit BCR ΔCost ΔBenefit DB/DC  

Allen County, IN 

BFE + 2 $    793,972 $   3,275,548 4.13 $   793,972 $  3,275,548 4.13 

BFE + 3 $ 1,191,106 $   5,665,808 4.76 $   397,134 $  2,390,260 6.02 

BFE + 4 $ 1,588,023 $   7,614,300 4.79 $   396,917 $  1,948,493 4.91 

BFE + 5 $ 2,022,687 $   8,418,696 4.16 $   434,663 $     804,396 1.85 

Elkhart County, IN 

BFE + 2 $ 2,537,343 $   9,534,636 3.76 $2,537,343 $  9,534,636 3.76 

BFE + 3 $ 3,806,507 $ 15,925,500 4.18 $1,269,164 $  6,390,864 5.04 

BFE + 4 $ 5,074,995 $ 19,968,948 3.93 $1,268,488 $  4,043,448 3.19 

BFE + 5 $ 6,464,192 $ 22,607,799 3.50 $1,389,197 $  2,638,850 1.90 

Fulton County, GA 

BFE + 2 $ 3,516,281 $ 14,810,326 4.21 $3,516,281 $14,810,326 4.21 

BFE + 3 $ 5,275,131 $ 28,508,125 5.40 $1,758,849 $13,697,800 7.79 

BFE + 4 $ 7,033,070 $ 39,734,000 5.65 $1,757,940 $11,225,874 6.39 

BFE + 5 $ 8,958,412 $ 48,776,327 5.44 $1,925,342 $  9,042,327 4.70 

Monroe County, GA 

BFE + 2 $    185,855 $   1,619,143 8.71 $   185,855 $  1,619,143 8.71 

BFE + 3 $    270,575 $   2,868,257 10.60 $     84,720 $  1,249,113 14.74 

BFE + 4 $    359,165 $   3,450,872 9.61 $     88,591 $     582,615 6.58 

BFE + 5 $    452,175 $   3,826,023 8.46 $     93,010 $     375,151 4.03 
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Figure 2-2: BCR by sample county and additional elevation. 

 

 

Figure 2-3: BCR and B/C to build new buildings higher above BFE than required by the 2015 IBC.  

Some key observations are worth noting. First, there are differences between overall BCR values (a BCR at 

given elevation compared to BFE + 1) and B/C estimates. Variations among BCR values tend to be 

more subtle than drastic variations among B/C values, especially at higher elevations. That is expected: 

the more height above BFE, the more costs compared with the previous elevation but lesser benefit; 

B/C measures that incremental effect, while BCR adds the last-foot costs and benefits along with all the 
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others, so the cost effectiveness of the last foot gets concealed to some extent. It is generally cost effective 

to construct a new building higher than BFE + 1, even up to 4 additional feet. 

Second, BCR values seem to decline beyond a certain threshold. The project team found that with more 

than 4 to 5 feet of additional elevation, BCR and B/C diminished. This trend was consistent across all 

four of the sample counties and is likely to be consistent in similar communities across the nation.  

Finally, it is obvious that variations among BCR values are specific to locational and community conditions 

(Table 2-2). This is evident by the noticeable difference in BCR values between Monroe County, Georgia, 

and the other three counties, and also among the other three counties themselves. Monroe County has a 

considerably higher percentage of open foundations than what is present in the other three counties. The 

BCR values for Monroe County are actually similar to those seen in the analysis of the effectiveness of 

elevation in coastal communities that are also dominated by open foundations. Although closed 

foundations are more common in the other counties, variations among BCR values still occur because of 

site-specific conditions such as level of inundation or because of socioeconomic characteristics, such as 

variations in construction costs or distribution of business activities within the floodplain communities. 

To further investigate the latter observation, the project team tested a number of regression models using 

the BCR as a dependent variable. The available, relevant independent variables include elevation above 

BFE, foundation type, number of stories, and foundation size. One of the statistically significant models 

accurately predicted BCRs as a function of two independent variables: (1) elevation above BFE and (2) 

foundation type. This regression analysis produced an R2 value of 0.81, which means that 81% of variance 

in BCR among the sampled counties in a 0.2% annual chance floodplain can be explained by building 

elevation and foundation type. Societal and hazard conditions probably explain the remaining 20% of 

variance. 

2.2.2. Designing to Exceed 2015 I-Code Requirements for Hurricane Surge 

Building new single-family dwellings higher above the BFE than the 1 foot required by the 2015 IRC 

appears to be cost effective in coastal surge areas identified as V or VE by FEMA in all states. Surge in 

coastal V-zones is different from riverine flooding, and so its costs and benefits are different. 

When the incrementally efficient maximum (IEMax)11 of the increase in building height is assessed on a 

state level, the aggregate BCR (summing benefits and costs over all states) is approximately 7:1, e.g., $7 

saved for every $1 spent to build new coastal buildings in V- and VE-zones higher above the shoreline. It 

would cost approximately $7 million extra to build all new buildings to the IEMax elevation above BFE for 1 

year, and would produce approximately $51 million in benefits. 

                                                 
11 See Section 4.5 for a discussion on the determination of the incrementally efficient maximum as utilized in the 

Interim Study. 
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The results strongly suggest that greater elevation of new coastal single-family dwellings in V-zones is 

widely cost effective. (The study did not examine greater elevation of buildings in coastal A-zones because 

of data limitations.) All states have an IEMax building height above code of at least 5 feet. The IEMax 

elevation is quite high for several reasons. These include the relatively low cost of building a foot higher 

compared to the price of a house. These costs and benefits refer to building new coastal single-family 

dwellings higher above BFE, not of elevating existing houses, which would be much more expensive and 

would result in a lower BCR. 

Figure 2-4 illustrates the contribution to benefit from the various benefit categories, led by reduced 

property loss (about 69%), followed by time-element losses (ALE and indirect BI losses, 19%), insurance 

(12%), and acceptable costs to avoid deaths and nonfatal injuries at much less than 1%. Figure 2-4 uses 

state-level estimates for the IEMax elevation above 2015 IRC requirements. 

 

Figure 2-4: Benefits and costs of building new coastal houses in V-zones above 2015 I-Code requirements 

for 1 year. 

The IEMax additional height varies by state, as illustrated in Table 2-4. The benefits of building above code 

descend from very cost effective, with a BCR of approximately 17:1 at BFE + 2 ft, to just marginally cost 

effective at 8 and 9 feet, with values just above 1. Table 2-3, Figure 2-5 and Figure 2-6 illustrate these 

results. They show estimated benefits and costs for 1 year of new construction, which as discussed in 

Chapter 4, are estimated as 1% of the existing building stock in coastal V-zones (not all coastal 

residences—just those in V-zones). 
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Figure 2-5: BCR of coastal flooding mitigation by elevating homes above 2015 IRC requirements (by state). 

Figure 2-6A demonstrates that all building elevations assessed are cost effective, with diminishing returns. 

The curve of change in benefit divided by change in cost (B/C) in Figure 2-6B shows that the increase in 

elevation is cost effective to 9 feet, with the incremental change in benefit exceeding the incremental 

change in cost by at least a factor of 1.0 (the threshold indicated by the horizontal dotted line with a y-

value of 1.0). 

Table 2-3: Benefits and costs of building new coastal 1-story single-family dwellings higher above 

estimated BFE (all dollar figures in present value, $ millions, for 1 year of new construction). 

Height (ft) 
Property 

loss 

ALE & 

indirect BI 

Insurance 

fees 

Death, 

injury 

Benefit 

B 

Cost  

C 
B/C ΔB ΔC ΔB/ΔC 

BFE + 2 $  10.67 $  2.80 $  1.81 $0.05 $15.33 $0.90 16.9 $15.33 $0.90 16.9 

BFE + 3 $  17.60 $  4.67 $  2.99 $0.09 $25.36 $1.80 14.1 $10.02 $0.90 11.2 

BFE + 4 $  24.66 $  6.76 $  4.19 $0.12 $35.73 $2.71 13.2 $10.37 $0.90 11.5 

BFE + 5 $  27.96 $  7.70 $  4.75 $0.14 $40.55 $3.60 11.2 $4.82 $0.90 5.4 

BFE + 6 $  31.11 $  8.74 $  5.29 $0.15 $45.28 $4.50 10.1 $4.73 $0.90 5.3 

BFE + 7 $  32.66 $  9.12 $  5.55 $0.16 $47.50 $5.41 8.8 $2.22 $0.90 2.4 

BFE + 8 $  34.21 $  9.61 $  5.82 $0.17 $49.80 $6.30 7.9 $2.30 $0.90 2.6 

BFE + 9 $  34.93 $  9.80 $  5.94 $0.17 $50.84 $7.20 7.1 $1.04 $0.90 1.2 

BFE +10 $  35.64 $10.07 $  6.06 $0.17 $51.94 $8.11 6.4 $1.10 $0.90 1.2 

BFE + 11 $  35.88 $10.12 $  6.10 $0.17 $52.27 $9.01 5.8 $0.33 $0.90 0.4 
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Figure 2-6: Benefits and costs of building new coastal single-family dwellings higher above the 

requirements of the 2015 IRC: (A) benefits versus costs, (B) BCR and 𝚫B/𝚫C versus first floor elevation. 

Table 2-4: Summary of IEMax elevations above BFE for new buildings in coastal V-zones, by state, for 1 

year of new construction. 

State 
Height above BFE 

(ft) 

Property 

($M) 

ALE & indirect BI 

($M) 

Insurance 

($M) 

Death, injury 

($M) 

Benefit 

($M) 

Cost 

($M) 
BCR 

TX 8 2.18 0.64 0.37 0.01 3.20 0.35 9.1 

LA 10 1.49 0.41 0.25 0.01 2.16 0.45 4.8 

MS 10 2.32 0.67 0.39 0.01 3.40 0.34 10.1 

AL 10 0.79 0.22 0.13 0.00 1.15 0.10 11.7 

FL 10 23.19 6.55 3.94 0.11 33.80 4.01 8.4 

GA 6 1.22 0.34 0.21 0.01 1.77 0.47 3.8 

SC 10 0.09 0.02 0.02 0.00 0.13 0.03 5.0 

NC 10 1.99 0.56 0.34 0.01 2.90 0.56 5.2 

VA 6 0.02 0.00 0.00 0.00 0.02 0.01 3.8 

MD 6 0.01 0.00 0.00 0.00 0.01 0.00 3.8 

DE 6 0.02 0.01 0.00 0.00 0.02 0.01 3.8 

NJ 6 0.04 0.01 0.01 0.00 0.06 0.02 3.8 

NY 6 0.09 0.02 0.02 0.00 0.13 0.03 3.8 

CT 6 0.34 0.09 0.06 0.00 0.49 0.13 3.8 

RI 6 0.36 0.10 0.06 0.00 0.52 0.14 3.8 

MA 6 1.09 0.30 0.19 0.01 1.59 0.40 3.9 

Total  35.2 9.9 6.0 0.2 51 7 7 
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Regional differences in BCR and the IEMax elevation generally agree with regional differences in coastal 

hazard maps. As one might expect, there appears to be a lower BCR where the hazard is lower, such as in 

the northeastern United States. Even so, the BCRs at the IEMax elevation still exceed 3:1, with the IEMax 

building height 5 feet above code (BFE + 6) from Virginia to Massachusetts. This might have been harder 

to believe before Superstorm Sandy. Sandy demonstrated that coastal surge damage can be severe, even 

in places with only moderate to moderately high wind hazard. The analysis shows that storm-surge 

heights in these areas constitute a significant hazard, and that reducing that hazard by building higher 

makes financial sense on a benefit-cost basis. 

The project team successfully incorporated NOAA Maximum-of-Maximums (MOMs) Envelope of Water 

(National Oceanic and Atmospheric Administration 2014) into a regional probabilistic estimate of storm 

surge. It was necessary to do so. Using just flood insurance studies (FIS) and FEMA flood maps, one can 

estimate hazard at the 1% recurrence rate, but the real hazard is uncertain, so actual flood depth with 0.01 

annual exceedance frequency might be higher or lower. Modeling losses with the NOAA MOMs (National 

Oceanic and Atmospheric Administration 2014), scaled to generally agree with FEMA FIS (Federal 

Emergency Management Agency 2003, 2006a, b, 2007b, c, 2008c, d, 2009a, b, 2012a, b, c, 2013a, 2014b, 

c) and flood maps (Federal Emergency Management Agency 2014d), captures some of the epistemic 

uncertainty, perhaps providing more-realistic and more-robust BCRs, because of the diversity of data and 

approaches. 

The project team successfully incorporated National Oceanic and Atmospheric Administration (2017a) 

projections of sea level rise (SLR) into the BCA. SLR increases the estimated benefit of building higher 

above BFE because SLR adds to storm surge, and higher hazard increases the benefit of mitigation. The 

benefit of this particular mitigation measure only goes so far. When the sea rises, it extends inland. When it 

reaches the building footprint, the ground below is no longer dry on a daily basis, so greater elevation of 

the first floor provides no more practical benefit.  

Including SLR increases the BCR by about 10% when using the baseline 2.2% cost-of-borrowing discount 

rate. Using a higher discount rate such as the 3% and 7% discount rates used by the Office of 

Management and Budget (OMB) reduces the effect of including SLR, because it reduces the recognition of 

future benefits. The greater the discount rate, the less the model values the future a few decades out, and 

the less the model recognizes the benefits of greater elevation to mitigate against SLR. Section 2.5 

examines sensitivity to SLR and the discount rate. 

The costs and benefits estimated in the Interim Report exclude location-specific factors—local variations in 

construction cost that make one place more or less expensive to build or to pay for repairs than another 

place. Omitting location cost factors probably may slightly affect total dollar costs and total dollar benefits. 

The effect is probably small compared with other uncertainties in the analysis. 

Location cost factors should affect BCR little if at all. Higher up-front construction cost will tend to 

accompany higher future repair costs. In locations where future repair costs are greater, mitigation 

produces greater savings. Thus, higher up-front construction costs occur in the same places as higher 
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future benefits. The two effects cancel out in the BCR, at least for financial costs and benefits, because the 

same factor would appear in both the numerator and denominator of the BCR. Deaths and injuries are 

different because they are not affected by location cost factors. The BCR is lower in places where there are 

higher up-front construction costs and where benefits are dominated by avoided deaths and nonfatal 

injuries.  

Note, finally, that the results presented in the Interim Report do not consider social vulnerability, that is, the 

different degree of harm caused by natural disasters to people who are less able to recover from the 

disaster owing to lower income, age, etc. 

2.2.3. Designing to Exceed 2015 I-Code Requirements for Hurricane Wind 

If all new homes were built to the IEMax IBHS FORTIFIED Home program level for 1 year, it would cost 

approximately $720 million extra and would produce approximately $3.8 billion in avoided future losses. 

The aggregate BCR (summing benefits and costs over all states) is approximately 5:1, e.g., $5 saved for 

every $1 spent to build new buildings better along the Gulf and Atlantic Coasts. 

Compliance with the IBHS FORTIFIED Home Hurricane program appears to be cost effective everywhere 

along the Atlantic and Gulf Coasts. As discussed in further depth in Section 4.11.3, the analysis estimates 

BCR by 10-mph wind speed band, that is, in geographic bands that share a common value with the wind 

speed in the American Society of Civil Engineers (ASCE) Structural Engineering Institute (SEI) standard 

ASCE 7-16 (American Society of Civil Engineers Structural Engineering Institute 2017) Minimum Design 

Loads and Associated Criteria for Buildings and Other Structures with 700-year mean recurrence interval 

(MRI). 

Note that the analysis uses 2015 I-Code design requirements (which use ASCE 7-10 wind maps for design) 

to establish the vulnerability of the buildings, whereas ASCE 7-16 wind maps are used to describe the 

relationship between the frequency and severity of winds that will affect the buildings in the future. The 

former sets the design; the other characterizes the hazard. 

The project team considered more than the 700-year wind speed when calculating the wind hazard. 

Rather, the team attributed the same wind hazard to all locations that share a common value of 700-year 

wind speed. That is, the analysis considered wind speeds with more-frequent and more-rare recurrence; 

these contribute to the estimated benefits as well. The following results present estimates of the benefits 

and costs of 1 year of new construction to exceed 2015 I-Code requirements. (In 1 year, the United States 

adds or replaces about 1 square foot of buildings for every 100 square feet already in existence, so the 

costs and benefits of replacing all existing buildings can be calculated by multiplying by 0.01 to reflect 1 

year of new construction.) 

Table 2-5 presents the IEMax IBHS FORTIFIED Home Hurricane option for each wind speed band. Note 

that, although hurricane winds are defined as exceeding 115 mph, even buildings built in locations with 

lower design wind speed can experience higher actual winds, albeit with lower probability. Thus, buildings 
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in the 110 mph design wind speed band can experience hurricane-force winds and can benefit from IBHS 

FORTIFIED standards. 

Figure 2-7 illustrates the BCR on a map. The BCR varies from a maximum of 26 for IBHS FORTIFIED Home 

Hurricane Silver (in locations where 700-year wind speed is 180 mph) to 1.5 for IBHS FORTIFIED Home 

Hurricane Silver (in locations with 130 mph 700-year wind speed). The IEMax level of certification by 

location is provided in Figure 2-8. The BCR exceeds 10 where the 700-year wind speed is equal to or 

greater than 160 mph. These areas, in south Florida and small areas of the Louisiana and Alabama coasts, 

account for approximately 5% of the population within the scope of the Interim Study. They may be 

subject to stricter requirements in a local code (e.g. Florida’s Miami-Dade and Broward Counties), but the 

Interim Study does not consider local codes. 

The results show that in places where 700-year wind speed is less than 130 mph, the IBHS FORTIFIED 

Bronze level is a particularly cost-effective solution to hurricane hazard mitigation, with BCRs from 5.6 to 

7.9. In these lower hazard areas, the relative cost of more nails and the use of ring-shank nails are modest 

compared to the benefits. These simpler measures are required by the 2015 IRC at higher design wind 

speeds, so at higher wind speeds they do not exceed code requirements, and do not count toward costs 

and benefits for this piece of the Interim Study. 

At design wind speeds greater than 130 mph, FORTIFIED Silver appears to be the most cost-effective 

option. FORTIFIED Silver calls for protecting openings. FORTIFIED Gold is not applicable in many cases, 

and is not the IEMax FORTIFIED program for any of the wind bands examined. It is not considered cost 

effective at lower levels of design wind speed. However, individual owners may prefer to use Gold for 

other reasons than achieving a BCR. 

The reason the BCR at 120-mph 700-year wind speed is so much higher than at 130 mph is that IBHS 

FORTIFIED Home Hurricane Bronze requires closer nail spacing for roof-deck attachment at 120 mph than 

does the IRC: 8d ring-shank nails at 6"/6" (IBHS FORTIFIED Home Hurricane Bronze) as opposed to 8d 

smooth-shank nails at 6"/12" (2015 IRC). The cost is small and the benefit is large. At a 700-year wind 

speed of 130 mph, the 2015 IRC requires the closer nailing, so it incorporates the mitigation into the code 

and there is less for IBHS FORTIFIED Home Hurricane to do.  

Figure 2-9 illustrates the contributions from the various benefit categories: first, ALE and indirect BI (45%), 

followed by building and contents repair costs (39%), and insurance (16%). As outlined in Section 4.17, the 

insurance benefit results solely from reduced overhead and profit (O&P) costs, not from reduced property 

losses. O&P is estimated to add 30% to the pure premium associated with property losses. Reducing 

property losses by $1.00 on an expected annualized basis should decrease O&P charges by $0.30, in the 

long term, on an aggregate geographic basis. The $0.30 figure is based on an average between 2006 and 

2015 of incurred losses and-loss adjustment expenses as a percent of earned premiums, according to the 

Insurance Information Institute (2015). 
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Table 2-5: Benefits and costs for 1 year of new construction at IEMax IBHS FORTIFIED Home Hurricane 

levels (millions). 

700-year 

wind speed 

(mph) 

IEMax 

FORTIFIED 

program 

Building 

and 

contents 

Living 

expenses & 

indirect BI 

Insurance Benefit Cost BCR 

110 Bronze $    344  $    373  $     144  $     861  $    154  5.6 

115 Bronze $    180  $    196  $       75  $     452  $      81  5.6 

120 Bronze $    168  $    182  $       70  $     420  $      53  7.9 

130 (> 1 mi) Silver $      64  $      69  $       27  $     159  $    106  1.5 

130 (≤ 1 mi) Silver $        8  $        8  $         3  $       19  $      13  1.5 

140 Silver $    146  $    158  $       61  $     365  $    150  2.4 

145 Silver $        0  $        0  $         0  $         0  $        0  3.2 

150 Silver $      61  $    109  $       42  $     211  $      47  4.5 

160 Silver $    519  $    564  $     217  $ 1,300  $    118  11.1 

170 Silver $      11  $      12  $         5  $       29  $        2  14.9 

180 Silver $        4  $        5  $         2  $       11  $        0  26.6 

Total Mixed $ 1,505  $ 1,676  $     646  $ 3,827  $    724  5 

 

 

Figure 2-7: BCR of hurricane wind mitigation by building new homes under the FORTIFIED Home 

Hurricane Program (by wind band). 
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Figure 2-8: Maximum level of the IBHS FORTIFIED Home Hurricane design for new construction where the 

incremental benefit remains cost effective. 

 

Figure 2-9: Benefits and costs for 1 year of new construction at the IEMax IBHS FORTIFIED Home Hurricane 

levels. 
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If all new commercial structures were built to the IEMax IBHS FORTIFIED Commercial program level for 1 

year, it would cost approximately $91 million more but would produce approximately $392 million in 

avoided future losses. The aggregate BCR (summing benefits and costs over all states) is approximately 4:1, 

e.g., $4 saved for every $1 spent to build new commercial buildings better along the Gulf and Atlantic 

Coasts. 

Similar to the IBHS FORTIFIED Home Program, compliance with the IBHS FORTIFIED Commercial 

Hurricane program is cost-effective in all hurricane prone regions, located along the Atlantic and Gulf 

Coasts. Table 2-6 presents the IEMax IBHS FORTIFIED Commercial Hurricane option for each wind speed 

band. Figure 2-7 illustrates the BCR on a map. The BCR varies from a maximum of 14:1 for IBHS FORTIFIED 

Commercial Hurricane Silver (in locations where 700-year wind speed is 180 mph) to 2:1 for IBHS 

FORTIFIED Commercial Hurricane Silver (in locations with 700-year wind speed between 115 and 120 mph). 

The IEMax level of certification by location is provided in Figure 2-8. The BCR exceeds 10 where the 700-

year wind speed is equal to or greater than 170 mph. These areas, located at the southern tip of Florida, 

account for less than 1% of the building stock within the scope of the Interim Study. As with the IBHS 

FORTIFIED Home analysis, they may already be subject to stricter requirements in a local code, but the 

present Interim Study does not consider local codes. 

The results show a BCR of 2:1 at the outer edge of the ASCE 7-16 hurricane prone regions (where the 700-

year wind speed is greater than 115 mph). At this location, the IEMax FORTIFIED Commercial Hurricane 

Silver program requires builders and designers to adhere to the FORTIFIED Commercial Hurricane Bronze 

requirements, which include the stronger design of roof-related components and connections, as well as 

the FORTIFIED Commercial Hurricane Silver requirements, which include strengthened building envelope 

protection and continuity of business operations (via installation of a transfer switch to support backup 

power). 

As evident in Table 2-6, the BCR steadily increases until the 700-year wind speed is equal to 130 mph, and 

the commercial property is further than 1 mile from the coast. A dip in the BCR (from 7:1 to 2.4:1) occurs in 

locations where the 700-year wind speed is equal to 130 mph, and the property is located less than 1 mile 

from the coast. The reason for this drop is primarily triggered by the mandatory code requirements in 

windborne debris regions. These are areas located within 1 mile of the coast and where the basic design 

wind speed is 130 mph or greater, or in areas where the basic design wind speed is 140 mph or greater. 

The added benefits (and associated costs) of opening protection via the IBHS FORTIFIED Commercial 

Hurricane Silver program are no longer applicable, as the current code already requires this level of 

mitigation. New construction following the IBHS FORTIFIED Commercial Hurricane Silver program, 

however, still accrues the benefits due to a reduction in downtime as a result of how prepared the are to 

switch to backup power. 

Although the IBHS FORTIFIED Commercial Hurricane Silver program is considered the IEMax BCR for all 

wind contours analyzed, both the IBHS FORTIFIED Commercial Hurricane Bronze and Gold programs are 

still considered cost effective mitigation options for above-code design. The aggregate BCRs for IBHS 
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FORTIFIED Commercial Hurricane Bronze and Gold are approximately 6:1 and 2:1, respectively. IBHS 

FORTIFIED Commercial Hurricane Bronze is cost effective in all hurricane prone regions (that is, where 

700-year wind speed is greater than 115 mph) because it reduces damage through its higher design 

pressure requirements. IBHS FORTIFIED Commercial Hurricane Gold is particularly effective in regions of 

higher basic wind speeds (140 mph or greater) because it requires backup power and helps to maintain 

vital business operations. Although IBHS FORTIFIED Commercial Hurricane Gold may not be considered 

cost effective at lower levels of design wind speeds, individual owners may prefer to use it for other 

reasons than achieving a BCR. Figure 2-9 illustrates the contributions from the various benefit categories. 

Table 2-6: Benefits and costs for 1 year of new construction at the IEMax IBHS FORTIFIED Commercial 

Hurricane levels. 

700-year wind 

speed (mph) 

IEMax 

FORTIFIED 

program 

Building 

and 

Contents 

Direct / 

Indirect BI 
Insurance Benefit Cost BCR 

>115 Silver  $       27   $      19   $        12   $     58   $   27  2.1 

120 Silver  $       34   $      23   $        14   $     72   $   22  3.3 

130 (> 1 mi) Silver  $       68   $      44   $        28   $   140   $   20  7.0 

130 (≤1 mi) Silver  $         1   $        1   $          0   $       1   $     1  2.4 

140 Silver  $       13   $      17   $          5   $     35   $   10  3.5 

150 Silver  $         7   $        9   $          3   $     19   $     3  5.7 

160 Silver  $       23   $      32   $        10   $     64   $     7  8.8 

170 Silver  $         1   $        1   $          0   $       2   $     0  10.2 

180 Silver  $         0   $        0   $          0   $       1   $     0  14.4 

Total Silver  $     173   $    146   $        73   $   392   $   91  4 
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Figure 2-10: BCR of hurricane wind mitigation by building new homes under the FORTIFIED Commercial 

Program (by wind band). 

 

 

Figure 2-11: Benefits and costs for 1 year of new construction at the IEMax IBHS FORTIFIED Commercial 

Hurricane levels. 

The combined cost and benefit breakdowns for both the IBHS FORTIFIED Home and Commercial 

Hurricane programs can be found in Table 2-7. Benefits and costs of residential structures account for 

approximately 91% and 89%, respectively, of the total. As such, the BCRs are heavily weighted by the IBHS 

FORTIFIED Home program, and only slightly decrease from those values found in Table 2-5. Aggregating 

the results from both studies, if all new commercial and residential structures were built to the IEMax IBHS 
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FORTIFIED program level for 1 year, it would cost approximately $810 million extra and would produce 

approximately $4.2 billion in avoided future losses. The aggregate BCR (summing benefits and costs over 

all states) is approximately 5:1, e.g., $5 saved for every $1 spent to build new commercial buildings better 

along the Gulf and Atlantic Coasts. Figure 2-12 illustrates how the benefit categories contribute to total 

benefit from building new coastal buildings for one year to the IEMax level of IBHS FORTIFIED Home 

Hurricane and IBHS FORTIFIED Commercial Hurricane standard. 

Table 2-7: Benefits and costs for 1 year of new construction at the IEMax IBHS FORTIFIED Home Hurricane 

and IEMax IBHS FORTIFIED Commercial Hurricane levels. 

700-year 

wind speed 

(mph) 

Building & 

contents  

($ million) 

ALE, direct & 

indirect BI 

($ million) 

Insurance 

O&P  

($ million) 

Benefit 

 

($ million) 

Cost 

 

($ million) 

BCR 

110  $         344   $         373   $       144   $   861   $     154  5.6 

115  $         208   $         215   $         87   $   510   $     109  4.7 

120  $         202   $         206   $         85   $   493   $       75  6.5 

130 (>1 mi)  $         131   $         113   $         55   $   299   $     126  2.4 

130 (<1 mi)  $             8   $             9   $           3   $     21   $       12  1.7 

140  $         158   $         175   $         66   $   400   $     160  2.5 

150  $           67   $         118   $         45   $   230   $       50  4.6 

160  $         542   $         595   $       227   $1,364   $     125  11 

170  $           12   $           13   $           5   $     30   $         2  15 

180  $             5   $             5   $           2   $     12   $         0.5  25 

Total  $      1,678   $      1,822   $       719   $4,219   $     814  5 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   57 
 

 

Figure 2-12: Benefits and costs for 1 year of new construction at the IEMax IBHS FORTIFIED Commercial 

Hurricane and IEMax IBHS FORTIFIED Home Hurricane levels. 

2.2.4. Designing to Exceed 2015 I-Code Requirements for Earthquake 

This section presents the benefits and costs of designing new buildings with strength and stiffness that 

exceeds the minimum earthquake design requirements of the 2015 IBC. The IEMax strength and stiffness 

to exceed 2015 I-Code requirements varies from county to county, as does the county-level cost and 

benefit. In some counties, designing to exceed 2015 I-Code requirements appears to be cost effective on a 

BCR basis, in others it does not. Considering just those counties where designing to exceed 2015 I-Code 

requirements has a county-level BCR greater than 1.0, if all new buildings in all of those counties were built 

to their county’s IEMax level for 1 year, the costs would total approximately $1.2 billion. The sum of the 

benefits totals approximately $4.3 billion. Dividing the aggregate benefit by the aggregate cost produces 

an overall average BCR of approximately 4:1, e.g., an average of $4 saved for every $1 spent to build new 

buildings stronger and stiffer. 

Figure 2-13 details the distribution of the benefits that would accrue from 1 year of new construction to the 

IEMax Ie (the increase in strength and stiffness as a minimum design base shear and minimum design 

stiffness) value.12 Approximately half (47%, or $2 billion) accrue from reduced BI (including ALE). About 

35% ($1.5 billion) come from reduced property damage. Most of the remainder (18%, $800 million) comes 

from the U.S. government’s acceptable cost to avoid statistical deaths, nonfatal injuries, and PTSD. A small 

fraction (1%, $30 million) comes from reduced future costs of urban search and rescue. (The project team 

did not calculate urban search and rescue costs in the BCR for exceeding 2015 I-Code requirements for 

flood or wind because of its very minor contribution to benefits.) 

                                                 
12 The IBC does not define a quantity called minimum design stiffness per se, but rather specifies maximum allowable 

deformation, which is inversely related to stiffness. The IBC also uses the term Ie differently than the interim study 

does: as a multiplier for strength but not for stiffness. It is used it here as a multiplier for both strength and stiffness. 
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Figure 2-13: Contribution to benefits from exceeding 2015 I-Code earthquake requirements. 
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When Ie = 1.0, the design just meets the minimum strength and stiffness requirements of the 2015 IBC. A 

value of Ie = 3.0 means the building is at least 3 times as strong and stiff as the 2015 IBC requires, and 

experiences no more than 1/3rd the deformation as the code allows. The project team evaluated benefits 

Box 2-2. Why Calculate Benefits and Costs Up to Ie = 8?  

Some critics may object to evaluating benefits and costs for Ie values as high as 8, and question 

whether it is even possible to design to such high strengths. It seems possible in many circumstances.  

Consider a new 2-story office building in which the seismic force-resisting system relies on special 

reinforced masonry shearwalls, to use the terminology of ASCE 7-10 Table 12.2-1 (ASCE/SEI 2010). If the 

building were built in Petaluma, California, at 38.232N -122.615E, on soil of site class D, and it just met 

strength and stiffness requirements of ASCE 7-10, it would have a seismic response coefficient (design 

base shear as a fraction of building weight) of Cs = 0.23. Picking up that building and moving it to a 

certain location in Denver, Colorado, would change its minimum required Cs to be 0.0282g. Since it 

actually has Cs = 0.23g, it would satisfy design requirements for Ie = 0.23/0.0282 = 8.0. Therefore, 

engineers could design a new building in Denver to be 8 times as strong and stiff as the 2015 IBC 

requires. 

Furthermore, one could build the Petaluma building 8 times as strong as the 2015 IBC requires for its 

actual California location. It could be built with less than 200 linear feet in each direction of 8-inch 

concrete masonry unit walls with 4 ksi masonry and grout and one 60-ksi number-8 bar in each cell. It 

really is practical (though probably not cost effective) to design many buildings to remain essentially 

elastic even at design-level shaking.  

It probably does not make sense to design an office building with Ie = 8.0 on the basis of a BCR, but it 

is possible. Designing for site-specific seismic hazard uses risk-adjusted maximum considered 

earthquake (MCER) ground motion maps where spectral acceleration response factor (SS and S1) values 

span almost two orders of magnitude, meaning that the minimum seismic strength in the most highly 

seismic places are approximately 80 times those of the lowest-hazard places (SS = 3.06g near Ridgley, 

Tennessee, versus 0.037g near Langdon, North Dakota). A factor of 8 is modest compared with the 

80-times range of values in design maps.  

Note, some architectural designs are not achievable in very highly seismic areas at very high values of 

Ie or using certain structural materials. Near the high end of the design maps, it may not be practical to 

design much stronger. But common cases can be designed to Ie up to at least 3.0, which, as shown 

later, appears to be approximately the highest value anywhere in the 48 contiguous United States that 

makes sense on the basis of BCR.  



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   60 
 

and costs for Ie values of 1.0, 1.25, 1.5, 2, 3, 4, 5, 6, 7, and 8. (To understand why so high, see Box 2-2.) The 

project team also calculated the incremental cost ΔC and incremental benefit ΔB of increasing Ie from 1.0 

to 1.25, 1.25 to 1.5, 1.5 to 2.0, etc. The project team calculated the IEMax value of Ie on a census-tract basis; 

“IEMax” here means the largest value of Ie where ΔB/ΔC > 1.0, e.g., the largest incremental investment in 

designing to exceed 2015 I-Code requirements that still produces benefits in excess of costs. 

The IEMax Ie for approximately 2,700 counties (from a BCR perspective) is 1.0, e.g., the current code 

minimum. For approximately 400 counties, however, designing to exceed 2015 I-Code earthquake 

requirements appears to be cost effective at the cost-of-borrowing discount rate of approximately 2.2%.  

Figure 2-14 presents the estimated BCR if all new buildings in the county were designed to the county-

level IEMax value of Ie. Figure 2-15 shows each county’s IEMax Ie. Table 2-8 lists counties with the 10 

highest county-level BCRs, all of which are in California. All but San Benito County have a county-level 

IEMax Ie of 2.0; San Benito County, with a 2010 population of about 100,000 people, has an IEMax Ie value 

of 3.0. 

 

Figure 2-14: BCR of earthquake mitigation by increasing strength and stiffness in new buildings (by 

county). 
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Figure 2-15 : Maximum strength and stiffness factor Ie to exceed 2015 IBC and IRC seismic design 

requirements where the incremental benefit remains cost effective. 

Table 2-8: Top-10 counties for designing to exceed 2015 I-Code earthquake requirements. 

County State 
County-level  

IEMax Ie 

County-level  

BCR 

Imperial CA 2 7.4 

Santa Clara CA 2 6.0 

Monterey CA 2 5.1 

San Bernardino CA 2 5.0 

Alameda CA 2 4.9 

San Joaquin CA 2 4.7 

Los Angeles CA 2 4.7 

San Benito CA 3 4.7 

Riverside CA 2 4.6 

Santa Cruz CA 2 4.6 

Table 2-9 summarizes the number of people that benefit from designing new buildings to exceed I-Code 

minimum strength and stiffness with each of the values of IEMax Ie. Figure 2-16 illustrates the same 

information. Approximately 100,000 people live in counties where designing to three times the minimum 

strength and stiffness makes economic sense. Approximately 40 million people, 13% of the 2010 

population of the United States, live in counties where the IEMax Ie is twice the code minimum. Another 30 

million people—10% of the U.S. population—live where it would be cost effective to design to 25% or 50% 

greater than code-minimum strength and stiffness. The current code makes economic sense on a benefit-

cost basis for about three-quarters of the U.S. population. 
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Table 2-9: Population distribution by county-level IEMax Ie. 

IEMax Ie Counties 2010 population % of total 

1.0 2,674 236,009,947  77% 

1.25 253 16,755,955 5% 

1.5 126  14,033,579 5% 

2 51  39,909,835 13% 

3 3  106,942 0.03% 

4+ 0 0 0% 

 

 

 

Figure 2-16: Population (millions) by county-level IEMax Ie. 

Evaluating Reasonableness of the Results. The results of the Interim Report generally agree with intuition. 

First, the 2005 Mitigation Saves study found a BCR on the order of 1.5 for earthquake retrofits. It makes 

sense that incorporating mitigation into new buildings would produce a higher BCR. One might have 

expected an even larger BCR; an order of magnitude might have seemed reasonable. Perhaps the fact 

that the BCR is only 4:1 rather than 15:1 can be explained by the fact that new buildings are already strong. 

Second, it makes sense that almost half of the mitigation benefit comes from reduced BI, since prior 

studies such as the ShakeOut scenario (e.g., Jones et al. 2008, pg. 280) suggested that BI losses in a large 

earthquake can contribute half of the total loss. 
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Third, it makes sense that BI losses are larger than property losses, since the building code aims to control 

damage to a limited extent but does not explicitly aim to ensure post-earthquake operability. 

Fourth, it makes sense that BCR is higher in California and near large active faults. Greater seismicity means 

greater chance of incurring, and therefore avoiding, losses. Research for the CUREE-Caltech Woodframe 

Project (Porter et al. 2006) found similar results for seismic retrofit of older woodframe buildings. 

2.2.5. Complying with 2015 IWUIC 

If all new buildings built in 1 year in census blocks with BCR > 1 complied with the 2015 IWUIC, compliance 

would add about $800 million to total construction cost for that year. The present value of benefits would 

total approximately $3.0 billion, suggesting a BCR of approximately 4:1, e.g., $4 saved for every $1 of 

additional construction and maintenance cost. 

As shown in Figure 2-17, the benefits accrue mostly from reduced property loss ($2.1 billion, 70% of the 

total), followed by reduced insurance O&P costs ($600 million, 20%), deaths, nonfatal injuries, and PTSD 

($150 million, 5% of the total), living expenses and sheltering ($100 million, 3%), and indirect BI ($50 million, 

2%). 

 

Figure 2-17: Contribution to benefits from 1 year of compliance with the 2015 IWUIC where it is cost 

effective to do so. 

The project team calculated the costs and benefits of complying with the 2015 IWUIC for 47,870 census 

blocks in four counties in three states: Atlantic County, New Jersey; Alameda County, California; Los 

Angeles County, California; and Ada County, Idaho. The project team chose these counties to represent a 

range of fire risk, from moderate (Atlantic County) to high (Alameda and Los Angeles Counties), to 

extreme (Ada County), based on their burn probabilities (BPs).  
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The resulting BCR only exceeds 1.0 where the fire risk is moderate or higher. Of the 47,870 census blocks, 

about 10,000 of them (21%) have a BCR greater than 1.0. Approximately 10.5% have a BCR > 2.6. About 

2% have a BCR > 8, and the highest BCR is 15.3. 

The project team was interested in examining the total nationwide cost and benefit if the 2015 IWUIC was 

applied everywhere it was cost effective. The team performed a linear regression of BCR (the dependent 

variable) against BP (the independent variable), for every grid cell in which BCR > 1. The regression analysis 

showed some scatter but exhibited a relatively high coefficient of determination R2 = 0.85. Double-

checking the regression, the project team found that it reasonably back-estimated the BCR for the four 

counties. Since BP is available for the entire contiguous United States, the project team used the results of 

the regression analysis to estimate BCR for every grid cell in all 3,188 counties of the contiguous United 

States.  

Just as only some census blocks have BCR greater than 1, in general, a county can have no place with BCR 

> 1, or only parts of the county have BCR > 1. Figure 2-18 shows the county-maximum BCR for every 

county in the contiguous United States. That is, if a county is shaded other than white in Figure 2-18, there 

is at least one census block where it would be cost effective on a BCR basis to implement the 2015 IWUIC, 

and residents and county officials could reasonably consider implementing the code. In the counties that 

are not shaded, it might still make sense to implement the 2015 IWUIC, although not on a BCR basis. 

Figure 2-18 shows that 761 counties of the 48 states (24% of counties) and 33 of the states (69% of states) 

have at least a portion with BCR > 1. 

 

Figure 2-18: BCR of WUI fire mitigation by implementing the 2015 IWUIC for new buildings (by county). 
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2.2.6. Incentivization 

The foregoing estimates of benefits and costs of designing to exceed 2015 I-Code requirements are 

offered solely to inform mitigation decisions about new buildings, not to advocate for any choice of code. 

Benefits, costs, and the BCR represent only a part of the information a decision-maker must consider when 

deciding among mitigation decisions. Other considerations include resource limitations, recent experience 

with disasters, community interest, and potentially many other issues. These considerations will vary 

between communities and individual decision-makers, who must identify, assess, and weigh them based 

on their own situation.  

Not everyone is willing or able to bear the up-front construction costs for more-resilient buildings, even if 

the long-term benefits exceed the up-front costs. Different stakeholders enjoy different parts of the costs 

and benefits, and the people who bear more of the costs may argue more urgently than the people who 

enjoy more of the benefits. However, one set of stakeholders may be able to offer incentives to others to 

decrease the cost or increase the benefit, and better align the competing interests of different groups. 

The MMC and the Institute’s Council on Finance, Insurance and Real Estate (CFIRE) have proposed a 

holistic approach to incentives that can drive coordinated mitigation investments, aligning the interests of 

multiple stakeholder groups so that they all benefit from a cooperative approach to natural-hazard 

mitigation (Multihazard Mitigation Council and Council on Finance, Insurance, and Real Estate 2015). Table 

2-10 summarizes many such incentives, many of which apply equally to the adoption of 2018 I-Codes. It 

shows, by stakeholder group, incentives that the group can enjoy or offer to others to make mitigation 

more beneficial or less onerous. 

Table 2-10: Incentives to implement designing to exceed 2015 I-Code requirements for typical (Risk 

Category II) buildings. 

Stakeholder Decision-maker Incentives Special costs and benefits 

Homeowner Mortgagor Reduced insurance 

premium, tax 

deduction 

Reduced repair costs, reduced chance of 

mortgage default, accelerated recovery and 

reduced recovery costs. Some homeowners 

may be more financially marginal and might 

be less able to pay extra costs. As a result, 

the most socially vulnerable people could 

end up occupying the most structurally 

vulnerable homes. 

Building 

owner 

Corporate real 

estate manager  

Reduced insurance 

premium, second and 

later building owners 

might pay more for 

resilient buildings, 

especially if renters 

would.  

Reduced repair costs, reduced chance of 

mortgage default, accelerated recovery and 

reduced recovery costs, competitive 

advantage if others suffer damage.  
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Stakeholder Decision-maker Incentives Special costs and benefits 

Occupant Residential tenant, 

corporate tenant’s 

chief financial 

officer or corporate 

real estate 

manager, city 

manager  

 Enhanced life safety, reduced BI losses, 

possibly increased content losses. Renters 

may be more financially marginal. Only 

higher-income renters would be able to pay 

these extra costs. As a result, the most 

socially vulnerable people could end up 

occupying the most structurally vulnerable 

rental units. 

Builder Chief executive 

officer 

Builders might 

promote stronger 

buildings if they 

enjoyed increased 

market value through 

higher resilience 

ratings, design 

standards 

modifications, density 

bonuses or favorable 

zoning, fee waivers, 

accelerated permitting 

Increased construction activity and jobs, 

more jobs in structural materials 

manufacture and distribution. Greater 

construction costs may or may not be 

passed on to buyers. 

Building 

official 

Chief Building 

Official 

Building officials might 

advocate for 

designing to exceed 

code requirements, 

but probably face cost 

pressure from builders 

Less demand for post-disaster safety 

inspection. 

City council, 

county board 

of supervisors 

City council 

member, mayor, 

county supervisor 

 Enhanced public safety, reduced emergency 

response, accelerated recovery, reduced 

recovery cost, favorable BCEGS and CRS 

ratings, jobs, tax revenues, more likely to 

attract and retain residents and quality 

developers and businesses. 

Insurer, 

secondary 

insurer 

Chief underwriter; 

actuary 

Reduced portfolio risk Reduced pure premium, catastrophe risk, a 

reinsurance costs. 

Loan 

provider 

Bank, mortgage 

company 

Increased loan 

security, asset risk 

reduction; credit 

quality of security-

backed mortgages 
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Stakeholder Decision-maker Incentives Special costs and benefits 

Financer Real estate 

investment trust 

Increased financing 

opportunities, asset 

risk reduction 

 

Architect and 

engineer 

Design firms’ 

project managers 

 Slightly greater fees. Possibly difficult 

explanations to owners and builders. 

2.3. RESULTS FROM ADOPTING 2018 I-CODE 

REQUIREMENTS 

2.3.1. Quantifying the Contributions of Code Adoptions 

Across the country, code adoption is not uniform—the code editions in place vary widely from jurisdiction 

to jurisdiction. Some jurisdictions adopt new editions on a regular cycle, while others remain on older 

editions. With each new edition, additional benefits accrue. Some jurisdictions may capture these benefits 

in incremental pieces with each adoption, while others update their codes less frequently, during which 

time the benefits from more recent codes are not realized. 

While not covered in the scope of this study (and not captured in the BCRs), jurisdictions consider multiple 

factors regarding the frequency of adoptions. The Institute’s National Council on Building Codes and 

Standards (2018) has identified these considerations in the report: Benefits and Challenges of a Timely Code 

Adoption Cycle.  

2.3.2. I-Codes Protect New Buildings from Different Perils in Different Places 

In the United States, the I-Codes protect new buildings from natural hazards of various kinds. Table 2-11 

summarizes how many people are exposed to the hazards considered here: flood, hurricane wind, 

earthquake, and WUI fire. Figure 2-19 illustrates their geographic distribution. Figure 2-20 shows how 57 

million Americans are subjected to multiple perils: hurricane wind, earthquake, or WUI fire. (The 

geographic information available was insufficient to include flooding in Figure 2-20.) I-Codes also protect 

buildings from common building fires, straight-line winds, water intrusion, electrical damage, and other 

perils. 

Figure 2-19A shows streams and rivers in the National Hydrography Dataset (US Geological Survey 2018), 

with a blank space in western Tennessee where streams have unassigned level. Colors relate to ranges of 

the size of streams and rivers. Wing et al. (2018) estimate that 13% of the U.S. population—42 million 

people—live in areas subject to flooding with at least 1% probability in 1 year. Figure 2-19B shows where 

hurricane winds affect the design of new buildings along the U.S. Gulf and Atlantic Coasts, that is, where 

ASCE 7-16’s basic wind speed for Risk Category II buildings exceeds 115 mph. Approximately 127 million 

people live in these areas, or 39% of the U.S. population. 

https://www.nibs.org/resource/resmgr/ncgbcs/NCBCS_TimelyCodeAdoption.pdf
https://www.nibs.org/resource/resmgr/ncgbcs/NCBCS_TimelyCodeAdoption.pdf
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Table 2-11: Population exposed to high risk from flood, hurricane, earthquake, or fire at the wildland-urban 

interface. 

Peril How severe 
Population 

(million) 

% U.S.  

population 

Flood At least 1% probability of flooding per year 42 13% 

Hurricane Basic wind speed for typical buildings > 115 mph 127 39% 

Earthquake Seismic design exceeds wind design 85 26% 

Fire High or very high wildfire hazard potential 59 18% 

 

Figure 2-19: (A) U.S. streams and rivers; (B) Gulf and Atlantic Coast hurricane winds; (C) seismic design 

load; (D) wildland fire potential. 

A         B  

C D  
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Figure 2-20: U.S. population exposed to various combinations of earthquake, hurricane, and fire at the 

wildland-urban interface. 

2.3.3. Adopting 2018 I-Code for Riverine Flood 

Minimum requirements for elevating buildings located within the Special Flood Hazard Area (SFHA) are 

primarily dictated by whether the building is to be constructed under the IBC or IRC. Since the 2006 

edition of the IBC, buildings subject to riverine flood conditions that fall into Risk Category II and are 

constructed under the IBC have been required to have a minimum lowest floor elevation of BFE plus 1 foot 

or the locally adopted design flood elevation (DFE) . This is because of requirements that buildings 

constructed to the IBC comply with ASCE 24 (American Society of Civil Engineers 2014). Ever since the 

2005 edition of ASCE 24, buildings constructed for Risk Category II that are outside of High Risk Flood 

Hazard Areas (V zones and Coastal A zones) have been required to meet the previously stated elevation 

requirements. Elevation requirements for buildings constructed under the IRC however were not required 

to incorporate additional freeboard above the BFE until the 2015 edition of the IRC. 

Based upon an analysis of communities within the United States as of February 25, 2015 approximately 

61.98 percent of the U.S. population lives in communities where at least one foot of freeboard is required. 

Freeboard requirements can be incorporated into either a state or local floodplain management 

ordinance or by adoption of the I-Codes. This however does mean that approximately 38% of the U.S. 

population lives outside of areas with at least one foot of freeboard. This study only focused on 

communities that are members of the NFIP and compared the minimum NFIP requirements with those 

that have adopted at least one foot of freeboard. The project team further assumed that construction 

within the SFHA would comply with all the NFIP minimum requirements. These include dry floodproofing 

of nonresidential buildings. Any areas not dry floodproofed below the BFE would only be used for parking, 

building access, and storage. Those areas would be constructed with flood-resistant materials. Enclosures 

below BFE would include flood openings sized and located properly. 

Buildings constructed in compliance with the IBC are projected to have a minimal increase in cost to 

comply with the additional elevation requirements, that is, to build so that their first story is at least at 1 ft 

above BFE, rather than at BFE. Commercial buildings were evaluated as slab-on-grade structures on a 

stemwall foundation. The additional increase in the foundation height of one foot added approximately 
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1.2% to the overall cost of construction. Nonresidential buildings can be dry floodproofed as an alternative 

to elevation. Although this alternative represents a higher risk to the building, it is an allowable form of 

meeting compliance and may be preferred in some urban locations for aesthetics or accessibility. The 

additional cost of construction for one foot of dry floodproofing is approximately 1.7% of the overall cost 

of construction. 

The national average BCR for incorporating one foot of freeboard into construction is based upon a 

weighted average of the percentage of each building type within approximately 18 different idealized 

floodplains. Each of the floodplains is either wide and flat or narrow and steep and described further in 

Section 5.2.3 of this report. Elevation is the predominant method for meeting compliance. Although less 

common, the cost effectiveness of dry floodproofing should also be evaluated with respect to adoption of 

the 2018 I-Codes since it is an allowable method of meeting compliance. 

The project team evaluated residential buildings, specifically single-family, one-and two-story homes that 

fall under the IRC. The team evaluated these homes for two foundation types: slab-on-grade with a 

perimeter stemwall and a wood-framed floor system supported by a masonry perimeter wall with interior 

masonry piers (crawlspace). For flat floodplains, the project team evaluated stemwall systems with a 

transition to a mixed grouping of both foundations in moderate sloped floodplains and transitioning to 

only crawlspace foundations in steeply sloped floodplains. As previously stated, the project team only 

considered elevation for this evaluation since dry floodproofing is not an allowable method to achieve 

compliance with residential buildings. Construction costs for compliance with 1 foot of freeboard in the 

2015 and 2018 I-Codes increased the cost of construction approximately 1.4% for one-story homes and 

1.2% for two-story homes. 

Figure 2-21 shows the sources of the reduction in future losses produced by flood code adoption: reduced 

property losses (building repairs and content replacement) contribute the largest part of the benefits, 

followed by ALE and direct BI, and insurance overhead and profit. The figure reflects savings relative to 

NFIP elevation requirements. The project team excluded life safety benefits from the evaluation since, 

during flood events, people are encouraged to evacuate buildings located in the SFHA. Additionally, the 

requirement for one foot of freeboard does not represent a sufficient increase in the factor of safety for 

consideration of life safety. While not evaluated in this study, a primary consideration for incorporating 

freeboard into building requirements is the potential for changes in flood conditions due to future 

conditions. For riverine buildings, these could include increased runoff due to future development or 

climatic changes that could change precipitation rates. Freeboard also addresses inherent uncertainty in 

flood data where flood elevations meet or exceed the 1 percent flood elevation more frequently than 1 

percent annually. 
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Figure 2-21: Sources of savings from I-Code adoption for flood. 

2.3.4. Adopting 2018 I-Code for Hurricane Wind 

What are the costs and benefits that Gulf and Atlantic Coast communities exposed to hurricane winds 

have derived from code development since circa 1990, just prior to Hurricane Andrew? The project team 

addressed that question by comparing the construction costs and future losses for buildings constructed 

under the current 2018 I-Codes, and those constructed under 1990-era code provisions: National Building 

Code (Building Officials and Code Administrators 1990) and Southern Standard Building Code (Southern 

Building Code Congress International 1991). The study area is bound by those regions currently located 

within the ASCE 7-16 hurricane prone regions (where the 700-year wind speed is greater than 115 mph).  

Approximately 60 million people live in the 185 counties of the Gulf and Atlantic Coasts (U.S. Census 

Bureau 2016). Approximately 145 million people are located in the Gulf and Atlantic coastal states most 

threatened by hurricanes (U.S. Census Bureau 2016). Hurricane Andrew, which hit in 1992, caused an 

estimated $27.3 billion in insured losses, destroyed approximately 26,000 homes, damaged another 

101,000 (Insurance Information Institute 2018), and revealed several vulnerabilities in buildings subject to 

hurricane winds. The vulnerabilities included (among others) poor connections between roofs and walls, 

between roof decking and roof substructure, and the potential for windborne debris to penetrate the 

building envelope, causing increased internal pressures and water intrusion. Several building code changes 

were instituted to mitigate these deficiencies. Codes were further strengthened in later editions based on 

lessons learned after subsequent hurricanes and strong wind events.  

For this study, the project team calculated the reduction in future losses for residential and commercial 

buildings subject to the stricter design requirements of current 2018 I-Codes, relative to 1990-era codes. 

The study addressed the evolving wind hazard maps and design procedures in post-1992 editions of ASCE 

7, calculating their effect on design wind pressures, and considered changes through the IBC and IRC to 

incorporate new performance-based and prescriptive code requirements. Using these hazard data and 
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current vulnerability models, the project team calculated the aggregate benefits and costs for typical 

single-family dwellings and commercial buildings under both 1990-era codes and 2018 I-Codes. 

The 2018 I-Codes avoid an estimated $10 of future loss for every additional $1 of construction cost, relative 

to the 1990-era codes. Figure 2-22 sums benefits by category for every year of new construction along the 

Gulf and Atlantic Coasts that complies with I-Codes. Figure 2-23 shows how the BCR varies geographically, 

with the greatest benefits accruing in the regions of highest wind hazard. 

 

Figure 2-22: Sources of savings from I-Code adoption for hurricane winds. 
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Figure 2-23: BCR for 1990-era construction designed instead to 2018 I-Codes. 

2.3.5. Adopting 2018 I-Code for Earthquake 

What benefit has been derived from adopting modern seismic design requirements over the long term? 

The project team estimated the costs and benefits of code increases to the required strength and stiffness 

of new buildings since (approximately) 1990. The team did so by estimating the future natural-hazard 

losses of one year of new construction, two different ways. First, the project team estimated the future 

losses of new buildings assuming they are all built to comply with the 2018 I-Codes. Then the project team 

estimated the losses again as if the buildings were all weaker and more flexible, more like 1990 

construction. The latter case generally produced higher losses, but at lower up-front construction cost. The 

difference in loss is taken to be the benefit of code development since the 1988 Uniform Building Code. 

The project team chose 30 years to reflect changes, since shortly after the advent of what one might call 

modern seismic design, which accounts for a variety of issues such as the differing ability of different kinds 

of structural systems to absorb damage without collapse (a concept called ductility capacity). Codes have 

changed in other ways as well (see Section 3.3.3 for discussion), but strength and stiffness increases are 

fairly fundamental developments and practical to model. 

An analysis of long-term trends in the design strength and stiffness required by the International Building 

Code, and before it, the Uniform Building Code, shows that building strength and stiffness increases on 

the order of 50% every 30 years, at least in the higher-risk areas in the western United States (WUS). That 

is, the average West Coast building 30 years ago was weaker and more flexible by a factor of 1.5, meaning 
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67% as strong and stiff; 60 years ago, by a factor of 1.52, meaning 44% as strong and stiff; and 90 years 

ago, by a factor of 1.53, meaning 30% as strong and stiff. Therefore, one can deduce the costs and benefits 

of adopting modern codes compared with strength and stiffness roughly comparable to 1990, 1960, and 

1930 requirements.  

The current minimum design strength for earthquake loads exceeds that of wind where approximately 58 

million people live, or about 26% of the U.S. population, in the contiguous 48 states, as shown in Figure 

2-19C. While the BCR varies geographically, in the aggregate, the development and adoption of seismic 

provisions since the advent of modern seismic design provisions has produced a BCR of 12:1, $12 saved for 

every $1 of additional construction cost. Compliance for one year costs $600 million more than if new 

buildings were built 67% as strong as the 2018 I-Codes require (i.e., to approximately 1990 requirements), 

but will save $7 billion during a life of approximately 75 years, and would prevent 15 deaths and 22,000 

nonfatal injuries. 

Figure 2-24 shows the sources of the reduction in future losses produced by an increase in strength and 

stiffness associated with the development of modern seismic design provisions. Reduced property losses 

(building repairs and content replacement) contribute the largest part of the benefits, followed by direct BI, 

casualties (deaths, injuries, and instances of post-traumatic stress disorder), indirect BI, and urban search 

and rescue. The figure reflects savings relative to 67% of current strength and stiffness. BCRs for code 

adoption vary geographically, as shown in Figure 2-25. The highest BCRs generally appear in areas of 

highest seismicity, with values as high as 32:1 in San Bernardino County, California. Other notable locations 

include: 

 San Francisco, California 24:1 

 Los Angeles, California 23:1 

 Seattle, Washington 7:1 

 Salt Lake City, Utah 7:1 

 Portland, Oregon 3:1 

 

 

Figure 2-24: Sources of savings from I-Code adoption for earthquake. 
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Figure 2-25: BCRs resulting from updating from 1990 construction to the strength and stiffness 

requirements of the 2018 I-Codes. 

2.4. RESULTS FROM ENHANCING UTILITIES AND 

TRANSPORTATION LIFELINES 

In 2018, the project team evaluated a number of EDA grants and found 12 that specifically mitigated 

natural hazard risk to utilities and transportation lifelines, where sufficient data were available to estimate 

benefits and costs. The project team estimated these benefits and costs, as well as a program by the 

California Department of Transportation (Caltrans) to seismically retrofit highway bridges throughout 

California, focusing on 656 highway bridges in Southern California. The project team also estimated the 

benefits and costs of a hypothetical program to seismically retrofit the distribution system of buried 

pipelines in an urban water supply system using a so-called resilient grid: a backbone of earthquake-

resistant pipes and valves to better ensure that water is available within a half mile or so of any place in the 

system, regardless of damage to the rest of the system. Finally, the project team estimated the benefits 

and costs of a hypothetical program to seismically retrofit equipment in the substations of an electric 

distribution system, to better ensure that electricity will be available to customers. The project team also 

examined two hypothetical programs, a resilient water grid and a resilient electric grid, in each of four 

West Coast cities: Los Angeles, San Francisco, Portland, and Seattle. 

In 2018, the project team evaluated a number of EDA grants and found 12 that specifically mitigated 

natural hazard risk to utilities and transportation lifelines, where sufficient data were available to estimate 
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benefits and costs. The project team estimated these benefits and costs, as well as a program by the 

California Department of Transportation (Caltrans) to seismically retrofit highway bridges throughout 

California, focusing on 656 highway bridges in Southern California. The project team also estimated the 

benefits and costs of a hypothetical program to seismically retrofit the distribution system of buried 

pipelines in an urban water supply system using a so-called resilient grid: a backbone of earthquake-

resistant pipes and valves to better ensure that water is available within a half mile or so of any place in the 

system, regardless of damage to the rest of the system. Finally, the project team estimated the benefits 

and costs of a hypothetical program to seismically retrofit equipment in the substations of an electric 

distribution system, to better ensure that electricity will be available to customers. The project team also 

examined two hypothetical programs, a resilient water grid and a resilient electric grid, in each of four 

West Coast cities: Los Angeles, San Francisco, Portland, and Seattle. 

The 12 EDA grants included five grants to elevate roads and railroads to better resist flooding; four grants 

to protect water and wastewater treatment plants from future flooding; one grant to protect an electric 

and telecommunication substation from flooding; and two grants to underground electric transmission 

lines to protect them from wind and ice loads. The 13 actual mitigation programs examined here (the 12 

EDA grants and the Caltrans retrofit program) cost approximately $590 million in 2018 dollars, and are 

estimated to save society $2.5 billion, for a total benefit-cost ratio of 4 to 1. The benefits mostly accrue 

from reductions in deaths, injuries, and post-traumatic stress disorder (39%) and indirect business 

interruption (38%), with smaller contributions from additional living expenses, direct business interruption, 

property loss, and environmental impacts, as shown in Figure 2-26.  

The hypothetical measures to construct a resilient water supply grid and a resilient electric grid also appear 

to be generally cost effective, with BCRs ranging from 1 to 8, depending on location. Cities with higher 

seismicity (San Francisco and Los Angeles) exhibit higher BCRs. 

 

Figure 2-26: Benefits of the examined utility and transportation lifeline mitigation efforts. 
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2.5. RESULTS FROM FEDERAL GRANTS 

This section presents results of the project team’s analyses of federal grants, including FEMA and HUD 

grants, to mitigate risk from riverine flooding, hurricane and tornado winds, earthquake, and fire at the 

WUI. 

2.5.1. Grants for Flood Mitigation 

While the BCR varies between projects, public-sector mitigation spending for the acquisition of buildings 

exposed to riverine flooding appears to be cost effective. The average BCR across the sample projects is 

approximately 7:1; its standard error, 2.0. The implication is that past federally funded riverine flood 

mitigation is cost effective (at the cost-of-borrowing discount rate). Given that the total cost of all riverine 

flood-mitigation grants was $11.5 billion, a BCR of 7:1 implies that federally funded flood mitigation will 

ultimately save the United States $82 billion. 

Based on the distribution of benefits from the various categories within the sample grants, the $82 billion 

in benefits can be attributed to different categories as shown in Figure 2-27: $53 billion in avoided 

property losses (65% of the total); $15 billion (18% of the total) in avoided ALE, sheltering, and indirect BI; 

$9 billion (11%) from reduced administrative costs associated with flood insurance; and the balance of $5 

billion (6%) from acceptable costs to avoid deaths, injuries, and PTSD. 

 

Figure 2-27: Contribution to benefit from federally funded riverine flood grants. 

Table 2-12 summarizes benefits and costs of public-sector spending to acquire or demolish flood-prone 

buildings, especially single-family dwellings, manufactured homes, and 2-4 family dwellings. The results 

reflect analyses of five projects using Hazus®MH (Hazus)and the baseline cost-of-borrowing discount rate. 

The table shows project number, location, total mitigation cost, the present value of future probabilistic 
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losses had the mitigation not been undertaken, the present value of losses given that mitigation was 

undertaken, the difference between the two (e.g., the avoided losses, or benefit), and the BCR. 

Results are shown in thousands, rounded to the nearest $10,000. The values in Table 2-8 use the 2.2% 

cost-of-borrowing discount rate. See Section 2.5 for 3% and 7% discount rates. Results were calculated in 

2014 USD but inflated to 2016 USD using a gross domestic product (GDP) deflator (purchasing power 

parity—PPP—per capita in international dollars, from the World Bank). 

Table 2-12: Costs and benefits of sampled grants for riverine flood acquisitions (in thousands). 

Project County Cost 
Pre-mitigation 

loss 

Post-

mitigation loss 
Benefit BCR 

45918 Morgan, IN $ 2,790 $ 27,710 $   1,040 $ 26,670 9.6 

28096 Wagoner, OK $ 1,220 $ 19,760 $   8,030 $ 11,730 9.6 

53458 Decatur, GA $    950 $   2,200 $          0 $   2,200 2.3 

58141 PDM DeKalb, GA $ 4,230 $   8,540 $   2,500 $   6,040 1.4 

32571 Polk, WI $    490 $ 68,720 $ 62,540 $   6,180 12.5 

Evaluating Reasonableness of the Results. The sample-average BCR of 7:1 is higher than the 5:1 figure for 

riverine flood estimated in the 2005 Mitigation Saves study. Considering variability between grants, 

agreement within 40% is satisfactory, and tends to support the conclusion that flood-mitigation is cost 

effective. The fact that the Report estimate is higher than in the 2005 study is perhaps attributable to 

Hazus. The project team used the Hazus flood module here, whereas the authors of the 2005 study used 

fairly cautious and approximate methods because their work began before the availability of a fully 

functioning Hazus flood module. In the face of great uncertainty, the authors of the 2005 Mitigation Saves 

study decided to err on the side of underestimating losses.  

One more observation about Table 2-9: the per-building cost of the Georgia grant was more than three 

times those of the Indiana and Oklahoma grants, which seems questionable. It may be that the available 

data omit some buildings from the acquisition, or that they were miscoded and appear elsewhere in the 

database. In either case, the analysis would underestimate the benefit and therefore the BCR. If true, the 

accurate BCR for the Georgia grant would be closer to that of most of the other grants, and the overall 

average would be higher. 

2.5.2. Grants for Wind Mitigation 

Based on its analysis, the project team found that federal grants to mitigate wind damage are highly cost 

effective. In 23 years, public entities have spent $13.6 billion to mitigate future wind losses; these efforts will 

ultimately save the United States an estimated $70 billion in avoided property losses, ALE, business 

impacts, and deaths, injuries, and PTSD. Their total BCR is approximately 5:1.  
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Table 2-13 presents the benefits of mitigating wind damage. The low- and medium-hazard projects 

focused primarily on life safety. These life-safety focused projects produce very large benefits, primarily 

because of the acceptable cost to avoid a statistical fatality ($9.5 million) and smaller but still fairly large 

acceptable costs to avoid nonfatal injuries, and because this analysis does not discount human life. Figure 

2-28 details the contribution to overall benefits from the various benefit categories considered here. 

Table 2-13: Costs and benefits of sampled federal grants to mitigate wind damage (in millions). 

 Low hazard Medium hazard High hazard Overall 

BCR 6.2 6.5 3.3 5 

Total stratum cost  $  1,580   $   6,550   $   5,450   $ 13,580  

Total stratum benefit  $  9,860   $ 42,440   $ 17,930   $ 70,230 

 

Figure 2-28: Contribution to benefit from federally funded wind grants. 

Not every life-safety mitigation project results in a BCR greater than 1.0, but that might have as much to do 

with the available data as with the actual mitigation effort undertaken. The estimated BCR depends largely 

on the level of hazard, alternative use of the facility, and accessibility. In-home safe rooms generally 

appear to be cost effective, exhibiting an average BCR of 4.25. Large facilities with dual purposes, such as 

school gymnasia and cafeterias, exhibit an average BCR of 8.0. In these cases, the cost of mitigation is 

simply the additional cost of hardening the facility.  

Accessibility and use also strongly affect cost effectiveness. For example, a shelter located at a hospital will 

likely protect life at any time of day throughout the year. By contrast, for much of the year and many times 

of day, nobody is likely to be near enough to need a small shelter in a large park. On a probabilistic basis, 

such shelters provide lower benefits.  
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The location of the hazard mitigation effort matters too. The same kind of wind-mitigation efforts in 

Oklahoma produce higher estimated benefits than they do in North Dakota. The kind of mitigation 

matters as well. Shutters appear to be highly cost effective, particularly those that protect valuable 

equipment at utilities or industrial facilities. Shutters for ordinary public buildings without high-value 

contents produce a lower but still impressive BCR (about 3.5). 

The challenge for the project team was that the members had to estimate the benefits of county-wide 

residential retrofitting projects without data specifying exactly what was done to each building. The project 

team identified likely mitigation efforts for older and newer buildings, and used the American Community 

Surveys (U.S. Census Bureau 2010-2014) to estimate the number of homes built before and after major 

code changes, especially the implementation of the Florida Building Code (FBC) in 2002 (State of Florida 

2002). County-wide residential retrofit projects resulted in a BCR of 1.5 to 3.5.  

Evaluating Reasonableness of Results. The project team produced a 33% larger BCR for wind mitigation 

than in the 2005 Mitigation Saves study, e.g., 5:1 (Interim Study) versus 4:1 (2005 Mitigation Saves study). 

The difference can be attributed largely to the longer period over which the Interim Study recognized 

mitigation benefits: 75 years versus 50 years in the 2005 Mitigation Saves study. At an approximate 2.2% 

annual discount rate for cost of borrowing, a 75-year annuity is worth about 21% more than a 50-year 

annuity with the same coupon payment. The remaining 10% difference could be a function of the 

uncertainty associated with this sampling strategy.  

2.5.3. Grants for Earthquake Mitigation 

Considering mitigation costs totaling $2.2 billion, the average BCR of approximately $3 to $1 implies that 

federally funded earthquake hazard mitigation between 1993 and 2016 saved society $5.7 billion, in 

approximately the proportions shown in Figure 2-29. Note that few buildings are insured for earthquake 

shaking, so the analysis ignored insurance benefits. 

 

Figure 2-29: Contribution to benefit from federally funded earthquake mitigation grants. 
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The analysis produced a standard error of BCR equal to 0.56, which measures uncertainty in the stratum-

average BCR. It suggests that, with more than 99% confidence, the true population-average BCR exceeds 

1.0. The sample strongly suggests that 23 years of federally funded earthquake mitigation of public 

buildings has been cost effective. It will save the public more than it cost, on average, over the long run, 

which is the basis of BCA, even for earthquakes. 

Evaluating Reasonableness of the Results. This section examines the estimated benefits of federal grants 

supporting earthquake risk mitigation, beginning with a comparison with the 2005 Mitigation Saves study. 

The estimated BCR of 3:1 (2.6:1 when shown with more precision) is 73% higher than the 2005 estimate of 

1.5. The project team attributed some of the difference (21%) to recognizing benefits over 75 years rather 

than 50 years. The team attributed most of the remaining difference to the new ability to estimate the 

value of loss of service to the community—a capability of FEMA’s BCA (Benefit-Cost Analysis) Tool that 

was not available for the 2005 Mitigation Saves study. As shown in Figure 2-18, loss of service represents 

approximately one-third of the estimated benefits. If one omits loss of service and reduces all other benefit 

categories by a factor of 1.21 to reflect a 50-year life versus 75 years, the BCR would be 1.43, almost the 

same as in 2005. The similarity tends to support the new figure.  

Discussion. A linear regression of BCR against project cost within the sample of 23 projects reveals a low 

coefficient of determination: R2 = 0.03, suggesting that BCR is not linearly related to project cost. That is, 

spending more does not necessarily save disproportionately more. (Nor does the other way hold true: 

spending less does not save more either.)  

The nature of the mitigation efforts seems more closely related to the BCR. The most apparently cost-

effective mitigation efforts address utilities and other lifelines: electrical substations, hospitals, and fire 

stations (average BCR of 4.5), followed by education (1.7), then public administration and other 

miscellaneous efforts (about 1.0).  

It may be that the analysis underestimates the BCR for the last category, especially if public administration 

provides public services after an earthquake that are too intangible to be quantified yet by the FEMA BCA 

Tool. The orderly operation of government seems more important in the immediate aftermath of a natural 

disaster than at other times. Therefore, the benefits associated with efficient government in the immediate 

aftermath of a disaster may represent an omitted benefit category.  

Also, it seems likely that having operating schools matters a lot in the aftermath of an earthquake, so 

parents do not need to interrupt work to care for children because school is closed. A BCR of 1.7 might 

therefore underestimate the true BCR for mitigating public school buildings, because it omits a benefit 

category for childcare. Viewed another way, if one parent in a two-income household has to stop work to 

care for children while their school is nonfunctional, the indirect BI would increase. This fairly indirect cost is 

probably not reflected in the indirect BI cost to the economy conditioned on loss of function in education.  

As with the 2005 study, property benefits alone do not equal mitigation cost, but the sum of property and 

casualties do. By adding other societal benefits—BI losses and especially loss of service to society—
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earthquake mitigation more than pays for itself. That observation reinforces the notion that earthquake risk 

mitigation broadly benefits society. That is, the benefits of strengthening one building extend far beyond 

the property line: the benefits also go to the families of the people who work in the building and to the 

community that the building serves. 

2.5.4. Grants to Mitigate Fire at the WUI 

This section presents estimates of the costs and benefits of federally funded efforts to mitigate fire at the 

WUI. The project team used many of the same principles and processes to analyze mitigation grants as it 

did for analyzing above-code measures. With a total project cost of approximately $56 million (inflated to 

2016 USD), federally supported mitigation of fire at the WUI will save society an estimated $173 million in 

avoided future losses. Applying the relative contribution from benefit categories calculated in the above-

code measures study yields Figure 2-30, which shows the estimated contribution of benefits produced by 

federally funded grants to mitigate fire risk at the WUI. 

For reasons explained in Chapter 5, the project team used results of above-code measures to impute a 

BCR for many grants in the sample. The project team imputed the BCRs for making a typical single-family 

dwelling comply with the 2015 IWUIC to federal mitigation grants such as replacing private residential 

roofs (with a requirement for vegetation management) and to grants associated with vegetation 

management.  

In summary, of the 25 grants with sufficient data available, the project team estimated BCRs for four on the 

basis of project-specific, and imputed BCRs for 21 using results from above-code measures based solely 

on grant location. Of the former four, two had a BCR greater than 1.0; two, less than 1.0. Of the 21 latter 

grants, eight had BCRs greater than 1.0; 13 had BCRs less than 1.0. In some cases, the properties were close 

to a boundary between locations with BCRs of greater than 1.0 and less than 1.0. Given issues of locational 

accuracy and uncertainty in the above-code study results, the BCRs determined using these results are 

only approximate. For the 25 grants with sufficient data, the analysis produced an average BCR of 

approximately 3:1. 
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Figure 2-30: Contribution to benefit from federally funded WUI fire mitigation grants. 

2.6. BCRS FOR RETROFIT OF PRIVATE-SECTOR BUILDINGS 

2.6.1. BCRs for Flood Retrofit of Single-Family Dwellings 

2.6.1.1. Flood Retrofit Measures for Single-Family Dwellings and Total BCR 

Flood retrofits evaluated for this study specifically focused on those to single-family houses that are subject 

to riverine floodwaters.  According to analysis by NOAA, inland flooding damage from 1980 to 2018 cost 

the U.S. approximately $4.3 billion per year (CPI-adjusted) (National Oceanic and Atmospheric 

Administration 2018), and it is expected that value will continue to increase.  This analysis estimated the 

value of mitigating existing single-family houses that currently stand within the National Flood Insurance 

Program's delineated special flood hazard area (SFHA). Often called the 100-year floodplain, these are 

places with a 1 percent or greater chance of being flooded in an average year, which equates to about a 

one in seven chance of being flooded at least once during a 15-year mortgage, and more than 50% 

chance of being flooded during a 75-year life of a building. The reader can learn whether any particular 

address is located within a special flood hazard area using FEMA’s Flood Map Service Center, currently 

located at https://msc.fema.gov/portal/home. 

The evaluation focused on houses that were constructed prior to the implementation of flood maps in the 

areas where they were built.  Designers of these single-family dwellings would have lacked sufficient flood 

elevation data to construct the lowest floor elevation at or above the base flood elevation (BFE), meaning 

the elevation of the 1 percent annual chance flood. New or revised flood maps sometimes extend the 

floodplain to places that previously were outside of it, or otherwise change in such a way that formerly 

compliant buildings now are below the BFE. Such situations apply to relatively few buildings, so this study 

focused on older existing building that often are more at risk. 

https://msc.fema.gov/portal/home
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The project team evaluated five flood retrofit measures, selecting methods that are either commonly 

funded by mitigation grants (1 and 2) or that homeowners can do themselves (2 through 5). They include: 

1.  Acquisition of property, called buyouts, where the property is purchased and the building 

removed; commonly funded by mitigation grants. Eliminates future losses. 

2.  Retrofit elevation, that is, the raising of buildings; commonly funded by grants and sometimes 

by homeowners. Greatly reduces future losses.  

3.  Wet floodproofing of basements by removing damageable items from easily flooded places. 

Rarely funded by grants. Can be done by homeowners to reduce loss in more frequent 

flooding. 

4.  Elevation of air conditioning compressors or heat pumps and relocation of ductwork. Rarely 

funded by grants. Can be done by homeowners to reduce loss in more frequent flooding. 

5.  Relocation of furnaces and water heaters from basements and crawlspaces. Rarely funded by 

grants. Can be done by homeowners to reduce loss in more frequent flooding. 

 

Figure 2-31 summarizes the benefits that could be derived from a realistic combination of the five 

retrofit measures performed on existing single-family dwellings in the 100-year floodplain. Mix of 

the Section 5.5.6 provides details.  Benefits for each retrofit option were calculated on a per building 

basis. Percentages for each flood retrofit type were developed after an analysis of a state grant 

program and expert opinion. The percentages for each flood retrofit were then applied to one 

million single-family dwellings. The number of single-family dwellings in the 100-year floodplain 

that predate their flood maps is uncertain. The figure of one million buildings is probably at the 

low end of a realistic range. It was used here partly to be consistent with the project’s policy of err 

toward lower benefit in cases of significant uncertainty, and partly because it is a round number 

that makes adjustment easy if one believes a different number of older homes in the floodplain. 

Each flood retrofit measure was evaluated based on the lowest floor being within a range of 

elevations below the BFE. Many houses exist in the floodplain with lowest floors even lower than 

assumed here. While this study does not represent the benefits associated with retrofitting all 

existing houses constructed prior to the adoption of flood maps, it does illustrate the benefit of 

flood mitigation applied to a large subset of the existing single-family dwellings in the floodplain. 

These calculated benefits for each retrofit were then summed to develop the total costs and 

benefits for flood retrofits and resulting in a total BCR of just over 5:1. 
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Figure 2-31: Flood-related benefits from all the evaluated retrofits to flood-prone single-family dwellings. 

Costs and benefits for the flood retrofit projects differ from the other perils considered here in that flood 

was evaluated on a nationwide basis rather than a county-by-county basis. This was done to avoid the 

formidable challenge of calculating hydrology and hydraulic data for thousands of watersheds.  The 

following few sections provide detail of the benefit sources for individual flood-retrofit measures. 

2.6.1.2. Acquisition of Single-Family Dwellings 

Buyouts represent permanent flood mitigation: The building no longer exists to be flooded, and its 

occupants relocate to a place with much-lower flood risk.  Properties with a high risk of flood damage 

often are identified by communities for grant applications and then these properties are purchased and 

the land used for something that would not result in future flood losses.  These uses often are open 

spaces, such as parks, gardens, or greenspaces.  In addition to avoiding future flood losses, the 

unbuildable land helps to open space within the floodplain and expand the storage capacity of the 

floodplain.  By eliminating sufficient numbers of properties, buyouts help to reduce the flood risk to 

surrounding properties. 

The acquisition of a property involves buying the house, land, and any other improvements.  This option 

can be costly, but it is viewed as the most comprehensive one.  For present purposes, the cost of 

acquisition was based on the square-footage price for a home with mortgage of $228,600, which assumes 

an average 1,800-square-foot house costing $127 per square foot.  

Acquisition improves life safety. When people die in floods, it is commonly because they are driving 

through floodwaters. Moving people out of the floodplain reduces the chance that occupants get hurt 

driving to or from their homes. Buyouts also protect first responders and police because they do not have 

to respond to that house during a flood. 
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Figure 2-32 details the benefits estimated for acquisition of single-family dwellings in floodplains. It 

assumes a 100-year project useful life. Many other benefit-cost analyses assume a house lasts 75 years, but 

buyouts are a little different. Once a community makes property unavailable for dwellings, it probably will 

remain that way. It is difficult to know for how long, but 100 years seems to be a reasonable, perhaps 

conservatively low, figure. 

 

 

Figure 2-32: Contribution flood-related benefits from the acquisition of flood-prone single-family houses. 

This analysis is blind to some maintenance costs and changes in property tax associated with acquisitions. 

Community leaders often express concern that acquisitions reduce their property tax base if residents 

relocate outside the municipal limits.  Communities have been able to use rezoning strategies in other 

portions of the community outside of the SFHA to limit their exposure to a reduced property tax base.  

Other communities have found that acquisitions can lead 

to ongoing maintenance costs, such as mowing. Over 

time, some communities have found ways to reduce those 

maintenance costs, including using the acquired land for 

community gardens that volunteers maintain.  Other 

communities have acquired contiguous properties to 

create green spaces that open up valuable park space that 

the community otherwise would have had to purchase. 

Communities that perform buyouts may or may not plan 

for or successfully encourage displaced people to relocate 

within local jurisdictions. If they fail, they may lose property 

tax revenues. If the displaced households remain in the 

region, the lost taxes are recouped by another community, 

in which case the present analysis would be blind to the 

Taking the Opportunity to Acquire Houses 

Flood conditions and flood elevations can 

change over time due to increased 

development or changes in precipitation 

rates.  When comparing acquisition with 

retrofit elevation, it should be considered 

that once a house is elevated it may be 

difficult to show that it is cost effective to 

acquire the house even if BFEs rise above 

the lowest floor elevation. The best 

opportunity to acquire a house is prior to 

retrofit elevation. 
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loss of tax revenue in one part of the region because it is recovered elsewhere. A knowledge base exists 

among floodplain managers on how to minimize loss of tax revenue and costs to maintain the acquired 

property. When large groups of properties have been acquired, surrounding properties outside of the 

floodplain could see increased property values because of their proximity to open spaces. These gains are 

not recognized in the present analysis either. 

2.6.1.3. Retrofit Elevation of Single-Family Dwellings 

Retrofit elevation is one of the most common flood retrofits. This strategy consists of separating the 

superstructure or living space of the house from the foundation and lifting the structure to the desired 

elevation and then constructing a new foundation beneath it (Figure 2-33 ). This approach most 

commonly is applied to buildings constructed in floodplains prior to the adoption of flood risk maps.  

Since these houses were constructed prior to the delineation of the base flood (1-percent-annual-chance 

flood) they often were constructed to avoid common floods, but with lowest floor elevations above the 

ground similar to houses constructed outside the floodplain. This is in contrast to houses constructed after 

the delineation of the base flood (as shown on flood insurance rate maps – FIRMs) where locally adopted 

floodplain ordinances would require the house to be built with National Flood Insurance Program (NFIP) 

minimum requirements in Zone A to have the top of the lowest floor at or above the base flood elevation 

(BFE), which is nominally the elevation with 1 percent probability of being exceeded by flooding every year, 

and more likely than not of being flooded in a 75-year useful life of a house. A few communities require 

freeboard, that is, additional elevation of the first floor above the BFE. However, the present analysis only 

considered single-family dwellings constructed below the BFE. The project team analyzed the benefits and 

costs of taking existing houses originally constructed one to four feet below the BFE and elevating them to 

one foot above BFE. 

The retrofit elevation process depends on the type of floor system. Houses with wood-framed floors, often 

over crawlspaces, can be elevated using a system of steel beams and lifting jacks that are slid underneath 

the bottom of the floor framing through holes made in the foundation (see Figure 2-34). The house is 

jacked to an elevation slightly above the required elevation and a new foundation is constructed. The 

house is then lowered onto and secured to the new foundation.   

Houses with a slab-on-grade foundation are lifted in one of two manners. If the slab is unreinforced 

or inadequately reinforced, then the walls often are separated from the slab, the walls and roof are 

elevated, and a new foundation and wood framed floor system are constructed below the walls (see 

Figure 2-35). Houses with sufficiently reinforced slabs can be elevated as follows. Trenches are dug 

underneath the slab and a jacking system is used to simultaneously elevate the house and slab (see 

Figure 2-36). A new foundation is constructed to support the weight of the house and slab. Lifting 

unreinforced slab houses with the slab attached to the walls was not considered a viable mitigation 

option due to the risk to homeowners of using a nonstructural slab as a floor system.  Unreinforced 

slabs are being lifted, but the project team felt that it should not evaluate unsafe mitigation practices 

as part of this study. 
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Figure 2-33: Before (left) and after (right) elevation photos for a single-family house (Source: Stacy Wright) 

 

Figure 2-34: Illustration of a retrofit elevation of a wood-frame flood system house on a crawlspace 

(Source: FEMA P-259) 
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Figure 2-35: Examples of elevated single-family house where the walls were separated from the slab and a 

new wood-framed floor system was constructed (Source: John Squerciati) 

 

 

Figure 2-36: Examples of elevated concrete slab single-family houses (Source: FEMA) 

Costs for elevating houses largely depend on the type of elevation (wood-frame or slab-on-grade), 

amount of lifting required, and building size. Project costs to elevate wood-framed crawlspace houses 

averaged approximately $65-$75 per square foot of living space, while slab-on-grade elevations averaged 

approximately $101 per square foot.  Costs to elevate houses could vary more depending on accessibility 

of lifting equipment, availability of local contractors, and the height that the house is being elevated. 

The benefits of retrofit elevation include reductions in building damage, contents damage, additional living 

expenses, indirect business interruption, avoided cases of PTSD, and reduced overhead and profit on 

flood insurance premiums.  As discussed in Section 2.6.1.2, elevations do not avoid deaths because most 

deaths in floods occur as people try to drive to or from home on flooded roads. Making the home less 

likely to flood obviously does not change where people drive. Figure 2-37 provides an overview of the 
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calculated national benefits for retrofit elevation of a percentage of the overall single-family houses 

constructed below the BFE.  The analysis indicated that with a project useful life of 30 years and using a 

discount rate of 2.2 percent that the BCR for retrofit elevation would be 2:1.  This BCR represents an overall 

average value for hundreds of houses considered for a variety of heights and flood conditions. 

 

Figure 2-37: Contribution flood-related benefits from retrofit elevation of flood-prone single-family 

dwellings. 

Individual houses may enjoy a higher BCR if the flood frequencies are greater than the average or the 

elevation costs are lower.  While houses were studied between one and four feet below base flood 

elevation (BFE-1 to BFE-4), many houses have an even lower elevation.  Elevating homes often is cost 

effective if the cost does not dramatically exceed the average used here. 

2.6.1.4. Wet Floodproofing Basements of Single-Family Dwellings 

Wet floodproofing uses a combination of flood openings and flood damage-resistant materials to create a 

space that when flooded will only result in cosmetic damage. This approach is commonly applied to 

crawlspaces and basement areas below single-family houses. Wet floodproofing alone will not bring a 

house into compliance with the NFIP requirements. If the lowest floor elevation is at or above the required 

elevation, then wet floodproofing crawlspaces can sometimes bring the house into compliance. Some 

owners elect to wet floodproof a crawlspace or basement (defined as a floor that is below grade on all 

four sides) to reduce repair costs, especially when flooding is common.    

Basement areas are common in some parts of the country. When floodwaters reach openings, such as 

windows and access doors, the water quickly fills the basement, often with mud and contaminants. Figure 

2-38 shows a house that was filled with floodwater and mud. Cleaning these areas can be costly. Cavity 

walls such as those built with concrete masonry units (CMU) commonly trap water, which can leak out 

after floodwater initially has been pumped out.  A humid environment and non-flood resistant materials 

quickly can lead to mold growth. Discussions of how to wet floodproof areas suggest using materials that 
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comply with FEMA NFIP Technical Bulletin 2, Flood Damage-Resistant Materials Requirements, including 

insulation and wall and floor coverings. The approach also calls for relocation, removal, or replacement of 

mechanical, electrical, and plumbing systems in the area. If the equipment is replaced instead of being 

relocated, the new equipment must be installed, keeping in mind being submerged in floodwater.   

The installation of flood openings is another important component of wet floodproofing. Wall systems that 

are dry on one side and submerged on the other can succumb to hydrostatic, lateral flood loads. Using 

flood openings reduces this potential and allows the area to fill with water without knocking over the wall. 

Basements still need to be pumped out after the floodwater recedes, but this would be the case even 

without flood openings. This approach allows the walls to avoid the lateral loading. Figure 2-39 shows a 

wet floodproofed basement. 

 

Figure 2-38: A man cleans mud out of his basement after the floodwaters recede. (Source: FEMA Photo 

Library - Photo by Liz Roll/ FEMA News Photo, Photo by Liz Roll - May 14, 1996 - Location: Mt. Gay, WV) 
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Figure 2-39: Wet floodproofed basement (Source: FEMA P-259 Figure 1-10) 

Wet floodproofing costs can widely vary. This work often is completed in conjunction with the retrofits 

described in Section 2.6.1.5. The project team evaluated the costs to install flood openings, replace many 

common interior basement finishes and floor coverings with flood damage resistant materials, and 

incorporate an insulation that is flood-damage resistant. The project team estimated a cost of $15.49 per 

square foot.  Some owners may have appliances such as a clothes washer and dryer located in a 

basement and could require the addition of a utility closet to relocate the equipment to an upper floor. 

This added cost would have been difficult to estimate because of variability in house floorplans and 

framing requirements, so the present study assumed that room could be found on the upper floor without 

having to add floorspace. 

Wet floodproofing a basement mostly reduces property damage. Owners likely would find that wet 

floodproofing of the basement would reduce the time necessary to clean up the basement. The analysis 

only addressed basement flooding and did not consider flooding of upper floors. This was done to focus 

on the costs and benefits of wet floodproofing. Since wet basements tend to require maintenance and 

replacement of finishes, the project team judged the useful life of wet floodproofing to be 20 years. Even 

with a 20-year useful life, with a discount rate of 2.2%, the BCR was 2.4:1. 
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Figure 2-40: Contribution flood-related benefits from wet floodproofing basements of flood-prone single-

family dwellings. 

2.6.1.5. Utility Retrofits for Single-Family Dwellings 

The project team evaluated several measures that could be taken to reduce the flood risk to equipment 

commonly located in basement areas, crawlspaces, or located at ground level next to houses. The term 

utility is used here, but it refers more narrowly to retrofitting mechanical and plumbing equipment. The 

primary strategy to mitigate any mechanical or plumbing equipment below the lowest floor elevation is to 

relocate or elevate the equipment to or above the lowest floor elevation. Two groupings were used to 

evaluate the cost effectiveness of utility retrofits. The first group includes elevating air conditioning units or 

heat pumps and relocating ductwork attached to the underside of a wood-framed floor system. The 

second group includes relocating a furnace or water heater from a basement or crawlspace to either an 

attic or the first floor. 

Air conditioning units and heat pumps often are located at ground level on concrete pads. These units can 

be damaged by floodwater; once touched by floodwater they often are considered damaged beyond 

repair. Although they may be easy to replace, this can be costly. People commonly elevate them on either 

masonry (see Figure 2-41) or wooden platforms. The study associated this mitigation with the relocation of 

ductwork below a wood-framed floor system. Ductwork for single-story or first-floor areas commonly is 

located in basements or crawlspaces below the lowest floor; it often is the first equipment to be damaged 

by flood.  Although people do try to clean ductwork, it is more common to remove and replace the 

flooded ductwork to eliminate the risk of mold and deal with saturated insulation around the ducts. For 

single-story houses, the ductwork usually can be relocated into the attic. This requires moving all 

associated equipment such as the air handler, reworking ductwork registers, and likely requires 

modification of return vents. Two-story houses, however, present an additional difficulty: Insufficient room 

between the floor joists for the second floor to run all of the ductwork because duct trunklines run 
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perpendicular to the joists. A common approach is to construct a soffit system on the underside of the 

second flood to house the trunkline (see Figure 2-42). 

 

Figure 2-41: An example of an elevated air conditioning unit. (Source FEMA P-348 – Figure 3-1) 

 

 

Figure 2-42: An example of elevated air conditioning units and ductwork relocated from the below the 

lowest floor into the soffit (the underside) of the second floor. (Source FEMA P-348 – Figure 4-6) 
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The costs to do this work widely vary.  This study used an average cost of $5.03 per square foot to elevate 

air conditioning equipment and to relocate ductwork.  This cost does not cover replacement of an existing 

air conditioning unit or heat pump, which significantly would increase the costs.  The cost also does not 

address upgrades that owners may elect to make to achieve improved energy efficiency, but these 

additional costs may provide return on investment on their own. 

Benefits for the elevation of equipment and relocation of ductwork only include reducing the property loss 

resulting from the physical damage to the outside unit and ductwork.  Conceivably, the loss of heating or 

air conditioning could result in the family having to leave an excessively uncomfortable house, but lacking 

evidence that people commonly experience additional living expenses, the project team chose 

conservatively to ignore savings in additional living expenses. The project useful life was set to 15 years for 

the air conditioner or heat pump, since it is assumed owners may elect upon replacement of the unit to 

elevate the replacement.  The ductwork relocation project useful life was set at 30 years.  While ductwork 

commonly is replaced when new air conditioning, furnace, or heat pumps are installed, it is rare that an 

owner would elect to relocate the ductwork from its current location to a new location in the house.  

Mitigation experts noted that it also is common that even after a flood, homeowners often just replace 

ductwork instead of relocating it. It was therefore decided that 30 years was a more appropriate value.  

Using these project useful lives and a discount rate of 2.2 percent the BCR was 1.5:1. 

 

Figure 2-43: Contribution flood-related benefits from elevating air conditioning units or heat pumps and 

relocating ductwork for flood-prone single-family houses. 

Furnaces and water heaters often are located in basements and crawlspaces for aesthetics, to minimize 

water damage in case of leaks, and maximize living space in the rest of the house.  This does, however, 

leave these units prone to flood damage.  Once floodwaters reach the lowest point of entry for a 

basement or crawlspace, the area begins to fill with water.  Furnace contractors often recommend 

replacing a furnace that has been touched by floodwaters since there is potential risk of damage to safety 

systems from floodwater.  Similarly, plumbers commonly recommend replacing water heaters touched by 
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floodwater rather than trying to determine which parts should be cleaned or replaced.  The present study 

therefore evaluated relocating these units to either attic spaces or into areas of the first floor to reduce the 

flood vulnerability. 

The cost to relocate this equipment assumed in the present analysis included their replacement. Furnaces 

may require a different orientation. Water heaters have a relatively short life (approximately 10 years) and 

plumbers commonly recommend a new unit if it were to be relocated to a new part of the house.  The 

project team estimated that furnace relocation costs approximately $6.42 per square foot. Relocating a 

water heater was assumed to cost $6,000.  The furnace was calculated on a square foot basis since the 

size of the furnace required depends on the total heated space, while water heater size is not controlled 

so much by the size of the house and as by occupants’ needs.  Relocation costs include all necessary gas 

work, venting, electrical work, and plumbing. 

The benefits include only reduced property loss, just as with relocation of the air conditioning unit and 

ductwork based on the same rationale.  The project team took the project useful life to be 30 years.  As 

with the ductwork, while these units likely are to be replaced more often, it is rare that owners elect to 

completely relocate a unit.  Using this project useful life and a discount rate of 2.2%, the BCR was 2:1, as 

detailed in Figure 2-44. 

 

Figure 2-44: Contribution flood-related benefits from relocating water heaters and furnaces located in 

basements or crawlspaces for flood-prone single-family dwellings. 

2.6.2. BCRs for Hurricane Wind Retrofit of Private-Sector Buildings 

2.6.2.1. IBHS FORTIFIED Home Program to Existing Residential Dwellings 

The scope of the study is limited to hurricane-prone regions in the mainland U.S., which per the current 

ASCE 7-16, is defined as the “U.S. Atlantic Ocean and Gulf of Mexico coasts where the ultimate design 

wind speed Vult, for Risk Category II buildings is greater than 115 mph.” The U.S. has an estimated 2.9 
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million single-family dwellings located within these designated hurricane-prone regions. If all of these 

buildings were retrofitted to the optimal (IEMax) IBHS FORTIFIED Home designation, the current value of 

the expected benefit is estimated to be $141 billion. Figure 2-46 illustrates the relative contribution to these 

benefits from reductions in property loss, additional living expenses, indirect business interruption, and the 

overhead and profit part of insurance premiums. The cost to the homeowner of the IBHS FORTIFIED 

Home program retrofit depends on the designation level (FORTIFIED Roof, Silver, or Gold). These 

expected costs will vary depending on the size, age, location and quality of the current construction. On 

average, expected costs will range between $1.50 per square foot for a FORTIFIED Roof designation to $10 

per square foot for a FORTIFIED Gold designation. The cost to retrofit all existing homes in hurricane-

prone regions to the optimal FORTIFIED Home designation would cost approximately $24 billion. Given 

$141 billion in benefits, the resulting BCR is approximately 6:1, e.g. $6 saved for every $1 spent. 

The IBHS FORTIFIED Home program for retrofits of single-family residential structures is cost beneficial 

(BCR > 1) in all hurricane-prone regions. The results indicate that regions with higher ASCE 7-16 wind 

speeds (e.g. regions along the Gulf Coast, southern tip of Florida, and parts of the Atlantic Coast), have the 

greatest benefit-cost ratio. Figure 2-46 illustrates the optimal benefit-cost ratio per ASCE 7-16 wind band. 

The analysis indicates that FORTIFIED Roof is the optimal retrofit for residences located in regions where 

the ASCE 7-16 design wind speed is less than 120 mph. These benefits accrue from the additional 

protection provided by both an enhanced roof deck and water intrusion prevention. In regions with design 

wind speed between 120 mph and 160 mph, the optimal retrofit is FORTIFIED Silver. That designation 

provides the improved roof system, plus impact-rated opening protection for the building envelope. 

Regions with design winds between 120 mph and 160 mph have higher potential for wind-borne debris to 

penetrate the building envelope, which causes interior water damage and sudden increases in internal 

pressures that can lead to failure of weak points in the structural system. For regions where the wind speed 

is greater than 160 mph, the FORTIFIED Gold designation is estimated to be the optimal retrofit. These 

very high wind regions benefit the most from a system-wide, roof-to-foundation retrofit. 

Figure 2-45 illustrates the contributions from the various benefit categories. The reduction in building and 

contents repair costs dominates the benefit (62% of the total), followed by additional living expenses (18%), 

reduction in insurance premiums (11%) and indirect business interruption (9%). As outlined in Section 4.17, 

only the portion of the premiums attributable to overhead and profit (O&P) of the insurance company are 

included among the benefits, since the portion of the premium directly covering potential losses is already 

accounted for. 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   98 
 

 

Figure 2-45: Contribution to benefits of IBHS FORTIFIED Hurricane Home retrofit for existing residential 

dwellings 

 

Figure 2-46: Map of BCR for IBHS FORTIFIED Hurricane Home retrofit for existing residential buildings 

Table 2-14 presents the benefit-cost ratios by ASCE 7-16 design wind speed for each designation: IBHS 

FORTIFIED Roof, Silver, and Gold. Except for IBHS FORTIFIED Gold, all retrofit programs have benefit-cost 

ratios greater than 1.0 throughout the hurricane-prone regions. The relatively low cost for the IBHS 

FORTIFIED Roof and Silver retrofits make the initial investment very cost effective. BCRs for the FORTIFIED 

Roof and Silver exceed 15 where the design wind speed is equal to or greater than 160 mph. These areas, 
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in south Florida and pockets of the Louisiana and Alabama coasts, account for approximately 5% of the 

population within hurricane-prone areas of the Gulf and Atlantic coasts. Some of these locations already 

are subject to stricter requirements in a local code (e.g., Florida’s Miami-Dade and Broward Counties), 

although this study does not consider local codes. There is a slight dip in BCRs where both the 700-year 

wind speed is 130 mph and distance from the coast is less than a mile. This is because of wind-borne 

debris provisions in recent building codes. For newer construction, benefits from the IBHS Silver opening  

protection requirements are not considered, as these requirements already are standardized in the 

building code. 

FORTIFIED Gold is estimated to have a benefit-cost ratio greater than 1.0 in regions where the design wind 

speed is equal to or greater than 130 mph. The mandatory roof-to-foundation retrofits, in addition to the 

prerequisite requirements for FORTIFIED Roof and Silver, provide additional resistance in these high wind 

regions. For regions where the design wind speed is less than 130 mph, the cost exceeds the expected 

present value of avoided future losses, but there are other reasons to implement FORTIFIED Gold. Some 

homeowners might want it for additional protection and peace of mind, which we were unable to quantify 

in economic terms, and therefore do not contribute to the benefit-cost ratios calculated here. For an 

example, see the fact sheet entitled “A Case Study in Above-Code Design from Hurricane Michael.”   

Table 2-14: BCR per wind band for the FORTIFIED IEMax, Roof, Silver and Gold IBHS Designation 

700-year wind 

speed (mph) 

IEMax 

FORTIFIED 

Program 

IEMax 

FORTIFIED 

BCR 

FORTIFIED 

Roof BCR 

FORTIFIED 

Silver BCR 

FORTIFIED 

Gold BCR 

115 Roof 1.5 1.5 1.0 0.3 

120 Silver 2.5 2.5 2.5 0.7 

130 (>1 mile 

coast) 

Silver 

5.8 5.4 5.8 1.9 

130 (<1 mile 

coast) 

Silver 

4.8 5.0 4.8 1.6 

140 Silver 8.7 6.8 8.7 2.9 

150 Silver 13.3 9.0 13.3 4.5 

160 Gold 9.1 17.0 20.0 9.1 

170 Gold 11.4 20.0 25.0 11.4 

180 Gold 14.9 28.0 28.0 14.9 

2.6.2.2. Add Engineered Tie-Downs to Manufactured Housing 

An engineered tie-down system (ETS) for manufactured housing comprises straps attached at one end to 

the frame of the manufactured home and at the other end to an anchor that is screwed into the ground. 

(Another variant called over-the-top tie-downs has straps that are placed over the siding and roof.) The 
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straps are spaced four to five feet apart. The system provides what engineers call “positive connection” 

between the manufactured home and ground. An ETS helps in both earthquake- and hurricane-prone 

regions. High winds or the side-to-side motion of the ground in earthquakes can cause unstrapped 

manufactured homes to slide off their support piers or overturn. Engineered tie-down systems help to 

reduce that risk, the same way tent pins reduce the risk of a tent blowing away in strong winds. 

Manufactured homes currently are constructed in accordance with the Manufactured Home Construction 

and Safety Standards (also known as the HUD Code), which was established in 1976. Manufactured homes 

built prior to 1976 did not meet these standards and tend to be fragile, whether connected to the ground 

or not, too fragile for the ETS to make much difference. The present analysis therefore is limited to 

manufactured homes built after 1976. Per the current HUD Code, anchorage must be installed in 

accordance with Subpart E – Anchorage Against Wind. The type of anchorage is dependent on the 

location of the manufactured home, as design wind speeds and HUD wind zones (I, II, and III) vary. The 

anchorage system is comprised of diagonal (and vertical for HUD Wind Zones II and III) straps that attach 

to the chassis of the home and are anchored to the ground via an auger or drive anchor.   

Engineered tie-downs are estimated to have a benefit-cost ratio greater than 1.0 in 193 hurricane-prone 

counties along the Gulf and Atlantic coasts. Expected benefits total approximately $772 million at a cost of 

$194 million, i.e., saving approximately $4 per $1 invested. Figure 2-47 illustrates the contributions from the 

various benefit categories: building and contents repair costs (66%), reduced insurance overhead and 

profit (16%), savings from additional living expenses (12%), and savings from indirect business interruption 

(6%). Figure 2-48 illustrates the calculated BCR by county. Properties located in regions with higher ASCE 

7-16 wind speeds benefit more than those further inland and along the northeast coast. Even where 

engineered tie-downs have a benefit-cost ratio less than 1.0, they may be warranted in a variety of 

conditions for post-1976 manufactured housing, especially because of the peace of mind they can 

provide, which could not be quantified here among the benefits. 

 

Figure 2-47: Contribution to hurricane wind-related benefits from engineered tie-down systems for 

manufactured housing. 
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Figure 2-48: Map of hurricane wind-related BCR from engineered tie-down systems for manufactured 

housing. 

2.6.3. BCRs for Seismic Retrofit of Private-Sector Buildings 

2.6.3.1. Add Cantilever Columns and Wood Shearwalls to Soft-Story Wood-Frame Multifamily 

Dwellings 

“Soft story” usually refers to the ground story in a multistory building having significantly less strength, 

stiffness, or both, than stories above. In the case of multifamily dwellings, the condition often arises 

because the ground story is used for parking and the exterior walls are more open to accommodate 

garage doors and building entrances, as illustrated in Figure 2-49. The condition makes such buildings 

prone to collapse, as happened in the 1989 Loma Prieta and 1994 Northridge earthquakes, among others. 

See Figure 2-50 for examples. A public advisory committee acting on behalf of the City of San Francisco as 

part of the city’s Community Action Plan for Seismic Safety recommended the use of a retrofit involving 

the additions of steel cantilever columns to ground-floor garage openings and structural sheathing 

(plywood or oriented strandboard) to interior walls of the ground story, as shown in Figure 2-51. 
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Figure 2-49: Soft-story wood-frame multifamily dwellings. (A) Menlo Park, California. (B) Pasadena, 

California. (Photo credit: Porter 2006, used with permission.) 

 

Figure 2-50: Examples of collapsed soft-story wood-frame multifamily dwellings. (A) Collapsed apartment 

buildings in the San Francisco Marina District after the 1989 Loma Prieta earthquake (Image credit: R.B. 

Seed, 1989, via UC Berkeley NISEE, with permission). (B) Apartment building collapse after 1994 Northridge 

earthquake, associated with soft-story conditions (Image credit: UC Berkeley NISEE, 1994, with permission). 

A  B   

A  B  
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Figure 2-51: Retrofit for soft-story wood-frame multifamily dwelling. (A) Cantilever columns added to 

garage openings, and (B) structural sheathing added to ground-story walls to strengthen soft-story 

multifamily wood-frame dwellings (Image credit: Applied Technology Council, with permission) 

The cost of such a retrofit ranges between $4.40 and $10.60 per square foot of building area, with an 

estimated average of $8.60 per square foot. The U.S. has an estimated 4.5 billion square feet of soft-story 

wood-frame multifamily dwellings worth roughly $500 billion in building replacement cost and housing 8.5 

million people. If owners were to retrofit every such building in the U.S. that was cost effective to retrofit -- 

approximately 40% of the total -- the nationwide retrofit cost would be $16 billion. Doing so would avoid 

$190 billion in future losses, producing a BCR of 12:1. 

Figure 2-52 shows the contribution to benefits from reductions in property loss, deaths, nonfatal injuries, 

instances of post-traumatic stress disorder, additional living expenses, and indirect business interruption. 

A B 
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Not shown in the figure is a small reduction ($1 million) in urban search and rescue costs. The retrofit 

would avoid 100 deaths and 3,800 injuries over the span of 75 years. The number of deaths seems to be 

the right order of magnitude in comparison with 2 deaths in the San Francisco Marina District in the 1989 

Loma Prieta earthquake and 16 deaths in the collapse of the Northridge Meadows apartment complex in 

the 1994 Northridge earthquake. Retrofit would be cost effective for 3.6 million occupants in 1.4 million 

housing units, or for about 40% of the nation’s occupants of such buildings (which are disproportionately 

built in the Western U.S.). Figure 2-53 shows that BCR tends to be higher in places with higher seismicity, 

with BCRs in many California counties exceeding 16:1. 

 

Figure 2-52: Contribution to benefits of retrofitting soft-story wood-frame multifamily dwellings. 

 

Figure 2-53: Map of BCR for retrofitting soft-story wood-frame multifamily dwellings. 
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2.6.3.2. Add Engineered Tie-Downs to Manufactured Housing 

Earthquakes threaten older manufactured homes that are not secured to the ground with a foundation 

that resists sideways motion; this is known as sidesway. Many older manufactured homes rest on slender 

supports that overturn in earthquakes (Figure 2-54). Collapse injures occupants and damages homes, 

contents, water heaters, and utilities. Collapse also can render exits unsafe, especially for occupants fleeing 

fire. 

Engineered tie-down systems (ETS) can be added to provide positive anchorage and lateral resistance of 

homes, greatly reducing the chance of collapse from sidesway. An engineered tie-down system involves 

the addition of a taut cable or strap that attaches the chassis of the manufactured home to an anchor that 

resembles a screw fixed in the ground, as illustrated in Figure 2-55. Such an anchor is attached every 6 ft 

or so around the perimeter of the manufactured home. The diagonal cable largely prevents the 

manufactured home from swaying to either side, greatly reducing the chance of collapse. The addition 

costs about $1,000 to $2,000 per dwelling. ETS parts generally are made of galvanized steel but corrode 

within a few decades; they are taken here to have a design life of 30 years. 

 

Figure 2-54: Earthquake damage to manufactured housing. (A): Overturned concrete piers that supported 

a manufactured house, viewed after the 1978 Santa Barbara earthquake. (B) and (C): Collapsed 

manufactured houses after the 1980 Livermore earthquake. (Images courtesy of National Information 

Service for Earthquake Engineering, University of California, Berkeley.) 

 

Figure 2-55: Schematic illustration of an engineered tie-down system of manufactured housing. (Image by 

Henderson Consulting, 2013, used with permission from SPA Risk LLC). 

A B C  
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Before considering the dual benefit that ETS provide in places that are subject to hurricanes and 

earthquakes, ETS appear to be cost effective in 76 counties with 140,000 unanchored housing units 

occupied by 380,000 people, saving $690 million at a cost of $210 million, i.e., saving approximately $3 per 

$1 invested. If ETS were added everywhere that they are cost effective, 11,000 earthquake-induced 

collapses would be avoided, preventing the displacement of 25,000 people. Figure 2-56 shows the 

sources of benefits. Figure 2-57 shows how BCR varies geographically, with the highest BCRs appearing in 

places with high seismicity. 

 

Figure 2-56: Contribution to earthquake-related benefits from engineered tie-down systems for 

manufactured housing. 

 

Figure 2-57: Map of earthquake-related BCR from engineered tie-down systems for manufactured 

housing. 
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2.6.3.3. Secure Residential Furnishings, Fixtures, Equipment, and Contents 

Table 2-15 presents BCRs as well as costs, benefits, and extent of places where it is cost effective to secure 

residential furnishings, fixtures, equipment, and contents. The table shows that the measures examined 

here could benefit up to approximately 60 million U.S. households in up to 1,100 U.S. counties. The benefits 

of all five categories sum to approximately $115 billion in avoided losses, at a total mitigation cost of 

approximately $9 billion, for an overall BCR of 16:1. The mitigation measures could avoid 1.3 million cases 

of post-traumatic stress disorder, approximately 6.5 million nonfatal injuries, and 245,000 fatalities. 

Table 2-15: Summary of benefits and costs of mitigation for residential furnishings, fixtures, equipment, and 

contents. 
 

Water 

heaters 

Cabinet 

latches 

Bookcases Monitors, 

TVs 

Fragile 

objects 

Total 

BCR 24 8 13 2 3 16 

Cost per household $70 $60 $70 $40 $35  

Benefit per household $1,650 $500 $900 $80 $100  

Useful life (years) 10 50 9 9 9  

Counties with BCR > 1 1136 262 652 29 68  

Households with BCR > 1, 

million 
59  22  32 11 15 

 

Cost $million $4,100 $1,400 $2,200 $450 $520 $8,700 

Benefit $million $98,000 $11,400 $28,000 $850 $1,600 $140,000 

PTSD cases avoided 1,300,000 0 0 0 0 1,300,000 

Injuries avoided 1,300,000 0 5,200,000 0 0 6,500,000 

Avoided fatalities 245,000 0 0 0 0 245,000 

Figure 2-58 shows the contributions to the benefits resulting from securing hot water heaters to the 

building frame. The mitigation measure produces most of its benefits through avoided fire losses. Avoided 

property losses alone represent 12 times the cost of the mitigation measure. Figure 2-59 shows the 

geographic extent of places in the contiguous 48 states where the mitigation measure is cost effective: 

essentially everywhere with moderate to high seismicity. 
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Figure 2-58: Contribution to benefits of securing hot water heaters to the building frame. 

 

 

Figure 2-59: Map of BCR from securing hot water heaters to the building frame. 

Figure 2-60 shows the contributions to the benefits resulting from adding safety latches to the doors of 

kitchen cabinets that contain fragile items. The mitigation measure produces most of its benefits by 

protecting the items in the cabinets. The time-element benefits—additional living expenses and indirect 

business interruption—represent the avoided labor cleaning up the mess. Figure 2-61 shows that the 

mitigation measure is cost effective in regions of high seismicity. 
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Figure 2-60: Contribution to benefits of adding kitchen cabinet latches. 

 

Figure 2-61: Map of BCR from adding kitchen cabinet latches. 

Figure 2-62 shows that the benefits resulting from securing bookcases to the building frame come entirely 

from avoiding the injuries that result when bookcases fall on people. (The value of the time required to 

upright the bookcase and place books back in it are negligibly small in comparison.) Figure 2-63 shows 

that the mitigation measure is cost effective in the regions of high seismicity. 
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Figure 2-62: Contribution to benefits of securing bookcases to the building frame. 

 

Figure 2-63: Map of BCR from securing bookcases to the building frame. 

Figure 2-64 shows that the benefits resulting from strapping freestanding monitors and televisions to a 

desk or wall come mostly from the avoided cost to replace the damaged equipment; the remainder is the 

direct and indirect value of cleanup time. Figure 2-65 shows that the mitigation measure is cost effective 

only in the California counties with the highest seismicity. 
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Figure 2-64: Contribution to benefits of strapping freestanding monitors and televisions. 

 

Figure 2-65: Map of BCR from strapping freestanding monitors and televisions. 

Figure 2-66 shows that the benefits resulting from securing fragile items to shelves with museum putty 

come mostly from the avoided cost to replace the damaged items; the remainder is the direct and indirect 

value of cleanup time. Figure 2-67 shows that the mitigation measure is cost effective only in counties in 

California, Washington, and a few counties very close to the New Madrid Seismic Zone in the central 

United States with the highest seismicity. 
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Figure 2-66: Contribution to benefits of securing fragile objects with museum putty. 

 

Figure 2-67: Map of BCR from securing fragile objects with museum putty. 

2.6.4. BCRs for WUI Fire Retrofit of Private-Sector Buildings 

The measure considered for WUI fire is the retrofit of existing private-sector buildings to comply with the 

International WUI Code.  As with new construction, we only examine a detached single-family dwelling, as 

it represents the great majority of buildings in WUI zones as well as many other types of buildings not 

differing all that much in their fire vulnerability in major WUI fires (Figure 2-68).   
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Figure 2-68: (A) Houses and (B) commercial buildings burned in the 2017 Tubbs Fire. (Image credits: (A) 

Frank Schulenberg 2017, (B) ATS 2017, both CC BY-SA 4.0) 

To make a typical house comply with requirements for class-1 ignition-resistant construction as defined in 

the 2018 International Wildland-Urban Interface Code (International Code Council 2017), one must replace 

the building cladding, enclose underfloor areas, and protect eaves and soffits with a 1-hour fire-resistance-

rated construction. One must replace windows with “tempered glass, multilayered glazed panels, glass 

block or have a fire protection rating of not less than 20 minutes;” replace doors to achieve a fire 

protection rating of not less than 20 minutes; install automatic sprinklers; and in some cases, enhance the 

water supply. It is common (though not universal) for existing homes to already have a class-A roof as 

defined in Section 1505.6 of the 2018 International Building Code, so no cost is assigned to replace the 

roof and retrofit of roof valleys. It similarly is assumed that gutters and downspouts are made of non-

combustible materials and do not require replacement and that the building already has adequate access 

for fire apparatus, so no access retrofit costs are assumed. 

The project team conservatively estimated the present value of the cost to implement these retrofit 

measures for a typical 2,000-square-foot existing house to be $72,000 (2018 USD) on average. Retrofitting 

an existing house to comply with the 2018 International Wildland-Urban Interface Code costs much more 

than achieving compliance for new construction because retrofit involves removing and replacing of much 

of the building envelope, as opposed to building the house to be fire resistant in the first place. Much of 

the initial, cheaper, less fire-resistant, construction effort is wasted if one wants to achieve better fire 

resilience after the initial development is finished. 

Figure 2-69 shows the benefit-cost ratio for WUI fire retrofit, by county. Warmer colors indicate a higher 

benefit-cost ratio. Counties are shaded to indicate the highest BCR within the county boundary; many 

places in the shaded counties are not within the wildland-urban interface. 

A  B  
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Figure 2-69: BCR of WUI fire retrofit to comply with 2015 IWUIC for existing buildings, by county. 

Approximately 2.45 million households in the U.S. at risk of wildland-urban interface fire have a WUI 

retrofit BCR equal to or greater than 1.0. Many more households face WUI fire risk, but have lower BCRs, 

for example because the fire hazard is low. The total property value (structure plus contents) for these 

households plus nearby non-residential buildings (stores, schools, etc.) is $1.3 trillion. The total cost of 

retrofitting this building stock (residential and nonresidential) to comply with the International Wildland-

Urban Interface Code would be $240 billion (18% of the value at risk). If all of these homes and other 

buildings were retrofitted to comply and if the retrofit were maintained during the life of the property 

(especially by maintaining vegetation), the present value of avoided future losses would total 

approximately $430 billion, equivalent to a national average BCR of 2:1. Figure 2-70 presents a breakdown 

of benefits by category. 

The $430 billion in benefits accrues over the estimated life of the structure (75 years), so it equates with an 

annual national benefit of $5.7 billion. As a fraction of value at risk, the figure of $5.7 billion per year 

equates with a pure premium of 0.4% per year, or $4.00 per $1,000, roughly equivalent to the cost of fire 

insurance.  (Pure premium is an insurance term that refers to the portion of the insurance premium that 

the insurer expects to pay to the insured in claims, plus the administration cost of paying claims.) That is, 

given the average BCR of 2:1, retrofitting to comply with the International Wildland-Urban Interface Code 

is equivalent to cutting the cost of fire insurance in half.   
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Figure 2-70: Contribution to benefits from retrofitting buildings to comply with the 2018 International 

Wildland-Urban Interface Code. 

Note that the per-house retrofit cost is highly uncertain; it realistically could be as low as $16,000 on 

average, implying a much higher benefit-cost ratio, perhaps as high as 8:1. See Section 5.15 for details. 

2.7. AGGREGATE BENEFITS AND COSTS 

The project team identified a methodology to estimate aggregate benefits and costs associated with the 

mitigation strategies. Table 2-16 recaps the costs and benefits presented earlier in this chapter, in terms of 

billions of dollars and BCR. Again, the rows for exceeding I-Code requirements for 1 year refer to the 

overall long-term costs and benefits accruing from 1 year of new construction of new buildings to exceed 

I-Code requirements, not the benefits associated with 1 year of reduced risk. However, as each additional 

year of construction is implemented, the cost and benefit amounts will increase, with the overall BCR likely 

to remain close to the same, barring changes in any of the variables. 

If all new buildings were built to the IEMax design to exceed 2015 I-Code requirements for 1 year, new 

construction would save approximately $4 in avoided future losses for every $1 spent on additional, up-

front construction cost. The project team determined the total costs and benefits for 1 year of design to 

exceed 2015 I-Code requirements by totaling the benefits and costs of the 5 mitigation categories in Table 

2-16. Figure 2-71 shows the contributions to the calculation of these benefits. 
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Table 2-16: Costs and benefits associated with constructing new buildings in 1 year to exceed 2015 I-Code 

requirements (in $ billions). 

Mitigation category 
Cost  

(billions) 

Benefit  

(billions) 
BCR 

Exceed 2015 I-Code requirements for riverine flood for 1 year $0.91 $  4.30 5 

Exceed 2015 I-Code requirements for hurricane surge for 1 yr $0.01 $  0.05 7 

Exceed 2015 I-Code requirements for hurricane wind for 1 year $0.81 $  4.20 5 

Exceed 2015 I-Code requirements for earthquake for 1 year $1.20 $  4.30 4 

Comply with 2015 International IWUIC Code for 1 year $0.80 $  3.00 4 

Total, 1 year of design exceeding 2015 I-Code  $3.7 $15.9 4 

 

 

Figure 2-71: Total costs and benefits of new design to exceed 2015 I-Code requirements. 

Considering the subtotal for the past 23 years of federally funded natural hazard mitigation, at the 2.2% 

cost-of-borrowing discount rate, the program team’s analysis suggests that society will ultimately save $6 

for every $1 spent on up-front mitigation cost, as shown in Table 2-17. Figure 2-72 shows the contributions 

to the calculation of these benefits. 
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Table 2-17: Costs and benefits associated with 23 years of federal grants (in $ billions). 

Mitigation category 
Cost  

(billions) 

Benefit  

(billions) 
BCR 

Grants for riverine flood 1993-2016 $ 11.50 $  82.00 7 

Grants for wind 1993-2016 $ 13.60 $  70.00 5 

Grants for earthquake 1993-2016 $   2.20 $    5.70 3 

Grants for fire at WUI 1993-2016 $   0.06 $    0.17 3 

Total from federal grants 1993-2016 $ 27.4 $157.9 6 

 

Figure 2-72: Total costs and benefits of 23 years of federal mitigation grants. 

The costs and benefits of adopting 2018 I-Code requirements are shown in Table 2-18. It shows that 

current building codes cost an estimated $1.2 billion per year in additional construction cost, but save 11 

times that amount in avoided future losses. The baseline or starting point for each peril varies: flood 

benefits and costs are relative to NFIP elevation requirements, and consider only properties in special flood 

hazard protection areas (100-year floodplains). For wind, the baseline is pre-Hurricane Andrew 

construction along the Gulf and Atlantic coasts. For earthquake, the baseline is structural strength and 

stiffness 67% of their current values, like buildings built around 1990, for places in the contiguous 48 states 

where earthquake strength exceeds wind strength for a typical commercial building. Figure 2-73 shows 

the contributions to the calculation of these benefits. 
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Table 2-18: Costs and benefits associated with constructing new buildings in 1 year to adopt 2018 I-Code 

requirements (in $ billions). 

Mitigation category, 1 year of new construction  
Cost  

(billions) 

Benefit  

(billions) 
BCR 

Adopt 2018 I-Code for riverine flood (from NFIP) $0.10 $0.6 6 

Adopt 2018 I-Code for hurricane wind (from 1990) $0.54 $5.5 10 

Adopt 2018 I-Code for earthquake (from 1990) $0.60 $7.0 12 

Total, 1 year of design to adopt 2018 I-Code requirements  $1.2 $13 11 

 

 

Figure 2-73: Total costs and benefits of adopting 2018 I-Codes. 

2.8. RECAP OF INTERIM STUDY FINDINGS 

To recap, first, all 12 categories of natural hazard mitigation studied to date appear to be cost effective, 

with BCRs varying between 3:1 and 12:1. They show once again that natural hazard mitigation saves, both 

in the private and public sectors, and for a variety of perils. Second, the subtotals for designing to exceed 

2015 I-Code requirements in the future, 23 years of past grants show that both broad categories of natural 

hazard mitigation, and adopting 2018 I-Codes also all appear to be cost effective, with BCRs of 4:1, 6:1, and 

11:1, respectively. Third, all major stakeholder groups enjoy net benefits from new design to exceed code 

requirements for flood, wind, and earthquake, and to comply with the 2015 IWUIC in the case of fire. 

These results show that society can cost effectively protect itself from natural hazard risk in multiple ways, 

both by mitigating past problems and by preventing future ones. 
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2.9. NATURAL HAZARD MITIGATION SAVES IN EVERY STATE 

Considering the past 23 years of federal grants to mitigate flood, wind, earthquake, or fire at the WUI, 

every state in the contiguous United States is estimated to save at least $10 million in avoided future losses. 

Most states will save at least $1 billion, and four—Louisiana, New Jersey, New York, and Texas—will save at 

least $10 billion in avoided future losses. See Figure 2-74. 

 

Figure 2-74: Aggregate benefit by state from federal grants for flood, wind, earthquake, and fire 

mitigation. 

2.10. ALL STAKEHOLDERS BENEFIT FROM ADOPTING OR 

EXCEEDING I-CODE REQUIREMENTS 

The project team set out to determine who wins and who loses when it came to designing to exceed 2015 

I-Code requirements, and found that there are no losers, at least on average, in the long run, at the broad 

level of these stakeholder groups. The research produced similar findings for the last 30 years of code 

development: that every stakeholder group has benefited overall from improvements in code 

requirements for natural hazards. 

Figure 2-75 shows that all four categories of designing to exceed 2015 I-Code requirements—for flood, 

wind, earthquake, and fire at the WUI—produce positive net benefits to developers, title holders, lenders, 

tenants, and the community. All of society wins when builders make new buildings meet an IEMax level of 

design to exceed 2015 I-Code requirements. Remember, that means not building to exceed 2015 I-Code 

requirements where it does not make financial sense, on a societal level, to do so. The benefits to tenants 

and owners only accrue to those who own or occupy buildings designed to exceed 2015 I-Code 
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requirements, not, for example, to the people who live or work in older buildings or buildings that are not 

designed to exceed I-Code requirements. However, even those who do not own or occupy those 

buildings enjoy a share of the community benefits. (See Section 4.23 for an in-depth examination of 

stakeholder benefits.) 

Figure 2-76 similarly shows that designing to comply with 2018 I-Code requirements—for flood, hurricane 

wind, and earthquake—produces positive net benefits to developers, title holders, lenders, tenants, and 

the community, relative to design requirements of a generation ago. 

 

Figure 2-75: Stakeholder net benefits resulting from 1 year of constructing all new buildings to exceed 

select 2015 IBC and IRC requirements or to comply with 2015 IWUIC. 
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Figure 2-76: Stakeholder net benefits per year of new construction resulting from the last 30 years of code 

development. 

2.11. SYNERGIES ACROSS MITIGATION STRATEGIES 

Synergies exist where two or more dissimilar mitigation actions are undertaken at a single facility or single 

system of facilities. “Dissimilar mitigation actions” are those actions that attempt to mitigate risk in different 

ways, such as combining efforts to strengthen an existing building using above-code measures with 

emergency planning for the same facility. A system of facilities refers to facilities that interact in important 

ways (such as the different buildings on a medical campus). While the project team examined systems of 

facilities (such as two buildings on the University of California San Francisco medical campus for the federal 

grant earthquake mitigation sample), the project team did not examine cases where two or more 

dissimilar mitigation actions have been undertaken at them. 

Moving forward, the project team might examine synergies, but they do not yet apply. Possible exceptions 

that have not been quantified: 

 Designing to exceed 2015 I-Code earthquake requirements should reduce losses resulting from fire 

following an earthquake. Strengthening and stiffening a building to better resist earthquake damage 

will also tend to reduce damage to its fire-resistive features and thus reduce damage from fire following 

an earthquake. However, the present loss estimates for designing to exceed 2015 I-Code requirements 

do not include fire losses.  

 Widely adopting the 2015 IWUIC for new buildings (as in the study of above-code measures) would 

tend to reduce losses to existing buildings (as under federal mitigation grants) in the same 
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neighborhood. The phenomenon resembles a preventive anti-epidemic measure to prevent 

occurrence and spread of infectious disease in a population.  

 Designing to exceed 2015 I-Code earthquake requirements should reduce losses resulting from wind. 

Similarly, adopting an IBHS FORTIFIED Home Hurricane measure might reduce earthquake losses. Both 

measures improve the building’s ability to resist lateral forces. The synergy benefit is likely to be small 

or negligible for the cases examined here because of details of the load path. The benefit would be 

more significant for manufactured homes, especially the addition of an engineered tie-down system 

(ETS) to an otherwise unrestrained manufactured home. 

2.12. APPLYING ALTERNATIVE DISCOUNT RATES 

2.12.1. OMB Discount Rates 

OMB procedures call for BCAs to be performed considering a 3% discount rate and a 7% discount rate to 

reflect the time value of money. In cases where benefits all accrue from reduced future losses (as in the 

case of designing to exceed I-Code requirements and retrofitting existing buildings), using a 3% discount 

rate and a 75-year useful life of a new building reduces the present value of monetary benefits by about 

19%, e.g., the present value of monetary benefits under a 3% discount rate is about 0.81 times the present 

value at the cost-of-borrowing discount rates documented in Appendix H of the Interim Study. Using a 7% 

discount rate for monetary benefits produces a present value of monetary benefits equal to about 0.39 

times the present value of benefits at the cost-of-borrowing discount rate. The analysis does not discount 

deaths, nonfatal injuries, or PTSD for reasons discussed in the 2005 Mitigation Saves study and elsewhere 

in the Interim Study. As a consequence, benefit totals that include both monetary and non-monetary 

benefits do not scale by 0.81 or 0.39, for 3% or 7% discount rates respectively.  

In the case of code adoption, some benefits accrue from reduced future losses and other benefits accrue 

from reduced up-front construction costs. Some costs result from higher up-front construction costs and 

some from higher future losses. In this case, the effect of using a different discount rate does not have a 

predictable effect on BCR, because in some cases a higher discount rate reduces benefits (where code 

adoption reduces future losses), whereas in others a higher discount rate reduces the costs (where code 

adoption increases future losses, but those future losses are valued less because they take place in the 

future). Thus, a higher discount rate can decrease BCRs in some counties while increasing them in others, 

so the overall BCR under a higher discount rate can be the same, higher, or lower than under a lower 

discount rate. Table 2-19, Table 2-20, and Table 2-21 present the BCRs found at multiple discount rates. 

 

 

 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   123 
 

Table 2-19: Total BCR of exceeding 2015 I-Codes at various discount rates. 

Mitigation category 
BCR at various discount rates 

2.2% 3% 7% 

Exceed 2015 I-Code requirements for riverine flood 5 4 3 

Exceed 2015 I-Code requirements for hurricane surge 7 6 3 

Exceed 2015 I-Code requirements for hurricane wind 5 4 2 

Exceed 2015 I-Code requirements for earthquake 4 3 2 

Comply with 2015 IWUIC 4 3 2 

Total, 1 year of exceeding 2015 I-Codes 4 4 2 

Table 2-20: Total BCR of federal mitigation grants at various discount rates. 

Mitigation category 
BCR at various discount rates 

2.2% 3% 7% 

Grants for riverine flood 7 6 3 

Grants for wind 5 5 5 

Grants for earthquake 3 2 1.3 

Grants for fire at WUI 3 2 1.3 

Total, 23 years of grants  6 5 4 

Table 2-21: Total Incremental BCR of adopting 2018 I-Codes from the identified baselines at various 

discount rates. 

Mitigation category 
BCR at various discount rates 

2.2% 3% 7% 

Adopt 2018 I-Code requirements for riverine flood 6 5 2 

Adopt 2018 I-Code requirements for hurricane wind 10 8 4 

Adopt 2018 I-Code requirements for earthquake 12 10 6 

Total, 1 year of adopting 2018 I-Codes  11 9 5 

2.12.2. Calculating BCRs with a 3% Discount Rate 

Using a 3% discount rate to reflect the time value of money produces the total costs and benefits shown in 

Table 2-22, Table 2-23, and Table 2-24, expressed in billions of dollars. The benefit in each category is 

smaller than using a cost-of-borrowing discount rate and the aggregated benefits are smaller ($13.2 billion 

rather than $15.9 billion and $139.8 billion rather than $157.9 billion respectively), but even at the higher 

discount rate, natural hazard mitigation still appears to be cost effective in every category. 
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If all new buildings were built to the IEMax, above-code design for one-year, new construction would save 

approximately $4 in avoided future losses for every $1 spent on additional, up-front construction cost. 

Actually, the 3.6 BCR underestimates the true BCR, since it assumes the same degree of design to exceed 

2015 I-Code requirements as estimated for the IEMax design at the cost-of-borrowing discount rate. With 

the higher discount rate, fewer locations would be designed to higher levels, and both costs and benefits 

would drop, rather than just costs. In any case, designing to exceed 2015 I-Code requirements remains 

cost effective in all five categories. 

Considering the total for the past 23 years of federally funded natural hazard mitigation at a 3% discount 

rate, society ultimately saves approximately $5 for every $1 spent. See Table 2-23. 

Considering the adoption of 2018 I-Codes relative to construction to various lesser standards, using a 3% 

discount rate suggests society would ultimately save $8 for every $1 spent, as detailed in Table 2-24. 

Table 2-22: Total cost, benefit, and BCR of exceeding 2015 I-Codes, using a 3% discount rate. 

Mitigation category 
Cost  

(billions) 

Benefit (billions) 
BCR 

Exceed 2015 I-Code requirements for riverine flood  $   0.91   $    3.67  4 

Exceed 2015 I-Code requirements for hurricane surge  $   0.01   $    0.04  6 

Exceed 2015 I-Code requirements for hurricane wind  $   0.81   $    3.40  4 

Exceed 2015 I-Code requirements for earthquake  $   1.13   $    3.59  3 

Comply with 2015 IWUIC  $   0.80   $    2.48  3 

Total, 1 year of exceeding 2015 I-Codes $   3.77  $  13.213.18 4 

 

Table 2-23: Total cost, benefit, and BCR of federal mitigation grants, using a 3% discount rate. 

Mitigation category 
Cost  

(billions) 

Benefit (billions) 
BCR 

Grants for riverine flood  $ 11.50   $  66.37  6 

Grants for wind  $ 13.60   $  68.48  5 

Grants for earthquake  $   2.20   $    4.83  2 

Grants for fire at WUI  $   0.06   $    0.14  2 

Total, 23 years of grants   $   27.4   $  139.8  5 
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Table 2-24: Total cost, benefit, and BCR of adopting 2018 I-Codes from various baselines and geographic 

areas, using a 3% discount rate. 

Mitigation category 
Cost  

(billions) 

Benefit (billions) 
BCR 

Adopt 2018 I-Code requirements for riverine flood $   0.1 $   0.5 5 

Adopt 2018 I-Code requirements for hurricane wind $   0.5 $      4 8 

Adopt 2018 I-Code requirements for earthquake $   5.2 $    43 8 

Total, 1 year of exceeding 2015 I-Codes $   5.8  $    48 8 

2.12.3. Calculating BCRs with a 7% Discount Rate 

Using a 7% discount rate to reflect the time value of money produces the total costs and benefits shown in 

Table 2-25, Table 2-26, and Table 2-27, expressed in billions of dollars. The benefit in each category is 

smaller than using a cost-of-borrowing discount rate because future benefits are more heavily discounted. 

The aggregate benefits are much smaller ($7.3 billion rather than $15.9 billion and $101.9 billion rather than 

$157.9 billion respectively), but even at the higher discount rate, natural hazard mitigation still appears to 

be cost effective in every category. 

Consider the total for 1 year of designing to exceed 2015 I-Code requirements and to comply with the 

2015 IWUIC. New construction would save approximately $2 in avoided future losses for every $1 spent on 

additional, up-front construction cost. Now consider the subtotal for the past 23 years of federally funded 

natural hazard mitigation. At a 7% discount rate, society saved approximately $4 for every $1 spent. 

Considering the adoption of 2018 I-Codes relative to construction to various lesser standards, using a 7% 

discount rate suggests society would ultimately save $5 for every $1 spent, as detailed in Table 2-27. 

Table 2-25: Total cost, benefit, and BCR of exceeding 2015 I-Codes using a 7% discount rate. 

Mitigation category Cost (billions) Benefit (billions) BCR 

Exceed 2015 I-Code requirements for riverine flood  $   0.91   $   2.28  3 

Exceed 2015 I-Code requirements for hurricane surge  $   0.01   $   0.03  3 

Exceed 2015 I-Code requirements for hurricane wind  $   0.81   $   1.61  2 

Exceed 2015 I-Code requirements for earthquake  $   1.20   $   2.16  2 

Comply with 2015 IWUIC  $   0.80   $   1.26  2 

Total, 1 year of exceeding 2015 I-Codes $   3.77 $   7.33 2 
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Table 2-26: Total cost, benefit, and BCR of federal mitigation using a 7% discount rate. 

Mitigation category 
Cost (billions) Benefit 

(billions) 
BCR 

Grants for riverine flood  $ 11.50   $  33.81  3 

Grants for wind  $ 13.60   $  65.10  5 

Grants for earthquake  $   2.20   $    2.88  1.3 

Grants for fire at WUI  $   0.06   $    0.07  1.3 

Total, 23 years of grants  $   27.4   $  101.9  4 

Table 2-27: Total cost, benefit, and BCR of adopting 2018 I-Codes from various baselines and geographic 

areas using a 7% discount rate. 

Mitigation category 
Cost (billions) Benefit 

(billions) 
BCR 

Adopt 2018 I-Code requirements for riverine flood $   0.1 $  0.2 2 

Adopt 2018 I-Code requirements for hurricane wind $   0.5 $     2 4 

Adopt 2018 I-Code requirements for earthquake  $   5.2  $   25 5 

Total, 1 year of exceeding 2015 I-Codes $   5.8 $   27 5 

2.13. JOBS CREATED BY ADOPTING OR EXCEEDING 

COMMONLY ADOPTED I-CODE REQUIREMENTS 

If all new buildings were built to exceed commonly adopted I-Code requirements to the incrementally 

efficient maximum for 1 year, the extra materials and labor would add $3.6 billion in construction expenses. 

The project team elsewhere estimated that new construction adds or replaces about 1% of existing 

construction each year. As of 2016, existing buildings totaled approximately $36.2 trillion (Porter, 

unpublished), so all new construction amounts to about 1% of that quantity, or approximately $362 billion 

in annual new construction. (Not purchase price, just the replacement cost of the buildings. Note also that 

the 1% figure is a rule of thumb; actual new construction varies from year to year.) Thus, adding $3.6 billion 

in construction costs for 1 year of design to exceed commonly adopted I-Code requirements (Table 2-16) 

equates with a 1% increase in current annual construction costs. Here, exceeding commonly adopted I-

Code requirements means building new buildings to comply with IBHS FORTIFIED Hurricane standards, 

making new buildings stronger and stiffer to resist earthquakes than required by the 2015 I-Codes, 

building new buildings more than 1 foot above base flood elevation to resist flooding damage, and 

adopting the 2015 IWUIC where it is cost effective to do so. 

Similarly, the last few decades of code development have raised construction costs slightly, by 

approximately $1.2 billion (about 0.3% of $362 billion) for each year of new construction over what they 

would have been if buildings were designed next year as they were around 1990 (Table 2-18). 
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Applying Equation 4-44 to all perils (flood, wind, earthquake, and WUI fire), the project team estimated 

that code development since 1990 has added 30,000 new jobs to the construction-material industry, and 

that new design to exceed 2015 I-Code requirements would add another 87,000 jobs. 

The project team did not attempt to quantify job creation for federally funded natural hazard mitigation to 

existing buildings. See Section 4.23 for a discussion on how the project team calculated job creation. 

2.14. AVOIDED DEATHS, INJURIES, AND CASES OF PTSD 

The project team estimated that new buildings designed to exceed 2015 I-Code requirements and to 

comply with the 2015 IWUIC would avoid deaths, nonfatal injuries, and incidents of PTSD that by U.S. 

government standards would be worth spending $2.0 billion. Considering the relative rates of deaths and 

injuries in applying above-code measures for earthquake, that $2 billion equates with preventing 

approximately 32,000 nonfatal injuries, 20 deaths, and 100 cases of PTSD. 

The past 23 years of federally funded natural hazard mitigation is estimated to prevent deaths, nonfatal 

injuries, and PTSD worth $68 billion, equivalent to approximately 1 million nonfatal injuries, 600 deaths, and 

4,000 cases of PTSD. (See Section 4.18 for more details on the calculation of injuries, deaths and PTSD.) 

Evaluating Reasonableness of the Results. The U.S. National Center for Health Statistics estimated that 

floods and storms killed approximately 475 people in the United States in the years 2006 through 2010 

inclusive (Berko et al. 2014), or about 100 deaths per year. Because this period does not include 2005, in 

which Hurricane Katrina killed between 1,200 and 1,800 people, the longer-term average might be closer 

to 200 deaths per year. Compare these statistics with avoiding 20 deaths per year from designing to 

exceed 2015 I-Code requirements and about 30 avoided deaths per year from federal grants for natural 

hazard mitigation the fatality estimates seem reasonable on an order-of-magnitude basis. 

Box 2-3. Natural-Hazard Mitigation Saves Lives 

The past 23 years of mitigation provide the majority of the estimated savings in deaths, nonfatal 

injuries, and PTSD, compared with 1 year of designing to exceed 2015 I-Code requirements, probably 

because (a) past grants have focused on mitigating the most-risky existing buildings, and (b) current I-

Codes do a very good job of protecting life. However, both kinds of mitigation do save lives. Together, 

they will prevent an estimated 620 deaths, 1 million injuries, and 4,100 cases of PTSD. The BCRs 

presented here already reflect the enhanced life safety using U.S. government figures of the 

acceptable cost to avoid future statistical deaths and injuries, but it seems worthwhile to remember 

that the safety benefits across these mitigation strategies reflect the safety of more than 1 million 

people and their families who will be able to continue their lives after a natural disaster because 

foresighted individuals, communities, and governments took action and invested money to protect 

them before disaster struck. 
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It is harder to validate the estimated number of nonfatal injuries, since the estimates include the vast 

majority (perhaps 9 out of 10) that do not require treatment in a hospital, either because they are self-

treated or treated by medical professionals outside of a hospital. Approximately 1,600 nonfatal injuries and 

instances of PTSD occur per disaster-related fatality. In the 1994 Northridge Earthquake, Seligson and 

Shoaf (2003) estimated that approximately 250 nonfatal injuries required medical attention in a hospital for 

each death, 500 nonfatal injuries were treated by medical personnel outside of a hospital for each fatality, 

and nearly 7,000 people self-treated injuries per fatality. The figure estimated here—1,600 injuries per 

death—lies within the range of injuries per death suggested by Seligson and Shoaf. 

2.15. SAVINGS TO THE FEDERAL TREASURY 

The 2005 Mitigation Saves study estimated the savings to the federal treasury that resulted from FEMA-

funded natural hazard mitigation. The estimate resulted from multiplying federal expenditures during the 

period 1993-2003 by the ratio of average annual property damage and casualty reduction to average 

annual property damage and casualty reduction in the United States during the same period. In the 2005 

study, the project team estimated that ratio to be approximately 0.17. In the Report, the ratio is estimated 

to be 0.086, based on the quantities shown in Table 2-28. Using essentially the same methodology as the 

2005 Mitigation Saves study, the project team estimated that the natural hazard mitigation efforts 

ultimately save the federal treasury $920 million annually, as detailed in Table 2-29. That $920 million 

figure is smaller than the $970 million figure estimated in 2005 (about $1.4 billion in 2018 USD) because 

savings are estimated using a factor that has in its denominator the total annual costs of natural hazards. 

The total annual costs of natural hazards has risen greatly since 2005, despite the increase in annual 

federal mitigation expenditures: from $7.1 billion in the years before 2005 to about $9.2 billion in recent 

years (both in 2018 USD)—an increase of 30%. The estimate of the factor f is therefore lower than in 2005 

by about half: $5.0 billion annual reduction in the cost of natural disasters, divided bythe average annual 

cost of natural disasters in three sample years, $58.3 billion. Thus, f = 5.00 / 58.3 = 0.086. 

Table 2-28: Factor f used to estimate savings to the Federal Treasury. 

Quantity Billions  

Total benefit B  

     Code compliance for 1 year, billions of 2018 USD $  13.10 

     Above-code design for 1 year, billions of 2018 USD  $  16.16 

     Utilities and transportation lifelines, billions of 2018 USD $    2.50 

     Federal mitigation grants, 23 years, billions of 2018 USD $152.61 

Total benefit B from natural hazard mitigation $184.37 

Fraction of total benefit B from natural hazard mitigation  

     Code compliance for 1 year 7% 

     Above-code design for 1 year 9% 
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Quantity Billions  

     Utilities and transportation lifelines 1% 

     Federal mitigation grants, 23 years 83% 

ΔEAL: annual reduction in catastrophe losses, i.e., annuity with present value B with discount 

rate 2.2% (Appendix H) and effective life of 75 yr   

     Code compliance for 1 year $    0.36 

     Above code design for 1 year $    0.44 

     Utilities and transportation lifelines $    0.07 

     Federal mitigation grants $    4.14 

Total ΔEAL from natural hazard mitigation, billions of 2018 USD $    5.00 

Average annual cost of natural disasters, 3 sample years(a)  

  2011  

     2011 money, billions of 2011 USD $  16.00 

     2011 deaths, billions of 2011 USD $    5.00 

     2011 nonfatal injuries by approximate ratio with deaths(b) $  49.97 

     2011 total, billions, inflated to billions of 2018 USD(c) $  80.16 

  2014  

     2014 money only, billions of 2014 USD $  25.00 

     2014 add deaths and injuries by approximate ratio $    7.50 

     2014 total, billions, inflated to 2018 USD(c) $  34.74 

  2016  

     2016 money(e), billions of 2016 USD $  46.00 

     2016 deaths(e), billions of 2016 USD $    1.31 

     2016 nonfatal injuries by approximate ratio $  12.66 

     2016 total, inflated to 2018 USD $  59.97 

Average of 3 years, billions of 2018 USD $  58.29 

Factor f: ratio of ΔEAL to average annual cost of natural disasters 0.086 

(a) Based on numerous sources including National Oceanic and Atmospheric Administration (2017b)  

(b) About $10 nonfatal injuries per $1 fatal injuries, as elsewhere in this study 

(c) Inflated using gross domestic product implicit price deflator (Federal Reserve Bank of St. Louis) 

(d) New York Times (https://www.nytimes.com/interactive/2015/08/04/upshot/regional-natural-   

disasters.html) 

(e) Insurance Journal (https://www.insurancejournal.com/news/national/2017/01/10/438452.htm) 
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Table 2-29: Estimated annual savings to the Federal Treasury resulting from the four categories of natural 

hazard mitigation examined here. 

Category of Federal 

Government Expenditures 

Saved 

Quantity 

(base year 

$ million) 

Year 

Quantity 

(2018  

$ million) 

f 

Savings  

(2018  

$ million) 

Source of base data 

Public assistance $5,229 2013 $ 5,696 0.086 $ 489 Federal Emergency 

Management Agency 

(2013d) 

Individual assistance/human 

services 

$1,400 2015 $ 1,481 0.086 $ 127  Government 

Accountability Office 

(2014)  

Mission assignments and 

standby grants 

$     44 2016 $      46 0.086 $     4  Federal Emergency 

Management Agency 

(2016b, Table 5 

Readiness support 

contracts and 

interagency 

agreements) 

FEMA administrative costs $   442 2016 $   462 0.086 $    40  Federal Emergency 

Management Agency 

(2017a)  

Mitigation grants and 

contracts 

$   387 2013 $   421 0.086 $    36  Federal Emergency 

Management Agency 

(2013d) 

U.S. Small Business 

Administration default and 

administrative costs 

$1,032 2014 $1,103 0.086 $    95  Small Business 

Administration (2012-

16)  

U.S. Army Corps of 

Engineers emergency 

measures 

$     33 2016 $     35 0.086 $      3  U.S. Army Corps of 

Engineers (2016, Fig. 2) 

Subtotal   $9,243  $  795    

Federal tax revenues 

recouped 

         $  125 Multihazard Mitigation 

Council (2005, Table 6-

8, ratio of subtotals) 

Grand total     $  920   

Contribution to total       

Code compliance     $    67 7% of grand total 

Above-code design     $    80 9% of grand total 

Utils & trans. lifelines     $    13 1% of grand total 
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Category of Federal 

Government Expenditures 

Saved 

Quantity 

(base year 

$ million) 

Year 

Quantity 

(2018  

$ million) 

f 

Savings  

(2018  

$ million) 

Source of base data 

Federal grants     $  760 83% of grand total 

2.16. OTHER SENSITIVITY TESTS 

2.16.1. Designing to Exceed 2015 I-Code Requirements for Coastal Flooding 

The 2017 project team examined how several uncertain input variables affect the estimated BCR for 

designing to exceed 2015 I-Code requirements for coastal flooding in coastal V- and VE-zones. These 

inputs included: 1) SLR; 2) discount rates; 3) storm surge height; and 4) economic life of the building. 

The team tested five sea-level-rise scenarios, selected from among those examined by National Oceanic 

and Atmospheric Administration (2017), in addition to one other scenario. Each scenario depicts a path in 

which global mean sea level (GMSL) will rise by the end of the 21st century—ranging between zero and 

2.5 meters (about 8 feet). See Table 2-30. Scenario 3 represents a baseline assumption. 

Table 2-30: Sensitivity of the BCR for greater elevation of new coastal buildings to sea level rise (Low, 

Intermediate-low, intermediate-high, and extreme). 

Scenario 1 2 
3 

(baseline) 
4 5 

National Oceanic and Atmospheric Administration (2017) 

label 
(N/A) Low Int-low 

Int-

high 
Extreme 

GMSL rise by 2100 (m) 0.0 0.3 0.5 1.5 2.5 

BCR (BCR) 6.4 7.0 7.3 8.4 9.1 

The table shows that while SLR influences the BCR for building coastal buildings higher above BFE, the 

measure can be highly cost effective regardless of the degree of SLR. 

Additional sensitivity tests. The project team also varied the discount rates, the economic life of the 

building, and the wave height, examining how each uncertain input affects the BCR. The team considered 

four discount rates: (1) baseline (cost-of-borrowing, approximately 2.2%), (2) OMB required value of 3%, 

(3) OMB required value 7%, and (4) no discounting. The project team tested sensitivity of BCR to the 

economic life of a new building: the baseline 75 years, plus two additional scenarios that adjust the 

economic life of the building by ± 15 years. Finally, wave height is uncertain. NOAA’s MOM wave heights 

used for this analysis are discussed at length in Section 4.11.2. Although these are scaled using FEMA FIS, 

they represent not only an independent view, but a source of uncertainty. The project team adjusted the 

wave heights by ± 25% at all locations, for all storm categories. Table 2-31 presents the results. 
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Table 2-31: Sensitivity of the BCR for greater elevation of new coastal buildings to other input variables. 

 
Baseline 

Discount rate Economic life Wave height 

0%  3%  7%  60 years  90 years -25% +25% 

BCR 7.3 13.9 6.0 3.4 6.5 7.8 5.3 9.1 

The table shows that regardless of uncertainty in these input variables, it is cost effective to design new 

coastal buildings higher above BFE than the 2015 I-Codes require. The BCR is most sensitive to wave 

height and discount rate, both with a range of approximately 3.8 (ignoring the 0% option discount rate). A 

reasonable domain of economic life produces a range of about 1.3. 

2.16.2. Designing to Exceed 2015 I-Code Requirements for Hurricane Wind 

The project team tested how strongly various uncertain inputs affect the BCR of compliance with the IBHS 

FORTIFIED Home and Commercial Hurricane Program. The project team varied three key parameters, 

each time keeping the others at their baseline value: 1) discount rate; 2) economic life of the building; and 

3) design wind speeds. The analysis was conducted for discount rates of 0%, 3% and 7% (as opposed to 

approximately 2.2%, which was used as the baseline), for a 50-year and 100-year building life (as opposed 

to 75 years) and design wind speeds of ± 5 mph of those listed in ASCE 7-16 (American Society of Civil 

Engineers Structural Engineering Institute 2017). Table 2-32 shows how the BCR for the IEMax uptake of 

IBHS FORTIFIED Home and Commercial Hurricane varies with three important inputs. Figure 2-77 

illustrates the table. 

Table 2-32: Sensitivity of BCR for adopting IBHS FORTIFIED Home and Commercial Hurricane to three 

important inputs. 

 
Baseline 

Discount rate Economic life Wind speed 

 0%  3%  7%  50 years  100 years -5 mph +5 mph 

BCR 5.3 10.6 4.0 2.2 4.4 5.8 3.5 8.0 
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Figure 2-77: Sensitivity of BCR for designing to exceed 2015 I-Code requirements for wind to major 

uncertain variables. 

Table 2-32 and Figure 2-77 both show that regardless of uncertainty in important inputs, designing to 

exceed 2015 I-Code requirements for hurricane wind using IBHS FORTIFIED Home and Commercial 

Hurricane can be cost effective, even with a very high discount rate of 7%. The fact that the BCR shows 

little sensitivity to uncertainty in the economic life of a new home (varying about ± 15% for a ± 33% 

change in economic life) reflects the fact that the last 25 years of economic life are the most discounted—

they matter much less than the first 25 years. As for wind speed, the table shows that BCR is sensitive 

(varying by a factor of 1.5 either way) to where a building lies within a 10-mph wind speed band. A 10-mph 

band of basic wind speed (the wind speed with 700-year MRI) is about the width of a typical coastal 

county, which implies that two identical buildings, one on the Gulf or Atlantic Coast and the other at the 

far inland end of the county, will experience substantially different benefits from designing to exceed 2015 

I-Code requirements. 

2.16.3. Designing to Exceed 2015 I-Code Requirements for Earthquake 

Benefits and costs of designing to exceed 2015 I-Code requirements for earthquake depend on more than 

how much the designer increases strength and stiffness. They also depend on the added cost of 

construction, building economic design life, building replacement cost, and several intermediate 

parameters of the vulnerability functions, which one might approximate with an overall multiplier on 

vulnerability. The project team tested the sensitivity of the BCR to these uncertain parameters using the 

values shown in Table 2-33. In most cases the project team chose high and low values by judgment. The 

table shows the baseline benefit, cost, and BCR on the first row, then the benefit, cost, and BCR for each 

what-if condition. The table includes the effects of varying discount rate, for completeness. 
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Table 2-33: Sensitivity of BCR for designing to exceed 2015 I-Code earthquake requirements to various 

uncertain parameters. 

Parameter Value 
Benefit  

($ billion) 

Cost  

($ billion) 
BCR 

Baseline 

  4.37 1.23 3.6 

Discount rate 

Baseline Varies    

OMB low 3% 3.59 1.13 3.2 

OMB high 7% 1.83 0.79 2.3 

Economic life (years) 

Baseline 75    

Short 50 3.50 1.24 2.8 

Long 100 3.38 1.10 3.1 

Replacement cost (multiple of baseline value) 

Baseline 1.00    

Low 0.67 3.84 1.19 3.2 

High 1.50 5.25 1.32 4.0 

Vulnerability (multiple of baseline value) 

Baseline 1.00    

Low 0.67 2.74 0.99 2.8 

High 1.50 7.30 1.86 3.9 

Construction cost to exceed 2015 I-Code earthquake requirements (x baseline) 

Baseline 1.00    

Low 0.67 4.86 1.23 3.9 

High 1.50 4.09 1.48 2.8 

The table shows that designing to exceed 2015 I-Code earthquake requirements is always cost effective for 

some fraction of the buildings built in 1 year (see the column labeled “cost”). It is always ± 25% of the 

baseline, meaning that in every scenario, designing to exceed 2015 I-Code requirements for earthquake 

would make sense on a BCR basis for 20 to 30% of the building stock. In each case, the overall nationwide 

average BCR varies within -50% to +10% of the baseline value. This illustrated in Figure 2-78, which sorts 

the uncertain input parameters (each corresponding to one of the horizontal bars) in decreasing order 

from top to bottom of the range of BCRs. The x-values of the ends of the bars correspond to the 

minimum and maximum BCRs resulting from varying that input. In some cases, one end of the bar 
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corresponds to the baseline input, e.g., discount rate, where the baseline is less than either of the two 

values used by OMB. 

All the values seem reasonable relative to the baseline. Higher discount rates should generally reduce cost 

effectiveness, because benefits accrue for reduction in future losses, and the less one values future dollars, 

the less the benefit. A longer economic life should increase cost effectiveness, since benefits accrue for a 

longer period of time. More value exposed to loss should generally increase the BCR. Similarly, greater 

vulnerability should generally increase the BCR, because more strength and stiffness will make a bigger 

difference in future losses. In addition, higher construction cost for designing to exceed 2015 I-Code 

requirements should generally decrease cost effectiveness. 

 

Figure 2-78: Diagram of sensitivity analysis of BCR for designing to exceed 2015 I-Code requirements for 

earthquake. 

2.16.4. Designing to Comply with 2015 IWUIC 

Figure 2-79 shows the sensitivity of the results for complying with the IWUIC to various inputs, where key 

inputs were varied ± 33%. Results are most affected by increases in BP or flame intensity level (e.g., the 

hazard) and the cost (e.g., value) of the house, all of which directly increase mitigation benefits. Increasing 

the cost of structural compliance is the next most-significant variable driving up overall cost and 

decreasing the BCR, as does an increase in interest rates (which drives up the cost of future vegetation 

management). The cost of mortality has a negligible effect: between 1990 and 2012, firefighter and civilian 

fatalities associated with wildland fire averaged between 10 to 20 and 5 to10 per annum, respectively, 

according to the International Association of Wildland Fire (IAWF) (IAWF 2013). Very few of these occurred 

in structures, so the reduction of fatalities that would result from complying with the 2015 IWUIC, while 

accounted for, translated into a negligibly small dollar amount. The cost of PTSD is more significant. While 
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negligibly few are killed, everyone suffers stress if their home is under threat, or destroyed, by fire. The cost 

of PTSD is significant, although still not widely recognized. 

 

Figure 2-79: Sensitivity tests for compliance with 2015 IWUIC. 

2.16.5. Federal Grants 

In light of the findings that (1) designing to exceed 2015 I-Code requirements is cost effective regardless of 

reasonable values of the input variables, (2) the 2005 Mitigation Saves study found similar results for 

federally funded natural hazard mitigation, and (3) BCRs for federal mitigation grants work are similar to, 

and somewhat higher than, those calculated in the 2005 Mitigation Saves study, it seemed unnecessary for 

the project team to perform additional sensitivity analyses of federal mitigation grants work for the 

ongoing study. 
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3. Review of Mitigation Guidance and 

Quantification of Benefits 

3.1. BUILDING ON PRIOR WORK 

While the 2005 Mitigation Saves study is a widely recognized study of mitigation measures and their BCRs, 

it is not the only such work. In preparation of the expanded Interim Study, the project team identified and 

reviewed relevant literature on building codes and standards (including guidance on going above such 

codes), methods to quantify disaster-related losses, and prior efforts to determine BCRs. 

3.2. RELEVANT BUILDING CODES AND STANDARDS 

Most communities in the United States require new buildings to comply with requirements of the IBC (e.g., 

International Code Council 2015a) or IRC (e.g., International Code Council 2015b) (Federal Emergency 

Management Agency 2019a). The IRC attempts through prescriptive methods to achieve approximately 

the same level of performance as the IBC does through engineering calculations (see International Code 

Council 2015b pg. vii). Code adoption—which particular version of the I-Codes or other model building 

codes each community uses—varies between states, and in some states, between cities.  

To specify minimum design loads for wind, earthquake, and flood, the IBC adopts ASCE/SEI 7 by reference 

(American Society of Civil Engineers Structural Engineering Institute 2017). This standard also specifies the 

most widely accepted standard procedures in the United States for characterizing site conditions such as 

soil (for earthquake loading) and surface roughness (for wind loading) and for estimating one aspect of 

hazard as a function of another, such as ground motion on one soil type given ground motion on 

another.  

ASCE/SEI 7 does not address fire at all, except for seismic requirements for fire sprinklers and fire 

protection of seismic isolation. The IBC addresses fire protection, though not fire at the WUI. Instead, the 

ICC offers the IWUIC (International Code Council 2015c). The IWUIC establishes “minimum standards to 

locate, design and construct buildings and structures or portions thereof for the protection of life and 

property, to resist damage from wildfires, and to mitigate building and structure fires from spreading to 

wildland fuels.” The IWUIC addresses access (especially for firefighting), water supply, ignition-resistant 

construction and materials, and defensible space (meaning the continuous maintenance of a largely 

flammable-free zone within 30 to 100 feet of a building for the life of the building). 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   138 
 

3.3. HOW PAST DESIGN AND CONSTRUCTION DIFFERS 

FROM CURRENT I-CODES 

3.3.1. How Past Wind Design and Construction Differs from Current I-Codes 

The wind loads prescribed for a particular structure are dependent on both the geographic location of the 

building and the wind hazard maps published at the time of design. Both the wind hazard and design 

requirements have changed from pre-Hurricane Andrew (circa 1990 construction) to 2018 I-Codes. Since 

hurricane damage is typically observed at the roof, a comparison of the required roof design pressures 

was necessary for the analysis.  

The design wind roof pressures for ASCE 7-88 and ASCE 7-16 were compared by calculating the loads on 

the components and cladding (C&C) of the structure. In ASCE 7-88, a single basic wind speed map is 

provided. These values relate to a fastest-mile speed (or peak wind speed) with an annual probability of 

0.02, also known as the 50-year mean recurrence interval(MRI). The map changed (both wind contours 

and design wind speeds) in ASCE 7-95, i.e., the values provided in ASCE 7-95 changed to nominal design 

3-second gusts (mph), and mapped values varied from a 50- to 100-year MRI. With the release of ASCE 7-

10, the design approach moved from an allowable stress design (ASD) approach to a strength/load 

resistance factor (LRFD) approach. This led to the revision of contours and design values for the basic wind 

speed maps. In addition, these maps incorporated considerable empirical data from Hurricane Katrina and 

other events. ASCE 7-16 (given an Occupancy Category II) currently provides nominal design 3-second 

gusts values, and assumes a 7% probability of exceedance in 50 years, an MRI of 700. In this study, the 

scope is limited to all hurricane prone regions as identified in ASCE 7-16, e.g., where basic wind speeds are 

greater than 115 mph. 

To compare the design pressures across both codes (ASCE 7-88 and ASCE 7-16), the project team first 

had to calculate a wind speed that was consistent across both codes. In this case, a middle ground of the 

ASD wind speeds of ASCE 7-02 was chosen as the baseline. ASCE 7-88 values were converted from fastest 

mile to 3-second gusts (or equivalent ASCE 7-02 wind speed), using Table 1609.3.1 of the 2000 IBC, and 

ASCE 7-16 speeds were converted to ASCE 7-02 values using the equation V700 (or ASCE 7-16)  √0.6 

(Equation 16-33 of 2012 IBC). Since the mapped wind contours do not align, the mapped ASCE 7-16 wind 

contour was chosen as the baseline boundaries. The project team then calculated the basic wind speed 

weighted area averages for ASCE 7-88. As an illustration, suppose within the ASCE 7-16 wind speed map 

that considers a 140 mph wind contour, only the 130 and 140 mph ASCE 7-02 wind contours intersect. The 

130 mph contour accounts for 60% of the region within and the 140 mph contour accounts for the other 

40%. The equivalent ASCE 7-02 wind speed for the ASCE 7-16, 140 mph wind contour would be equal to 

0.6  130 mph + 0.4  140 mph, or 134 mph. This procedure is repeated for all hurricane wind contours 

and both ASCE 7-88 and ASCE 7-02. A comparison of the equivalent ASD wind speeds can be viewed in 

Table 3-1. 
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Table 3-1: Comparison of allowable stress design wind loads (3-second gusts). 

ASCE 7-16 Equivalent ASD wind speeds (mph) 

Vult (mph) ASCE 7-16 ASCE 7-88 

115 89.1 80.3 

120 93.0 91.8 

130 100.7 97.8 

140 108.4 102.1 

150 116.2 106.7 

160 123.9 109.4 

170 131.7 110.0 

180 139.4 110.0 

After the equivalent wind speeds between code editions were established, the C&C design pressures were 

calculated using the procedures set forth for 1990 construction (1990 BOCA and 1991 SBC) and ASCE 7-16. 

Design pressures are a function of building configuration, height, roof slope, exposure, amongst other 

building specific attributes. In the 1990 version of the NBC, a single design pressure (psf) is applied to the 

entire roof structure. With these loads, a design professional can specify the appropriate construction 

materials and hardware to resist the required shear and uplift demand. Later versions of the code 

established the additional loading observed at the roof edges, corners and ridges and required different 

net design wind pressures (pnet30), and therefore specified unique zones. These zones are observed in 

ASCE 7-02, and were revised in ASCE 7-16 (see Figure 3-1). Once the design pressures were calculated for 

each zone (where required), the project team calculated an area weighted average, so a single design 

pressure could be compared across all three codes.   

 

Figure 3-1: Evolution of ridge, end, and corner zones for roof design pressures. 

For a flat, built-up roof common for commercial structures, a comparison of ASCE 7-88 and ASCE 7-16 

requires an approximately 198% increase in design wind pressures. For single-family residential structures, 

a comparison of ASCE 7-88 and ASCE 7-16 requires an approximately 173% increase in design wind 

pressures. Table 3-2 and  
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Table 3-3 compare the equivalent ASD design pressures for each version of the I-Code. This increased 

loading directly relates to increased roof design strengths, which is achieved by such measures as better 

and tighter roof sheathing nailing, hurricane straps for roof wood framed trusses, better roof cover and 

adhesives, better attachment to open web steel joists by way of stronger welds or mechanical fasteners. 

Table 3-2: Comparison of commercial roof design pressures. 

ASCE 7-16 Equivalent ASD design pressures (psf) 

Vult (mph) ASCE 7-16 ASCE 7-88 

115 32.2 15.5 

120 35.1 20.1 

130 41.1 22.9 

140 47.7 24.9 

150 55.1 27.0 

160 62.4 28.3 

170 70.4 28.6 

180 78.9 28.6 

Average increase 134% 198% 

 

Table 3-3: Comparison of residential roof design pressures. 

ASCE 7-16 Equivalent ASD design pressures (psf) 

Vult (mph) ASCE 7-16 ASCE 7-88 

115 28.1 16.7 

120 30.6 21.6 

130 35.9 24.6 

140 41.7 26.7 

150 47.8 29.0 

160 54.4 30.3 

170 61.4 30.6 

180 68.8 30.6 

Average increase 107% 173% 
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3.3.2. How Past and Some Current Flood Design and Construction Differs 

from Current I-Codes 

Approximately 38% of communities that belong to the NFIP across the United States do not incorporate 

freeboard into their floodplain ordinance. This means that buildings constructed within these communities 

and located in the SFHA areas designated as Zone A are only required to be constructed to the BFE or the 

1 percent annual chance of flooding. In Zone A, the top of the lowest floor must be at or above the BFE. 

Since 2015, the I-Codes have required at least one foot of freeboard be incorporated into the elevation 

requirements. Additional other requirements are included in the minimum requirements for protection of 

mechanical, electrical, and plumbing systems, incorporation of flood damage resistant materials, uses for 

enclosed areas below the BFE, and flood opening when there are enclosures. When freeboard 

requirements are added, the NFIP minimum requirements below the BFE are required to be adjusted to 

reflect the new minimum elevation requirement of BFE + 1 foot or whatever the minimum freeboard 

requirement states. 

Beyond freeboard, ASCE 24-14 and, by reference, the I-Codes specify various detailing requirements that 

are not mandated by NFIP. The 2018 IRC requires that concrete slabs, stairways, ramps, decks, and 

porches in costal high-hazard areas and coastal A-zones to be self-supporting or to break away from and 

not harm the structure.  

Adoption of the I-Codes provides a valuable pre-construction review process for communities that wish to 

incorporate freeboard. While it is possible for communities to adopt freeboard through floodplain 

management ordinances alone, adoption of the I-Codes incorporates multiple checks and codifies the 

NFIP requirements so that building inspectors are verifying compliance throughout construction. This also 

provides designers and contractors with specifics on how to meet the NFIP requirements. Through the 

inspection process, code officials can also make sure that the minimum elevation requirement is being met 

prior to the survey necessary for the Elevation Certificate. While not evaluated in this study, the inspection 

process reduces additional cost of rework by contractors, avoidable costs to homeowners for 

noncompliance, and through improved compliance, reduces damage in communities. 

While NFIP requirements state that all materials below the BFE must be flood damage-resistant materials, 

some level of damage is experienced when floodwaters reach these areas below BFE. The lack of 

freeboard increases the chance that areas below the BFE will be exposed to floodwater and thus need to 

be cleaned or repairs made. With one foot of freeboard, even during a base flood event, most floor 

framing for houses on crawlspaces would not be touched by floodwaters and minimize disruption for 

homeowners. 

The adoption of the I-Codes also standardizes the inclusion of freeboard into the construction process. 

Although this increases the initial cost of construction, most home buyers finance the cost of the home. 

Since financing only requires home buyers to initially invest a portion of the entire cost through a down 

payment, the additional cost of freeboard is minimized. The remaining cost of freeboard is divided 
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monthly into mortgage payments. Homes within the SFHA are required to maintain flood insurance for 

federally backed mortgages, and lending institutions also require maintaining flood insurance even if they 

do not intend to sell the mortgage. Premium reductions are available to homes that have freeboard 

incorporated into the lowest floor elevation. These premium reductions are available to the homeowner 

immediately and can result in a return on investment (ROI) for the homeowner in potentially as little as 1 

year, but often within only a few years. Future premium reductions will result in savings for the homeowner 

as long as they maintain flood insurance. Since home buyers are often unaware of the lowest floor 

elevation during the home selection process, the incorporation of freeboard throughout a jurisdiction 

reduces the effort necessary for the homeowner to determine the elevation prior to purchase. 

Freeboard additionally provides a factor of safety both for current flood potential for events where due to 

uncertainty the flood level for a flood more frequent than the 1 percent annual chance event could exceed 

the BFE and to address future conditions where flood elevations can change due to future development 

either constricting flow or increased runoff. The one foot of freeboard additionally can provide protection 

over the life of the building for future climatic changes that could make higher flood levels more frequent. 

Incorporation of freeboard into the minimum design elevation also decreases the potential for floodborne 

debris to impact the superstructure of the building. Floodborne debris is often evaluated at or below the 

flood level. The freeboard means that debris during a base flood event would strike the foundation walls 

rather than the floor framing system. Floodborne debris was not possible to model during this study due 

to the complexity in the probability of floodborne debris and that most damage functions do not address 

debris strikes. 

3.3.3. How Past Earthquake Design and Construction Differs from Current I-

Codes 

Seismic design requirements have evolved in many ways since their introduction in the 1927 edition of the 

Uniform Building Code. Appendix M recaps the major developments since 1927 in the Uniform Building 

Code and IBC and presents a quantitative analysis of changes in design strength and stiffness. Notable 

developments in the recent past (since 1990) include: 

1. Long-term gradual increases in required strength and stiffness. 

2. Improvements in nonstructural component design, such as the addition of compression struts and 

splay wires to suspended ceilings. 

3. Additional detailing requirements, such as anchoring electrical equipment, that are triggered based 

on a combination of design-level shaking and the use to which the building is put, such as whether 

the building is a hazardous or essential facility. 

4. Redundancy provisions. 

5. Vertical and horizontal irregularity requirements. 

6. Material design specification changes, such as changes to welded steel connections in moment 

frames after the 1994 Northridge Earthquake. 

7. Overstrength factor and special seismic load combinations. 
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8. Increased diaphragm and anchorage requirements. 

9. Building separation requirements. 

10. Soil report requirements.  

11. Enhanced observation and testing requirements. 

 

Of these developments, the present study quantified the BCR of the long-term increases in strength and 

stiffness. If the various other detailing requirements were accounted for, the benefits would probably be 

greater and BCR would likely be higher, making the BCRs presented here somewhat conservative. 

3.4. OPTIONS TO EXCEED COMMONLY ADOPTED CODE 

REQUIREMENTS 

3.4.1. Options to Exceed Minimum Wind Design Requirements 

The project team identified multiple options to make a new building more resistant to wind loads than 

current codes require 

Building a Safe Room. According to the introductory webpage for FEMA P-320 - Taking Shelter from the 

Storm: Building a Safe Room for Your Home or Small Business (Federal Emergency Management Agency 

2014f), “Having a safe room in your home or small business can help provide near-absolute protection for 

you and your family or employees from injury or death caused by the dangerous forces of extreme winds. 

Near-absolute protection means that, based on our current knowledge of tornadoes and hurricanes, the 

occupants of a safe room built according to the guidance in this publication will have a high probability of 

being protected from injury or death. Our knowledge of tornadoes and hurricanes is based on numerous 

meteorological records as well as extensive investigations of damage to structures from extreme winds. 

Having a safe room can also relieve some of the anxiety created by the threat of an oncoming tornado or 

hurricane.” See also ICC 500 and ICC 600 (International Code Council 2014a, b).  

FEMA P-361: Safe Rooms for Tornadoes and Hurricanes: Guidance for Community and Residential Safe 

Rooms, Chapter A-3 offers cost estimates for adding safe rooms to new buildings, and some guidance for 

performing a BCA. For example, its authors estimate that to “design and construct a portion of a new 

building to resist 250-mph winds from a 140-mph basic wind speed” would add 5% to 7% to the 

construction cost of the building. The cost is “associated primarily with additional cost of structural 

elements and envelope opening protection.”  

City of Moore Code Enhancements. In 2014 the City of Moore, Oklahoma, after experiencing a third 

deadly tornado in 15 years, adopted enhancements to the 2009 IRC that effectively increased design wind 

speeds from 90 mph to 135 mph and added 12 detailing requirements (City of Moore, 2014a and 

Ramseyer and Holliday, 2014). See City of Moore Municipal Code, Part 5, Chapter 2, Article A Section 5-

204.C as of June 18, 2014, for the city’s modifications to the 2009 IRC (City of Moore 2014b). They are also 

duplicated in Appendix C of the Interim Study.  
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IBHS FORTIFIED Home. The Insurance Institute for Business & Home Safety (IBHS) offers a suite of design 

standards labeled “FORTIFIED Home” that aims to better protect existing and new buildings from 

hurricanes, hail, and high winds relative to the minimum requirements of the IRC.13  Each of its three new-

building standards, FORTIFIED Home Hurricane Standards (Insurance Institute for Business & Home Safety 

2012), FORTIFIED Home High Wind and Hail Standards (Insurance Institute for Business & Home Safety 

2015a) and FORTIFIED Home High Wind Standards (Insurance Institute for Business & Home Safety 2015b) 

provide three optional levels to exceed I-Code design requirements. Each set of standards has a bronze, 

silver, and gold designation, with silver aiming for generally greater protection than bronze, and gold 

better than silver. The gold hurricane designation, for example, aims to “minimize damage and loss 

resulting from a [Saffir-Simpson Hurricane Wind Scale (SSHWS)] Category 3 hurricane.” FORTIFIED Homes 

involve the following enhancements: 

1. Improve roof sheathing attachment and roof deck sealing (bronze, silver, and gold). 

2. Sheath gable end walls, if necessary (bronze, silver, and gold). 

3. Improve the attachment of outlookers at gable ends (bronze, silver, and gold). 

4. Reduce chances of attic ventilation system failure (bronze, silver, and gold). 

5. Protect all openings (glazed openings, entry doors, and garage doors) (silver and gold). 

6. Strengthen gable ends over 4 feet in height (silver and gold). 

7. Improve the anchorage of attached structures (porches and carports) (silver and gold). 

8. Provide a continuous uplift connection between roof support members, exterior bearing walls, multi-

story floors, down to the foundation (gold only). 

9. Adequately secure chimneys to the structure (gold only). 

10. Ensure that windows and doors meet appropriate design pressures in addition to being protected 

from windborne debris (gold only). 

IBHS has begun development of a standard to address high winds in the central United States that covers 

a basic windspeed of 140 mph in ASCE/SEI 7-10 Exposure Category B, which comprises most buildings in 

urban and suburban areas. (The IBC’s basic windspeed for Risk Category II—most buildings—in most of 

the central United States is Exposure Category C is 115 mph. That basic windspeed is estimated to have a 

7% exceedance probability in 50 years.) The IBHS standards and the American Wood Council’s Wood 

Frame Construction Manual (AWC 2015) for 140 mph exposure B include prescriptive load path 

requirements that are similar to those recently adopted in the Moore, Oklahoma Municipal Code and that 

appear in Appendix Y of the Oklahoma Uniform Building Code (Oklahoma Uniform Building Code 

Commission 2016).  

IBHS FORTIFIED Commercial. IBHS also offers a suite of design standards labeled “FORTIFIED Commercial” 

that aims to better protect new commercial buildings from hurricanes winds relative to the minimum 

                                                 
13 Note that in some locations, state and local requirements exceed those of the IRC, such as those adopted after 

Hurricane Andrew in Florida’s Miami-Dade or Broward Counties. The authors do not consider these local 

differences from the IRC, and do not calculate the BCR of exceeding them. 
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requirements of the IBC.1 Similar to IBHS FORTIFIED Home, this standard provides three optional levels 

(Bronze, Silver, and Gold) to exceed I-Code design requirements. FORTIFIED Commercial involves the 

following enhancements: 

1. Roof-related components and connections shall meet ASCE 7 wind load requirements with an 

additional factory of safety (as defined by IBHS) (bronze, silver and gold). 

2. Protect glazed openings to minimize water and wind/water pressures intrusion (silver and gold). 

3. Design wall systems for code-specified wind pressure resistance and impact resistance similar to that 

for protected glazed openings (silver and gold). 

4. Design exterior entry doors for code-specified wind pressure resistance and are impact rated (silver 

and gold). 

5. Elevate electrical and mechanical equipment and connections above the 500-year flood level or 3 

feet above BFE. Electrical connections should also be installed with a transfer switch or docking station 

(silver and gold). 

6. Provide a continuous uplift connection between roof support members, exterior bearing walls, multi-

story floors, down to the foundation (gold only). 

7. Install backup power that capable of powering critical electrical systems that maintain vital business 

operations (gold only). 

3.4.2. Options to Exceed Minimum Flood Design Requirements 

The most recognized, organized effort to mitigate flood damage to buildings in the United States is the 

FEMA NFIP. The NFIP insures property from flood damage and promotes flood risk mitigation strategies. 

In voluntarily participating communities (counties, municipalities, and tribal nations), buildings that are 

newly constructed, significantly improved, or significantly repaired must comply with NFIP requirements. 

Communities also have the option to adopt the IBC, IRC, and the IEBC (International Code Council 2015d). 

While acquisition is identified as the most effective mitigation strategy in terms of eliminating residual risk 

to the structure and ongoing risk to emergency responders (Association of State Floodplain Managers 

2014), one of the main flood-mitigation strategies in the NFIP regulations and I-Codes is that buildings in 

the riskiest flood zones be elevated 1 foot above the height of water expected in the 1% annual chance 

flood zone, known as the BFE. Such elevation above BFE also is called freeboard. Additional requirements 

exist for adding freeboard for critical facilities depending on the type of facility and flood zone 

(International Code Council 2014c, Federal Emergency Management Agency 2013b). Communities that 

use I-Codes have the option to establish a DFE that exceeds I-Code requirements (International Code 

Council 2014c).  

In addition, FEMA offers design requirements for other modifications to reduce flood damage (Federal 

Emergency Management Agency 2015a, b). Options include dry floodproofing to prevent water from 

entering buildings; elevating sensitive equipment to be less likely to experience flooding; and designing 

lower levels to allow flooding without damage. Walls or levees offer yet another option. 
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According to NFIP requirements, flood damage-resistant materials must be used for construction below 

the BFE. Flood-resistant materials are able to withstand at least 72 hours of flooding without sustaining 

significant damage (Federal Emergency Management Agency 2008b). There are five classifications of flood 

damage-resistant materials, and only Class 4 and 5 materials can be used below the BFE in the SFHA.  

A 2014 nationwide FEMA study found that NFIP floodplain management practices avoid $1.87 billion in 

damages annually (Federal Emergency Management Agency 2014a). Including model building codes as 

part of the NFIP would further reduce losses from flood and other hazards and also benefit land use 

planning (Federal Emergency Management Agency 2013c). The most significant benefit of implementing 

building codes would likely come from elevating buildings located in flood zones. Multiple FEMA studies 

(Federal Emergency Management Agency 2014a, 2014b, 2013c, 2008a, Jones et al. 2006) have found that 

adding freeboard is one of the most effective ways to reduce losses in the most hazardous flood zones. 

Since NFIP requirements have been implemented, hundreds of thousands of buildings have been built to 

its minimum levels, while relatively few have included extra freeboard (Federal Emergency Management 

Agency 2013c). 

Over 22,000 communities participate in the NFIP (Federal Emergency Management Agency 2016a). 

Approximately 70% of NFIP communities already use I-Codes (Federal Emergency Management Agency 

2019a). In addition, 34 states have adopted I-Codes statewide. Many of the states with mandatory 

enforcement are on the east and west coasts. In the remaining 16 states, approximately 87% of 

communities that are in the SFHA participate in the NFIP, and about 75% of them have adopted I-Codes 

(Federal Emergency Management Agency 2019a, Federal Emergency Management Agency 2019b). If I-

Codes became a requirement at the federal or state level, these states would need additional resources to 

administer the building codes, train personnel to do so, and support increased coordination between 

state, local, and federal agencies. Implementing I-Codes in the NFIP would initially increase costs in areas 

that do not already use them, but in the long term, implementation would increase property values, 

reduce hazard losses, reduce insurance rates, and improve the financial stability of the NFIP (Federal 

Emergency Management Agency 2013c). Rural communities may have fewer resources and need more 

third-party options for code enforcement, but the benefits are similar to those in urban communities 

(Federal Emergency Management Agency 2013c, White House 2016).  

Data from the NFIP’s Community Rating System (CRS) can be used to identify communities that have 

additional elevation requirements in states that do not enforce a statewide building code. Such 

communities are most common in the southeastern (especially Florida) and the WUS, along with a few 

communities in the Midwest and Northeast (Federal Emergency Management Agency 2014b).  

Elevating a residential building typically costs tens of thousands of dollars, and adding freeboard might 

add approximately 1% of the total construction cost per foot of elevation, although flood insurance 

premium discounts can offset the costs of additional freeboard within a few years (Federal Emergency 

Management Agency 2013c, 2008a). Note that insurance premium discounts can be complex and 

nuanced when pre-flood insurance rate map (FIRM) and post-FIRM rates are taken into account. A report 
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for FEMA (2008a) found that 1 to 2 feet of additional freeboard was almost always cost effective for the 1% 

annual chance flood, and three to four feet was cost effective in some situations. Adding 1 to 2 feet of 

freeboard also earns a larger reduction on NFIP premiums. Adding 3 to 4 feet does not earn a major 

reduction compared to 2 feet (Federal Emergency Management Agency 2010a). Additional freeboard can 

also mitigate against risk associated with error or uncertainty in flood risk maps and risk associated with 

climate change, making buildings more likely to withstand a particularly severe flood. FEMA pilot studies 

have indicated that 1 to 2 feet of additional freeboard could save a medium-size city, such as Charleston, 

South Carolina, tens of millions of dollars and save over $10 billion across FEMA Region IV (the 

southeastern United States) if the entire region experienced the 1% annual chance flood. In FEMA Region 

IV, 42% of buildings already had freeboard (Federal Emergency Management Agency 2014b). Table 3-4 

recaps the foregoing options. 

Table 3-4: Flood damage mitigation strategies and general cost effectiveness, based on Federal 

Emergency Management Agency (2015). 

Option Cost 
Damage 

reduction 
Measure lifetime 

Building elevation or fill basement Moderate to high High 30-50 years 

Flood openings Low High 15-20 years 

Elevate utilities Low to moderate Moderate 15-20 years 

Flood wall or levee High Moderate 50-100 years 

Dry floodproofing High Moderate 15-30 years 

Flood-resistant building materials Moderate Limited 10-20 years 

Some developers are already implementing additional elevation as one of the key strategies for mitigating 

future flooding impacts. The area in and around Long Island, New York offers many examples where 

developers are choosing to exceed state and local requirements by including additional elevation to 

protect their investments from future flooding. For example, on an East Rockway waterfront property 

previously occupied by a marina destroyed in Hurricane Sandy, the Beechwood Organization is elevating 

84 new condominiums over parking, placing all mechanical equipment on roofs, and other similar 

measures. The additional efforts that exceed state requirements cost approximately $5 million. Likewise, in 

Glen Cove, RXR Realty is raising the ground level of a 56-acre waterfront development, Garvies Point, by 6 

to 10 feet. In its Shipyard project in Port Jefferson, the Tritec Real Estate Company is elevating the 112 

apartments over a parking garage and installing drainage pumps in the garage, even though the 

waterfront complex is located outside the designated flood plain. In downtown Riverhead, the Community 

Development Corporation of Long Island and Conifer Realty are building 45 apartments that will be on the 

second floor or higher to protect them from floods. The electrical systems will be at least 2 feet above the 

height of 1% annual chance flooding (McDermott 2017). 
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Besides increasing elevation, flood openings are the only strategy that can be implemented at the single-

building level that FEMA (Federal Emergency Management Agency 2015a) has estimated to have a high 

potential to reduce damage. Flood openings can be used to meet IBC requirements. They not only have a 

lower cost than elevation but also have a lower expected lifetime. Filling in basements, abandoning a lower 

floor, and elevating the lowest interior floor all have similar costs to building elevation, although these 

measures may not meet all codes. Using flood-resistant materials has limited potential to reduce damage. 

Construction of walls or levees around a building is a high-cost, long-lasting measure that may be effective 

in reducing damages (Federal Emergency Management Agency 2015a). However, there are limits on how 

high walls and levees can be. They may not be high enough to prevent damage, and they must be 

maintained. Also, nearby terrain and geotechnical conditions may make walls and levees impractical. 

In light of the advantages and disadvantages of the options considered here, additional freeboard seems 

to warrant the most attention for the portion of the Interim Study concerned with exceeding minimum 

flood design requirements. 

3.4.3. Options to Exceed Minimum Earthquake Design Requirements 

Option 1: Adopt I-Codes where no code is currently required. Communities that do not adopt or enforce 

the IBC and IRC, or who adopt them but weaken the disaster-resistant aspects, could adopt the I-Codes 

without weakening the disaster-resistant aspects, and enjoy the benefits of the mitigation already provided 

by those codes. There are jurisdictions across the United States that do not adopt the I-Codes in full, 

including those in the Central and Eastern United States (CEUS) where seismic risk is less widely 

appreciated. The lack of modern building codes with seismic code provisions intact in those places poses a 

particularly acute problem. Furthermore, adoption and enforcement of modern building codes is not a 

one-time process. It must be continuously maintained. Many jurisdictions across the United States face 

budgetary challenges. Building codes and building departments are often threatened with pressure to 

lower costs to promote development. The pressure threatens a building code system funded to support 

modern adoption and enforcement of codes and training. 

Option 2: Stronger. Porter (2016a) explores an option for seismic design beyond life safety: designing all 

new buildings with a seismic importance factor of 1.5, e.g., making them 50% stronger than what ordinary 

buildings are required to be under the requirements of the 2015 IBC. Making buildings stronger makes 

them less likely to collapse. One could make new buildings stronger than ASCE/SEI 7-10 requirements by a 

factor of 1.25, 1.5, or some other higher value, depending on material, location, and other considerations. 

For example, there is evidence from the Consortium of Universities for Research in Earthquake Engineering 

(CUREE)-Caltech Woodframe Project (Porter et al. 2006), that stronger design can be cost effective, 

especially near large active faults. 

Some entities routinely require new buildings to be stronger than code requirements, such as Caltech had 

for three decades. Caltech dropped the use of a 1.5 importance factor around 1997. Caltech Design and 

Construction (2014) justified the change based on improvements in the 1997 Uniform Building Code (UBC). 
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A Caltech professor explained, “The building code caught up with what we were doing. The newer designs 

seemed strong enough (we require pushover curves), so the emphasis shifted to other things such as 

shearwall layout and using improved technology such as non-buckling braces.” (J. Hall, written 

communication, October 24, 2017.) At least two consulting clients of project team members also required 

some new buildings that they build and occupy to exceed code-minimum strength requirements.  

Some readers may object that strength and stiffness generally go together, or that it is rarely possible to 

make a building 50% stronger without also making it stiffer. Reinforced concrete and reinforced masonry 

shearwall buildings largely derive their shear strength from steel reinforcing and their stiffness from 

concrete or mortar. One can add steel to increase their strength without significantly increasing stiffness. 

Such buildings are common throughout the United States. Similarly, the strength of woodframe buildings 

is commonly limited by connectors and their stiffness commonly controlled by sheathing. Strength and 

stiffness do not increase in proportion to each other in these common building types.  

Option 3: Stronger and Stiffer. As a closely related alternative to strength, engineers could design new 

buildings to be both stronger and stiffer than ASCE/SEI 7-10 requires, by a common factor. For example, 

engineers could design a new building to resist shaking of 1.25 times what ASCE/SEI 7-10 requires, and to 

be commensurately stiffer as well. (More precisely, to deflect less at design-level shaking.) One could set 

the requirement at 1.25 times, 1.5 times, or some other value possibly as high as 5.0 or even higher, again 

depending on materials, location, etc. Compelling advantages of the strength-and-stiffness option include 

reducing collapse (and, by extension, the red-tagging and yellow-tagging of buildings) and reducing 

repair costs, since much of the costly (if not life-threatening) damage that buildings experience in 

earthquakes results from excessive deformation. 

Again, the strength option would probably tend to produce greater stiffness, since providing greater 

strength tends also to provide greater stiffness, but the strength-and-stiffness option would ensure and 

control the increase in stiffness. Note that increasing stiffness can aggravate some aspects of damage, 

especially to acceleration-sensitive components, even as it reduces damage to the (generally more costly) 

drift-sensitive elements. Greater stiffness can also increase earthquake forces on the building, especially for 

mid- and high-rise buildings. 

Option 4: Performance-based. A third option: engineers could design new buildings using performance-

based earthquake engineering, for example, using FEMA P-58 (Federal Emergency Management Agency 

2012d). FEMA P-58 provides an analytical method to estimate building performance in terms of repair 

costs, life-safety impacts, and loss of function, and to iterate design to achieve the owner’s performance 

goals. Engineers can finely tune the structural and nonstructural design. Except in cases of the simplest 

buildings, regular in both plan and elevation, a reasonably accurate FEMA P-58 analysis requires a 

nonlinear dynamic structural model. It is probably only practical for a modest subset of buildings: large 

ones built for owners who intend to occupy them for decades. It seems impractical to examine the BCR for 

FEMA P-58 in any kind of general way. It is building-specific and allows the designer to tailor hundreds or 

thousands of features to achieve any of a variety of performance objectives.  
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Other options. Additional options include various design features: base isolation (e.g., Mayes et al. 1990), 

supplemental energy dissipation (e.g., Constantinou et al. 1998), buckling-restrained braced frames (e.g., 

Sabelli et al. 2003 and NIST 2015), rocking structural systems, and energy-dissipating structural connections 

(e.g., Christopoulos et al. 2002). These all offer promise as techniques to reduce damage, but they are all 

somewhat specialized, applicable to one or a few classes of building, and not to the general building stock 

(GBS). 

3.4.4. Complying with the IWUIC 

Fire hazard exists in several different environments: urban, rural, and the contact between these two, which 

is called the wildland-urban interface (WUI). Fire also aggravates other perils such as earthquakes, floods, 

and tropical cyclones. WUI fires have recently caused record-setting losses. For example, California’s 2018 

wildfire season proved to be the most destructive and deadly one on record. As of early December, more 

than 8,000 fires burnt an area in excess of 1.8 million acres, the largest burned acreage recorded in a 

California fire season (National Interagency Fire Center 2018a) and destroyed more than 24,000 structures 

(National Interagency Fire Center 2018b).  

Historically, building codes have been dominated by urban fire risk reduction since the Great Fire of 

London in 1666, and enhancements continue to be made for the reduction of this hazard. Examples of 

historic code enhancements abound and are too numerous to detail here, but a few examples included 

requiring non-combustible roofing materials (whether outlawing thatched roofing in London after the 

Great Fire and in 18th century Japanese cities, or outlawing wood shake roofs in Los Angeles in the 1970s), 

requiring fire stopping in U.S. wood frame buildings in the early 20th century, requiring panic bars and 

unlocked exits in U.S. public assembly buildings (as a result of the 1911 Triangle Shirtwaist Fire in New York), 

and requiring enclosed stairways and sprinklers in high-rise buildings (the latter requirement still 

incomplete in many jurisdictions).  

Moving to today, the WUI fire risk in the United States has only relatively recently become recognized as 

quite severe. The ICC first promulgated the IWUIC (International Code Council 2015c) in 2003. Uptake has 

been sparse. Even though a large part of the country is at risk, only about 10% of the 70,000 communities 

in the United States at risk of wildland fire have yet to adopt the code (IAWF 2013). According to IAWF 

(2013), over 220 million acres (twice the area of California) have been designated as high-risk from WUI 

fire. These areas contain 46 million single-family homes, several hundred thousand businesses, and more 

than 120 million people (38% of the U.S. population). Furthermore, the potential for increased population 

within the WUI is large: only 14% of the available WUI lands in the WUS have been developed, leaving 

86% available for development. Nationally, those figures are 30% developed, with 70% remaining to be 

developed. And the U.S. population is actually moving into the WUI. Since 1990, the United States has 

experienced an unprecedented conversion-growth rate of 3 acres per minute, 4,000 acres per day and 

close to 2 million acres per year of conversion from wildlands to WUI. Losses because of WUI fire are not 

merely theoretical. Over 38,000 homes have been lost since 2000, with financial loss of WUI fires in 2009 
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of approximately $14 billion. The costs for firefighting (not losses) exceed $4.7 billion per year, and many 

other loss costs are not generally accounted for (IAWF 2013). 

The WUI fire situation differs from flood, earthquake, or wind in that it has only been systematically 

addressed in the past few decades. In light of these observations, the project team chose to estimate the 

benefits and costs of complying with the 2015 IWUIC, rather than seeking to exceed it. It requires, 

generally, non-combustible roofing and fire-rated cladding, glazing, and underfloor protection; assurance 

of water supply; defensible space; and, in some places, residential sprinklers. 

3.5. OPTIONS TO ADOPT OR BETTER ENFORCE MINIMUM 

DESIGN REQUIREMENTS 

Option 1 for exceeding common earthquake requirements (see Section 3.4.3) applies more generally to 

other perils: a community that does not enforce recent I-Codes with their disaster-resistant features could 

do so, and better address flooding, windstorm, and other perils. A building owner or developer in one of 

those communities could build to comply with recent I-Codes despite not being required to do so. The 

word “recent” matters here. Model building codes with seismic design requirements have evolved greatly 

since their introduction in the United States with the 1927 UBC, developed by the International Conference 

of Building Officials (ICBO). Beginning with the 1927 UBC and continuing through the 2018 IBC 

(International Code Council 2018), model codes have included generally-expanding mandatory 

requirements to resist both common loads and rare, extreme ones. Similar statements can be made 

regarding the evolution of the Southern Standard Building Code, developed by the Southern Building 

Code Congress International (SBCCI) 1946 et seq., and the NBC developed by the Building Officials and 

Code Administrators International, Inc. (BOCA) 1950 et seq. 

The model codes have more or less continuously enhanced public safety and property protection, with 

occasional reductions to better balance reliability and economic efficiency. One could say that disaster 

resilience begins with building codes. It also seems likely that any effort to design in excess of code 

requirements would have a higher BCR, the lower the baseline requirements. That is, if a new building is 

not required to meet the minimum requirements of the 2015 I-Codes, but elects to exceed them, the BCR 

is likely higher than if the 2015 I-Codes are required and a new building elects to exceed them.  

It may be useful to review some recent enhancements. Box 3-1 summarizes enhancements made in the 

2015 and 2018 I-Codes relative to the 2012 edition. The rest of this section summarizes some recent 

research into the costs and benefits of meeting modern code requirements, relative to older codes or no 

codes. 
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Box 3-1. Mitigation Recently Incorporated into the I-Codes and Related Documents  

Flood 

2015 IBC: Refers to standards from ASCE 24-Flood Resistant Design and Construction and FEMA Technical 

Bulletin 2 (Federal Emergency Management Agency 2008b) on flood-resistant materials. Clarifies 

determination of substantial damage and significant improvement. 

2018 IBC: Adds an appendix with updated design loads for tsunami-resistant design of essential facilities 

and critical infrastructure. 

2015 IRC: Requires 1 foot of additional elevation above BFE for Zones V, coastal A, and A. Clarifies 

determination of substantial damage and significant improvement. 

2018 IRC: Requires that concrete slabs, stairways, ramps, decks and porches in costal high-hazard areas 

and Coastal A Zones must either break away so they do not harm structure or be self-supporting. 

ASCE 24: Uses Flood Design Class instead of Risk/Occupancy Class. Flood Design Class ranges from 1-4, 

with 4 being the most critical. There are different elevation requirements for different classes in different 

flood zones. Requires flood openings in zones V and coastal A for structures such as garages. 

Wind 

2015 IBC: Adds new requirements for tornado shelters in certain buildings in areas where tornado shelter 

design wind speeds are 250 mph or greater. Clarifies special inspection requirements. Updated reference 

standard to ICC 500-2014 (International Code Council 2014a). 

2018 IBC: Updates tables detailing wind structural design requirements by region to align with the latest 

wind design standards and to include special wind regions of mountainous terrain and gorges. 

2018 IRC: Increases number of king studs in high wind regions to better support headers. 

Seismic 

2015 IBC: Adds seismic design maps for Guam and American Samoa. Adds new diaphragm anchorage 

requirements. Clarifies special inspection requirements. Reference to 2013 edition of ASCE 41-Seismic 

Rehabilitation of Existing Buildings (American Society of Civil Engineers 2013). 

2018 IBC: Requires structural observation of high-rise buildings and Risk Category IV buildings (e.g., 

hospitals and police and fire stations) to ensure that complex, critical design elements are reviewed and 

constructed correctly. 

SCE/SEI 7-10 3rd printing: Adds new errata corrections, new commentary, and new supplement A. 

2018 IRC: Updates seismic maps and corresponding design criteria. 

Fire at the WUI 

2015 IWUIC: Requires non-combustible roof and rated cladding, glazing and underfloor protection, 

assured water supply, and defensible space (changes relative to 2003 edition). 
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The Insurance Service Office (ISO) Building Code Effectiveness Grading Schedule (BCEGS) rates 

approximately 19,000 communities on their adoption and quality of enforcement of building codes based 

on interviews (Wright et al. 2014). Insurers use it to assess how a community enforces its codes. CRS and 

BCEGS data show the connections between code adoption, enforcement, and losses. 

Burby et al. (2000) examined the linkage between building code enforcement and construction activity in 

central cities, that is, in heavily populated cities at the center of a large metropolitan area. They showed 

that, “Central cities can capture a larger share of the market for single-family detached housing in their 

metropolitan areas and also spur commercial rehabilitation if they adopt more business-friendly 

approaches to building code enforcement. These gains can be achieved without reducing the degree of 

compliance with building regulations as long as enforcement efforts are strong. In short, one key to 

increasing economic development in central cities is to foster the right kind of enforcement, rather than 

having weak enforcement of building regulations.” 

Spence (2007) examined the linkage between building code enforcement and outcomes in natural 

disasters. He found that, “The widespread destruction of buildings in the earthquakes of Kocaeli, Turkey, in 

1999 and Gujarat, India, in 2001 was not due to inadequate codes. Destruction occurred because codes 

were not generally adopted.” His finding supports the assertion that adoption and enforcement of modern 

codes can prevent catastrophes in large natural disasters.  

Burby (2006) drew similar conclusions for U.S. construction subject to hurricanes, citing prior authors who 

found that “In South Carolina, building code violations were found to be an important cause of damages 

from Hurricane Hugo in 1989. In south Florida, a quarter of the $16 billion in insured losses from Hurricane 

Andrew in 1992 were attributed to Dade County’s failure to enforce its building code.” 

NEHRP Consultants Joint Venture (2013) examined the costs and benefits associated with Memphis, 

Tennessee, adopting the 2003 IBC in place of the 1999 Southern Standard Building Code (SBC). Examining 

six particular buildings, they found that the marginal cost to adopt the IBC’s seismic design requirements 

rather than those of the 1999 SBC ranged from zero to 1.0%. They found that the 2003 IBC would produce 

better seismic performance through higher design base shear and detailing requirements that improve 

strength or structural behavior in the inelastic range of response. They also concluded that, “Requirements 

for seismic bracing and anchorage of nonstructural components reduce potential for nonstructural 

damage and loss of building (or system) functionality.” 

FEMA (Federal Emergency Management Agency 2014e) estimated losses avoided as a result of adopting 

and enforcing I-Codes. In particular, the study estimated the average annualized losses (AALs) from 

flooding, hurricane, and earthquake among 702,000 land parcels in eight southeastern states of FEMA 

Region IV, with provisions of the I-Codes that differ from prior codes. Flood provisions include 

requirements for foundation type and additional elevation above BFE. Hurricane provisions include 

opening protection (shutters), continuous load path, roof-deck attachment, roof cover, and strength and 

reinforcing in masonry wall systems. Seismic provisions require the design of new buildings considering the 
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site-specific seismic hazard. The authors of the FEMA study estimated a total of approximately $500 million 

AAL avoided at these 702,000 parcels, mostly from hurricane and flood losses avoided in Florida.  

Approximately one-third of states have not adopted the I-Codes (Federal Emergency Management 

Agency 2019a). Doing so comes with up-front costs of potentially higher construction costs and 

enforcements costs to the local jurisdiction, but provides benefits of greater life safety and property 

protection in natural disasters, and, perhaps, lower long-term operating and maintenance costs. Code 

adoption and enforcement could provide buyers with a lower total cost of ownership in many places, and 

a community BCR in excess of 1.0. If so, the long-term owner who opts to build above code in a 

community where no code is adopted or enforced would enjoy a BCR greater than those estimated here 

for an owner whose baseline is the 2015 I-Codes. However, the total cost of ownership to a developer with 

a short-term ownership horizon might be higher. The developer would bear the initial burden of a higher 

construction cost, but would own the property too briefly to enjoy savings from lower maintenance costs 

and lower repair costs after future natural disasters. 

The adoption and enforcement of modern codes seems worth special study, but for reasons already 

stated in Section 3.4.3, the Report focuses on exceeding I-Codes where they are already in force. Later 

examination within the ongoing study may identify benefits and costs of adopting and enforcing I-Codes 

where they are not currently in force, or where important resilience features are weakened. 

3.6. ESTIMATING BENEFITS AND COSTS OF ADOPTING CODE 

REQUIREMENTS 

Studies on the benefits and costs of adopting the I-Codes with respect to reduced flood-related losses 

primarily focus on building subject to the IBC as discussed in the FEMA report, Including Building Codes in 

the National Flood Insurance Program (Federal Emergency Management Agency 2013b). This study 

includes a reference to a Hazus pilot study, which indicated $87-$163 million in reduced direct and indirect 

losses for 21,671 structures in a study area for Charleston County, South Carolina. Multiple FEMA studies 

(Federal Emergency Management Agency 2014a, 2014b, 2013c, 2008a, Jones et al. 2006) have found that 

adding freeboard is one of the most effective ways to reduce losses in the most hazardous flood zones. 

While this work did not directly address the I-Codes, however, since the I-Codes primarily address one 

foot of freeboard for Risk Category II buildings, they provide an appropriate representation of the costs 

and benefits when adjusted for inflation. The BCRs however should be similar since both the costs and the 

benefits would both be impacted by inflation. 

The Institute’s Building Seismic Safety Council (BSSC) examined the costs of adopting seismic provisions 

emerging in the early 1980s, and found that the new provisions would add an average 1.6% to the 

construction cost of 52 particular hypothetical buildings in 7 particular cities around the United States 

(Weber 1985). The average was 0.9% in cities that had already adopted seismic provisions and 2.1% in 

cities that had not. NEHRP Consultants Joint Venture (2013) performed the most detailed BCA of seismic 

code adoption of which the project team is aware. Its authors estimated the costs and benefits to redesign 
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six particular buildings in Memphis, Tennessee, to comply with the seismic provisions of the 2012 I-Codes 

as opposed to the 1999 SBC (SBCCI 1999). Adopting the 2012 I-Codes would add 0 to 1% to the 

construction cost of the six buildings (and less to the purchase price, since construction cost typically 

amounts to between 1/3rd and 2/3rds of purchase price). Design to the 2012 I-Codes would increase 

seismic design base shear of these buildings by a factor that varied between 1.0 and 1.9, with an average 

strength increase of a factor of 1.6, i.e., 60% stronger. The authors of the NEHRP Consultants Joint venture 

study estimated annualized repair costs for three of the six buildings. Ignoring the building whose strength 

did not significantly change under the I-Codes (a hospital), annualized loss to the other two buildings (an 

apartment building and an office building) was reduced by approximately 50%, as were the estimated 

collapse probability and number of fatalities.  

Recently, Simmon et al. (2018) estimated the BCR of Florida’s adoption of the 2001 Florida Building Code 

(FBC), which took effect on March 1, 2002. They used 10 years of paid insured loss data to estimate 

empirically that the FBC reduced windstorm insured losses to dwellings (presumably, the building, 

contents, ancillary structures, and additional living expenses) by $6 per $1 of added construction cost. 

3.7. ESTIMATING BENEFITS AND COSTS OF EXCEEDING 

CODE REQUIREMENTS 

Simmons et al. (2015) estimated a BCR of approximately 3.2 for the City of Moore, Oklahoma’s 

enhancements to wind design requirements. They estimated benefits in terms of reduced future insurance 

losses, which would include many, though not all, of the benefit categories in Box 1-2.  

Awando et al. (n.d.) studied the IBHS’s FORTIFIED Home program. That brief study, based on 321 data 

points purchased from CoreLogic, estimated the marginal effect of FORTIFIED home construction 

standards on home resale value while controlling for other housing characteristics. The authors of that 

study found that switching from a conventional construction standard to a FORTIFIED designation 

increased the resale value of the home by 6.8%. 

3.8. EFFORTS TO ESTIMATE BENEFITS AND COSTS OF 

PRIVATE-SECTOR RETROFIT 

3.8.1. Literature on Flood Retrofit of Private-Sector Buildings 

Mitigation of flood-prone buildings is a balancing act of technical feasibility, reductions in flood 

vulnerability, homeowner preferences, and cost effectiveness. Available literature shows that multiple flood 

mitigation options are available for single-family dwellings subject to riverine flooding. Narrowing the 

options to a practical number to evaluate here required setting some selection criteria. Table 3-5 lists 

common flood mitigation options and the project team’s selection rationale. 
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Table 3-5: Summary table of flood mitigation options considered for single-family houses subject to 

riverine flooding. 

Mitigation option Analyzed here Notes  

Acquisition 

Yes 
This is a common grant mitigation measure and 

the most effective option because it removes 

people and property from the floodplain. 

Retrofit elevation 

Yes 

A common mitigation measure for both 

mitigation grants and privately funded by 

homeowners.  This can bring a building into 

current floodplain management compliance. 

Wet floodproofing 

basements 
Yes 

While this measure does not bring a building into 

compliance, it is common and does not result in 

homeowners losing storage space for low-value 

contents. 

Wet floodproofing living 

areas 

No 

This mitigation option has been used in other 

parts of the world, such as the UK, but could result 

in homeowners not evacuating during a flood and 

could result in contaminates getting into the living 

space.  It will not bring the house into compliance. 

Dry floodproofing 

basement areas 

No 

Dry floodproofing of basements is allowed by the 

NFIP in specific communities, but otherwise it will 

not bring a building into compliance and if not 

properly done can result in structural damage to 

the foundation.  Homeowners also may be 

tempted to stay in the house to make sure the 

pumping systems are working properly, which 

puts them at risk of being trapped by floodwaters. 

Dry floodproofing living 

areas 

No 

This measure does not bring a house into 

compliance and for many wood-frame structures 

is impractical.  If improperly engineered, it can 

lead to significant structural damage. 

Homeowners also may be tempted to stay in the 

house to make sure the pumping systems are 

working properly, which puts them at risk of being 

trapped by floodwaters. 

Emergency measures and 

sandbagging 

No 

House wrapping (plastic films), sandbags, and 

other measures that are temporary are difficult to 

assess in their reliability to be properly 

implemented or engineered.  The measures 

widely vary in effectiveness and costs. 
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Mitigation option Analyzed here Notes  

Ring levees and flood 

walls 

No 

These measures can be overtopped by 

floodwaters, they can change the flood conditions 

for surrounding buildings, and they must properly 

be engineered to be effective.  They also do not 

bring a building into compliance. 

Elevating air conditioners 

or heat pumps 
Yes 

This measure alone may not bring a house into 

compliance, but it is inexpensive. 

Relocating ductwork 

Yes 

This measure alone may not bring a house into 

compliance.  However, ductwork commonly is 

damaged in flooding that may not reach the 

lowest floor elevation.  Depending on the flood 

conditions, it may require repeated replacement 

over the life of the house. 

Relocating 

basement/crawlspace 

furnaces and/or water 

heaters 

Yes 

This measure alone may not bring a house into 

compliance. Furnaces and water heaters located 

in basements and crawlspaces could require 

frequent replacement depending on flood 

conditions.   

FEMA Building Science Branch provides a library of publications that treat flood mitigation and post-flood 

building evaluation.  Several were considered here; see Table 3-5. The study considered that homeowners 

may want to bring their home into compliance with current floodplain management requirements, which 

would both reduce their flood vulnerability and flood insurance premiums. Other measures were 

considered and while they may not bring a house into compliance with the current floodplain 

management requirements, they are less expensive. Ideally, houses could be removed from the floodplain 

all together, which is why the project team examined buy-outs. 

The two primary resources considered for this study were FEMA P-259, Engineering Principles and 

Practices for Retrofitting Flood-Prone Residential Structures (3rd Edition – Federal Emergency Management 

Agency 2012e) and FEMA P-312, Homeowner’s Guide to Retrofitting: Six Ways to Protect Your Home From 

Flooding (3rd Edition – Federal Emergency Management Agency 2014g).  These guides provide 

background on retrofit elevation, wet floodproofing, dry floodproofing, flood walls, and ring levees.  They 

also provide some background on retrofits to mechanical and plumbing systems. A third FEMA 

publication FEMA P-348, Protecting Building Utility Systems From Flood Damage – Principles and Practices 

for the Design and Construction of Flood Resistant Building Utility System (2nd Edition – Federal Emergency 

Management Agency 2017d) is more comprehensive.  The technical feasibility of retrofits, whether they will 

bring a building into compliance, and some cost information can be found in these documents. 

FEMA’s post-disaster assessments known as mitigation assessment team (MAT) reports also help to 

understand the effectiveness of these measures.  In particular, FEMA P-765, Midwest Floods of 2008 in 
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Iowa and Wisconsin (Federal Emergency Management Agency 2009e) provides some background on 

common damage from flooding to basement areas, living spaces, and mechanical equipment.  Other 

MAT reports for hurricanes such as Sandy (FEMA P-942), Katrina (FEMA 549), and Isaac (FEMA P-938) 

provide context for retrofit elevation and mechanical and plumbing retrofits.  These MAT reports also 

resulted in recovery advisories that contain recommendations on how to properly implement some of 

these retrofits. 

FEMA 480, Floodplain Management Requirements (Federal Emergency Management Agency 2005b) and 

the National Flood Insurance Program Flood Insurance Manual (October 2018 Edition) provide valuable 

information on compliance with local floodplain management requirements and calculating insurance 

rates.  FEMA’s Hazard Mitigation Assistance Guidance (Federal Emergency Management Agency 2015) 

provides FEMA grant criteria. 

FEMA technical bulletins provide information on retrofit costs and design requirements. These include 

NFIP Technical Bulletin 1, Openings in Foundation Walls and Walls of Enclosures (Federal Emergency 

Management Agency 2008e) and NFIP Technical Bulletin 2, Flood Damage-Resistant Materials 

Requirements (Federal Emergency Management Agency 2008f).  Technical Bulletin 1 provides information 

on the required number of flood openings.  Technical Bulletin 2 provides a list of flood-resistant materials 

that only require cosmetic cleaning after 72 hours of floodwater exposure. 

Two additional documents provide confirmatory information about retrofit design requirements: Flood 

Proofing – Techniques, Programs, and References (U.S. Army Corps of Engineers 2000) and the 

Hawkesbury-Nepean Floodplain Management Steering Committee (Australia) (2006) publication Reducing 

Vulnerability of Buildings to Flood Damage – Guidance On Building In Flood Prone Areas.   

3.8.2. Literature on Hurricane Wind Retrofit of Private-Sector Buildings 

3.8.2.1. Literature on the IBHS FORTIFIED Home Program to Existing Residential Dwellings 

The Insurance Institute for Business & Home Safety (IBHS) FORTIFIED Home program for existing 

residences (https://fortifiedhome.org/fortified-home-or-commercial/) aims to mitigate wind risk to 

dwellings by strengthening known weaknesses. Several other hurricane wind retrofit programs exist as of 

this writing. These include Rebuild Northwest Florida (https://www.rebuildnwf.org/), SC Safe Home 

(https://online.scsafehome.sc.gov/), Mississippi Windstorm Retrofit Mitigation Program 

(http://www.beaconagencyllc.com/node/7), and Federal Alliance for Safe Homes (FLASH, 

http://www.flash.org/protect.php), which offers a variety of mitigation suggestions. The project team 

performed a benefit-cost analysis of the IBHS FORTIFIED Home program because of its nationwide 

applicability, detailed standards, technical guidance, and because it was developed in conjunction with 

FEMA’s Wind Retrofit Guide for Residential Buildings (FEMA P-804, Federal Emergency Management 

Agency 2010b). Although specific mitigation requirements between the IBHS and FEMA programs differ 

slightly, the general framework and mitigation levels are similar.   

https://fortifiedhome.org/fortified-home-or-commercial/
https://www.rebuildnwf.org/
https://online.scsafehome.sc.gov/
http://www.beaconagencyllc.com/node/7
http://www.flash.org/protect.php
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Hurricane wind retrofit programs such as IBHS FORTIFIED Home Hurricane aim to provide a greater 

degree of damage reduction than the model building codes, which mostly aim to protect life safety. IBHS 

FORTIFIED Home limits damage by exceeding the minimum requirements of the model building codes 

with stronger roofing, better door and window protection, stronger exterior cladding, and better 

protection of the load path between building components and between the building and ground. 

Anecdotal evidence indicates enhanced mitigation efforts are successful. An Insurance Institute for 

Business & Home Safety (ND) report following Hurricane Charley stated that an unnamed insurance 

company “insured 5,636 policies in Charlotte County when Hurricane Charley made landfall in 2004. Of 

these policies, approximately 80% were written for homes that were constructed before the 

implementation of modern engineering-based design in 1996. The remainder of the policies was written 

for homes constructed under the SBCCI (Southern Building Code Congress International) high wind 

requirements or the 2001 Florida Building Code…. Claim frequency was reduced by 60% for homes 

constructed under the new building codes.... The severity of a claim was reduced by 42% for homes built 

to the newer codes.” The study identifies the frequency of building component failures from a sample of 

270 claims. The incidence of damage to roofs, windows, and garage doors were all lower in modern 

construction (although an increase in pool cage/screened porch and soffits damage was observed in 

newer homes), which demonstrates the general effectiveness of improved design. 

FEMA 549 (Federal Emergency Management Agency 2006e) presents a mitigation assessment report 

following Hurricane Katrina, detailing typical structural damage observed after the event. The authors 

report: “The most common wind-related structural failures observed in light-framed construction were 

roof framing failures. Failures were observed in both new and old construction. Insufficient attachment of 

roof sheathing panels to the supporting framing was the most common problem.” Strengthening roof 

sheathing connections using closer nail spacing will help to mitigate such failures. The FEMA report says 

that “breaches of the building envelope (such as door or window failure) can result in increased internal 

pressure, which can damage interior partitions and ceilings and increase the wind load on structural and 

envelope components.” The use of impact-rated or opening-protection products for glazed openings and 

garage doors will help mitigate these types of failures. In addition, the assessment team “found structures 

(including houses under construction) without proper connectors, or with inconsistently spaced, 

insufficient, or poorly attached connectors.” A continuous load path helps to maintain the structural 

integrity and prevent any systematic failure due to a single weak point in construction.  

Several other post-event assessment reports identify deficiencies and damage associated with outdated, 

insufficient, or improper construction practices enforced at the time of construction. After Hurricane Hugo, 

Miller (1990) observed that “80% of the roofs of Charleston were damaged by Hugo’s winds.” After 

Hurricane Andrew, FEMA (Federal Emergency Management Agency 1992) identified “an absence of or 

improper installation of framing connections, load transfer straps, or bracing from non-loadbearing walls 

to connecting wall and roof components was noted. This condition contributed significantly to the primary 

failure of the framing system.” After Hurricane Irma in Florida in 2017, FEMA (Federal Emergency 

Management Agency 2018a) observed that “wind-induced structural damage to MWFRS (main wind-force 

resisting system) was not widespread and, where observed, mostly occurred in older (pre-FBC [Florida 
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Building Code]) buildings…. Overall, newer construction generally sustained much less damage than older 

construction, so the requirements incorporated in the FBC, along with floodplain management regulations, 

appear to be working as intended.” The common theme behind all post-event assessment reports is that 

implementation of modern building codes, when enforced, reduces damage compared with older 

building codes. 

IBHS FORTIFIED requirements for an existing home vary with location, era, and quality of construction. 

They generally exceed the building-code requirements in force at the time of construction. Homeowners 

can choose one of three IBHS FORTIFIED programs: FORTIFIED Roof, FORTIFIED Silver, or FORTIFIED Gold. 

FORTIFIED Roof is the simplest and least expensive. (FORTIFIED Roof used to be called FORTIFIED Bronze, 

but the name change did not come with material changes.) Each higher designation (Roof to Silver to 

Gold) offers greater protection at generally higher cost and more reduction in expected damages. Each 

higher designation includes all the requirements of the lower ones, plus additional requirements.  

Each IBHS designation focuses on strengthening susceptible components within the building system. 

FORTIFIED Roof aims to minimize wind damage to the structure by improving the roof sheathing 

attachments, preventing water intrusion via a sealed roof deck, ensuring roof covering conditions meet 

certain standards, and ensuring that roof-mounted vents are high-wind rated. If gable ends are present, 

they need to be protected against water intrusion. In cases where they are over four feet tall, structural 

sheathing must be installed and overhangs must be constructed to IBHS standards. FORTIFIED Silver aims 

to protect the building envelope with the installation of impact-protected shutters at all exterior openings. 

Soffits are protected to resist water intrusion. Attached structures (such as porches and carports) must be 

designed to resist wind uplift. Gable ends over four feet tall must be braced to withstand the required 

design wind pressures. FORTIFIED Gold addresses system-wide deficiencies by ensuring a continuous load 

path from roof to foundation.  Roof-to-wall connections, wall-to-floor connections (if more than one 

story), and floor-to-foundation connections must be capable of resisting the design loads. If chimneys are 

present, they must be properly attached to the structure. Figure 3-2 shows sample photos of a retrofit 

requirement for IBHS FORTIFIED Roof, Silver, and Gold. 
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Figure 3-2: Examples of retrofit measures required by IBHS (A) Sealed roof deck over seams between roof 

sheathing, as required for FORTIFIED Roof. (B) Shutter installation required for FORTIFIED Silver. (C) 

Continuous load path required for FORTIFIED Gold. (photos used with permission from IBHS) 

3.8.2.2. Literature on Engineered Tie-Downs for Manufactured Housing 

In response to the passage of the National Manufactured Housing Construction and Safety Standards Act 

of 1974 (U.S. Code Title 42 Chapter 70 sections 5401-5426), the U.S. Department of Housing and Urban 

Development (HUD) developed and since 1976 has enforced the Manufactured Home Construction and 

Safety Standards (U.S. Code of Federal Regulations Title 24 part 3280), which provide minimum design, 

construction, and other performance requirements for manufactured homes that are designed to be used 

as dwelling units. Prior to this, no standard regulations existed for manufactured housing. Among other 

things, the new standards improved the wind resilience of manufactured homes. 

In 1994 (following the damage caused by Hurricane Andrew in 1992), the standards were revised to reflect 

different wind hazard regimes with three zones (Figure 3-3): Zone I reflects “standard wind loads,” which 

generally means inland from the Gulf and southern Atlantic coasts and inland from the Alaskan coast. 

Zones II and III comprise high-wind areas (and stricter design requirements) along the Gulf, Atlantic, and 

Alaskan coasts. Zone-II homes were rated for 100 mph winds (fastest-mile wind speed, yet another way to 

measure wind speed). Zone III was rated for 110 mph winds. Zone I corresponds to the original 1976 HUD 

standards. For the present analysis, Hazus fragility functions for both pre- and post-ETS installation are 

considered for all manufactured homes that comply with the post-1976 HUD standards.   

A   

       B      C 
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Figure 3-3: Wind zones for manufactured housing (Code of Federal Regulations Title 24 Section 3280.305) 

The Manufactured Home Construction and Safety Standards (U.S. Code of Federal Regulations Title 24 

section 3285.401) provides guidelines for anchoring manufactured homes to resist high winds. 

Specifications provided by the manufacturer must show the assembly is able to resist the overturning and 

lateral forces due to the wind loads and safety factors specified in sections 3280.305 and 3280.306. For 

wind zones II and III, in addition to the increased design loads, the tie-down system also must be installed 

with longitudinal ties (in addition to the vertical ties required in wind zone I). The anchorage systems shall 

indicate: 

i. The minimum anchor capacity required. 

ii. That anchors should be certified by a professional engineer, architect, or a nationally recognized 

testing laboratory as to their resistance, based on the maximum angle of diagonal tie and/or vertical 

tie loading and angle of anchor installation, and type of soil in which the anchor is to be installed. 

iii. That ground anchors are to be embedded below the frost line, unless the foundation system is frost-

protected in accordance with sections 3285.312(b) and 3285.404 of the Model Manufactured Home 

Installation Standards. 

iv. That ground anchors must be installed to their full depth, and stabilizer plates must be installed in 

accordance with the ground anchor listing or certification to provide required resistance to 

overturning and sliding. 

v. That anchoring equipment should be certified by a registered professional engineer or architect to 

resist these specified forces in accordance with testing procedures in ASTM D3953-97, Standard 

Specification for Strapping, Flat Steel and Seals (incorporated by reference, see section 3280.4). 
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Some states are attempting to incentivize homeowners currently residing in older manufactured homes to 

install tie-downs where none are present. For example, in 1997 the State of Florida created the Hurricane 

Loss Mitigation Program “to act as a specialized, state-funded mitigation program aimed at minimizing 

damages caused by hurricanes. The program began as an active response to the devastation brought by 

Hurricane Andrew, specifically to the insurance market in the State of Florida. With an annual budget of $7 

million, provided by the Florida Hurricane Catastrophe Trust Fund, the program is funding activities that 

promote property resiliency through retrofits made to residential, commercial, and mobile home [sic] 

properties, the promotion of public education and public information, and through hurricane research 

activities.” (https://www.floridadisaster.org/dem/mitigation/hurricane-loss-mitigation-program/) Of interest 

from the current study was the “Mobile Home [sic] Tie-Down Program,” which is managed by Tallahassee 

Community College (2019). The state’s Florida Hurricane Catastrophe Trust Fund pays for the program, 

with a mission to enhance tie-down and anchoring systems of existing manufactured homes. From 2000 

through 2014, approximately 30,496 manufactured homes, with an obligated cost of approximately $43 

million, were tied down with funding from the program. This equates to approximately $1,500 per 

installation. However, their data suggest a downward trend in costs with a retrofit in 2014 costing 

approximately $1,000 (2018 USD), when adjusted for inflation.   

Although installation of an ETS can prevent large losses at modest cost, the system must properly be 

installed and maintained to perform as intended. After Hurricane Hugo in 1989, Miller (1990) reported in 

South Carolina that “about 70% of the homes had shifted from their piers; half of those were completely 

off their supports.” Reasons included pullout from wet surfaces, strap failure, improper attachment to I-

beams, and improper installation of ground anchors. FEMA 548 (Federal Emergency Management Agency 

2006e) following Hurricane Katrina observed unanchored or improperly anchored homes were prone to 

wind-related damage. Field photos showed manufactured homes had rolled over or shifted laterally on 

their piers. Following Hurricane Charley, the Institute for Building Technology and Safety (2005) reported 

to HUD that manufactured homes’ “tie-down straps were frequently observed to be corroded and rusted.”  

While HUD regulations address tie-downs, the department also is aware of room for improvement. A 

DRM International (2003) report prepared for HUD reviewed the current standards and provided possible 

future action items, including: more anchor testing; prohibiting continuous tie-down straps from one 

anchor head to another; improving corrosion protection for straps (doubling the zinc coating on both 

sides of the strap); and revisions requirements related to frost-line embedment, angles of ground anchor 

installation, and lateral and vertical chassis and surface attachments.     

3.8.3. Literature on Seismic Retrofit of Private-Sector Buildings 

3.8.3.1. Literature on Soft-Story Wood-Frame Multifamily Dwellings 

The problem of soft-story wood-frame multifamily dwellings. Weak ground stories in wood-frame buildings 

led to numerous, notable collapses in the 1971 San Fernando, 1989 Loma Prieta, and 1994 Northridge 

earthquakes, among others. The ground story of these buildings had fewer walls than upper stories, more 

https://www.floridadisaster.org/dem/mitigation/hurricane-loss-mitigation-program/
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unfinished walls (meaning they lacked interior sheathing, such as gypsum board or lath and plaster), and 

more openings, largely to allow for garage space and entries. See Section 2.6.3.1 for examples, and 

chapter 5 of Benuska (1990) for technical details of the Earthquake Engineering Research Institute’s 

reconnaissance of the Loma Prieta earthquake.  

EQE International and the Governor’s Office of Emergency Services (1995) compiled damage statistics 

from the 1994 Northridge earthquake, observing from the data that “Multi-family dwellings, in 

general, performed more poorly than single-family dwellings. ... There is a tendency for larger wood-

frame residential structures ... to have higher damage factors [and that] two-story woodframe [sic] 

construction appeared to have more catastrophic failures and that damage seemed to be more 

prevalent.” 

Vukazich et al. (2006) surveyed 7,391 multifamily dwellings in Santa Clara County, finding that 36% 

had a soft first story. ATC-38 (Applied Technology Council, 2000) surveyed 106 multi-story wood-

frame buildings located near strong-motion instruments in Los Angeles after the 1994 Northridge 

earthquake, finding that 10 of them appeared to have an open first-floor facade, 59 did not, and 37 

had unknown conditions, suggesting that 14% of multistory wood-frame buildings in the San 

Fernando Valley of Los Angeles in 1994 had soft-story conditions, within a possible range of 9% and 

44%. 

Local ordinances related to soft-story retrofit. Several cities have taken the problem of soft-story failures of 

multifamily dwellings seriously enough to require seismic evaluation and remediation. The City of San 

Francisco mandated seismic retrofit through its Earthquake Safety Implementation Program (San Francisco 

Board of Supervisors, 2013). Likewise, the City of Los Angeles included pre-1980 soft-story wood-frame 

buildings among its four principal vulnerabilities in its Resilience by Design program (Mayoral Seismic Task 

Force, 2015). As of March 7, 2019, owners of almost 14,000 Los Angeles buildings had received notices 

requiring them to comply with the relevant ordinances. Of the 14,000 buildings, plans were submitted for 

8,500 buildings. Of those 8,500 buildings, permits were issued for 3,800 buildings, and work has been 

completed for 1,800 of them (City of Los Angeles Department of Building and Safety, 2019).  

Other California cities to enact evaluation or retrofit programs include Oakland (2009), Alameda (2009), 

Berkeley (2014), Santa Monica (2017), West Hollywood (2017), and possibly others. As of November 2018, 

the California cities of Pasadena, Beverly Hills, and Culver City were considering similar ordinances. The 

ordinances generally express the goal of protecting the public’s safety and welfare. 

Design and analysis of adding steel frames or wood shearwalls to soft-story wood-frame multifamily 

dwellings. As part of the CUREE-Caltech Woodframe Project, Reitherman and Cobeen (2003) designed an 

example apartment building for the broader FEMA project to study, including three as-is versions of 

varying degrees of construction quality, and two versions with seismic retrofit using steel frames and more 

structural sheathing. Construction costs were estimated by a professional cost estimator. Porter et al. 

(2002) assessed the seismic vulnerability of the Reitherman and Cobeen (2003) variants, using emerging 
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methods of performance-based earthquake engineering, and then performed benefit-cost analyses of the 

retrofit, considering reduced property repair cost as the sole benefit category.  

The San Francisco Community Action Plan for Seismic Safety (CAPSS) studied the cost effectiveness of 

three seismic retrofits (Applied Technology Council 2009a). The CAPSS study examined three mitigation 

measures for each of four soft-story wood-frame multifamily dwellings. A public advisory committee for 

the CAPSS project preferred one of the three measures: the addition of cantilever columns at garage door 

openings, plus added structural sheathing at ground-floor interior walls. See Figure 2-51. The preferred 

measure produced the best balance of performance improvement and cost. After adjusting the San 

Francisco costs to an average national location and accounting for inflation between 2008 and 2018, the 

retrofit cost an average of $8.60 per square foot (within a range of $4.40 and $10.60) in multi-unit 

dwellings of four to 12 housing units and 5,250 square feet to 22,300 square feet. 

Porter and Cobeen (2009) developed seismic vulnerability functions for the four CAPSS buildings, 

including building repair cost and structural damage states, but not repair duration, additional living 

expenses, indirect business interruption, deaths and nonfatal injuries, or urban search and rescue costs. 

They created nonlinear pseudostatic structural models of the four buildings, performed pushover analysis 

to estimate drift as a function of spectral acceleration response, developed and integrated new 

component fragility functions for important structural and nonstructural building components (especially 

straight sheathing and lath and plaster interior finish), estimated repair costs resulting from structural and 

nonstructural damage, and integrated the model elements to construct the motion-damage relationships. 

Leading structural engineers peer reviewed the model elements before their use in CAPSS risk analysis.  

As part of FEMA’s effort to develop the FEMA P-807 guidelines for the seismic retrofit of soft-story wood-

frame buildings, Mar and Korolyk (2012) examined a population of approximately 600 simple surrogate 

structural models representing three particular example buildings with soft-story conditions (to which Mar 

and Korolyk refer as weak story, to emphasize strength over stiffness). They analyze the building models 

using multiple nonlinear dynamic structural analyses. They produced guidelines on how to select the 

optimal ground-story strength that will best protect the building as a whole and not transfer damage to 

upper stories. The resulting guidelines appear in Federal Emergency Management Agency (2012 SSWF). 

The guidelines aid in the design of an optimal retrofit, but do not offer particular options, designs, costs, or 

vulnerability functions.  

The NEES-Soft program (van de Lindt et al. 2013) questioned whether FEMA P-807 produced a truly 

optimal retrofit, and designed and performed both full-scale laboratory shake-table tests and hybrid tests 

(meaning a combination of laboratory testing and computer simulation) of several alternatives. These 

alternatives include the use of a so-called distributed knee brace assembly that adds damping to the 

ground story, a proprietary steel frame produced by the Simpson Strong-Tie Company, and adding cross-

laminated timber panels to the ground story. The NEES-Soft project has not produced seismic vulnerability 

functions for the buildings it studied. 
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3.8.3.2. Literature on Engineered Tie-Downs for Manufactured Housing 

Manufactured housing is up to five times more vulnerable than wood-frame houses, according insurance 

loss data compiled by Steinbrugge and Schrader (1979). In strong shaking, unbraced manufactured homes 

commonly can fall off their foundations, causing fires, as illustrated in Section 2.6.3.2. For example, Berlin 

(1980) and EQE International (1994) both report that at one manufactured housing complex in the 1971 

Sylmar earthquake, 95% of manufactured homes fell from their supports. California Department of 

Housing and Community Development (1991) provides a survey of 27 manufactured housing complexes in 

San Benito, Santa Clara, and Santa Cruz counties, the epicentral region of the 1989 Loma Prieta 

earthquake. Its authors found that in these parks, 592 out of 2,432 manufactured homes fell from their 

supports, at per-park rates ranging from near zero to 70%. Manufactured homes on steel piers tended to 

fare worse than homes on concrete piers, other things being equal. A few manufactured homes were 

supported on earthquake resistant bracing systems (ERBS), which act as a backup support without 

providing positive anchorage to the ground. Homes on ERBS performed well.   

California Department of Housing and Community Development (1992) supplemented its 1991 study with 

further research aimed, in part, to quantify “the extent and cost of repairs to, or replacement of, 

manufactured homes and mobile homes [sic] damaged because support systems failed or were damaged 

in an earthquake.” The authors reported the average installed cost of engineered tie-downs ($1000 in 

1992). The authors reported: “Although two manufactured homes were structurally damaged beyond 

repair during the Loma Prieta Earthquake, structural damage to manufactured homes in earthquakes is 

normally light or nonexistent. Even when the home falls completely to the ground, the structural integrity 

of the home itself is most often not affected. ... Following the Loma Prieta Earthquake, manufactured 

home setup contractors charged an average of $1500 per transportable section just to raise and reset 

manufactured homes [i.e., $3,000 for the typical double-wide]. This did not include any repair work 

required to be done to the home or its accessories. The average doublewide manufactured home owner, 

whose home fell to the ground, spent an additional $14,400 repairing the accessory structures, utilities and 

home.” The $14,000 figure included replacement of awnings, decks, skirtings, and screen rooms, and 

repair of utility systems and other miscellaneous repairs. 

California Department of Housing and Community Development does not seem to have performed a 

similar survey of manufactured housing after the 1994 Northridge earthquake, based on a Google search 

and a search of its web page. EQE International and California Governor’s Office of Emergency Services 

(1995) reported the number of individual assistance grant applications from occupants of manufactured 

housing after the 1994 Northridge earthquake (36,487) and that two deaths occurred in manufactured 

housing. OES (1994) reports that 6,000 manufactured homes collapsed from their foundations.  

An unpublished electronic damage database (which one of the project team members, Porter, helped to 

compile for EQE International and California Governor’s Office of Emergency Services, 1995) contains a few 

comments about manufactured housing, but not organized in such a way that one can extract damage 

data. It also contains post-earthquake safety inspection (tagging) data for 42 locations whose use codes 
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(0900, 0901, 0930, and 090E) correspond with manufactured housing. The database, however, lacks 

sufficient resolution to normalize tag counts (which in any case are too few in number for statistical 

relevance) by number of dwellings at each location. 

Steinbrugge and Schrader (1979) described damage to manufactured homes in the August 13, 1979 Santa 

Barbara earthquake. They found that “in low intensity but damaging earthquakes such as the 1978 Santa 

Barbara event, percentage losses to mobile homes [sic] exceed by 5 times that found in neighboring wood 

frame dwellings.” They reported: “Excluding coach contents, coaches are essentially undamaged when 

they do not fall from their supports; generally, recaulking of roofs where double-wide units join or where 

the patio/porch roof joins the coach is the extent of needed repairs. When they fall, then the skirt is 

normally severely damaged, the frame may be bent, and holes generally are punched through the floor 

by fallen coach supports. Also, damage will often be severe to the adjacent porches and attached patio 

awnings which are separately supported on the ground. It is important to note that once a coach falls off 

its supports, damage and losses will not significantly increase beyond the initial damage. This remains true 

even for great earthquakes of long duration.” They also reported aggregate insurance claims data for 118 

claims: $228,442 paid, of which about 79% was for structural repairs and 19% was for content losses. The 

insured value of the 118 units totaled $4,445,000, suggesting 5.14% average claim as a fraction of total 

insured value, and $1,936 per claim, to which one can add the (generally) $350 deductible that was 

common at the time, for a total of $2,286 per claim. For every $1 of claim to repair the manufactured 

home, content losses added about $0.27 to the insured losses.  

The Steinbrugge and Schrader (1979) figure for repair of the manufactured home, $2,286, is small 

compared with the $17,400 figure from the California Department of Housing and Community 

Development (1992). The latter seems the more plausible of the two figures and less potentially influenced 

by insurance-company data problems and claims-adjustment practices.  

Todd et al. (1994a) offered some qualitative observations about the performance of manufactured homes 

in the 1994 Northridge earthquake, observing that “The vulnerability of mobile homes [sic] to earthquake 

ground shaking was demonstrated once again by the Northridge earthquake. For example, in a trailer 

park near the epicenter, at the intersection of Nordhoff Street and Tampa A venue, nearly every home 

had moved on its supports. These types of homes are usually supported on small concrete and metal 

base supports. ... These supports provide little resistance to lateral movements, and toppled during the 

quake. ... The identical failure was observed in the 1971 San Fernando earthquake. It is clear that no 

improvements in the practice of supporting manufactured homes adequately against lateral loads have 

been made during the past twenty-three years.” 

In unpublished research for the Florida Department of Transportation, a group of researchers including 

one of the present project team members (Dash) surveyed Florida occupants of manufactured housing 

and used state-collected survey data to draw some findings that are probably relevant here. The 

population residing in manufactured homes tends to be older than the general population. Slightly more 

than 36% of the Florida households consisted entirely of elderly persons (65 and older). An additional 49% 
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of the households included members 65 years of age or older. About 15% of the population were 

widowers living alone. These are segments of the population that could be categorized as having special 

needs, especially during emergencies. 

At the national level, the American Housing Survey (U.S. Census Bureau 2017-KP1) shows that occupants of 

manufactured homes nationwide tend to have lower household income: an average of $44,000 in 2017, 

compared with $77,289, for all housing (Figure 3-4). Approximately 29% of households in manufactured 

housing units have household income below the 2018 poverty level ($16,000 to $21,000 for households of 

two and three people, respectively.) Compounding the fact that they have lower income, many owners of 

manufactured houses do not own the land beneath the home, so they have less equity and therefore less 

ability to borrow to pay for repairs. Residents of manufactured housing nationwide, however, do not tend 

to be older than the general population (U.S. Census Bureau 2017-KP1; Figure 3-5). 

Fothergill and Peek (2004), citing several studies, note that people with low income and socioeconomic 

status tend to experience greater stress following disaster than do people of higher income and 

socioeconomic status. They do not, however, quantify that effect. 

 

Figure 3-4: Occupants of manufactured homes tend to have lower household income than the general 

U.S. population, according to the U.S. Census Bureau (2017-KP1). 
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Figure 3-5: Occupants of manufactured homes tend to have the same age distribution as the general U.S. 

population, according to the U.S. Census Bureau (2017-KP1). 

The U.S. Census Bureau’s 2017 American Community Survey (U.S. Census Bureau 2018-KP2) estimates that 

nationwide, 12% of manufactured homes are not anchored to their foundation. The fraction varies 

geographically. In California, its estimate is 38%. In Colorado, it is 27%. 

In various metropolitan statistical areas, the fractions are as follows: Seattle, Washington, 18%; Portland, 

Oregon, 31%; Phoenix, Arizona, 21%; Las Vegas, Nevada, 22%; Memphis and Nashville, Tennessee, 12%; 

Louisville, Kentucky, 4%; Kansas City, Kansas, 23%; and Oklahoma City, Oklahoma, 9%. The American 

Community Survey is limited in its geographic scope. It does not cover other highly seismic states, such as 

Utah or South Carolina, or metropolitan statistical areas within them, namely Salt Lake City or Charleston. 

There are several ways to improve the seismic resistance of manufactured housing and to reduce or 

prevent post-earthquake fires. Earthquake-resistant bracing systems (ERBS) act as backup support, usually 

without providing positive connections between the manufactured house and ground. An ERBS typically 

costs $3,000 to $5,000. Probably more effective and less expensive, an engineered tie-down system (ETS) 

provides positive connection to the ground and actively resists sidesway collapse, costing $1,000 to $2,000, 

according to contractors interviewed by the project team as part of an earlier study (SPA Risk LLC 2014). 

One can provide a reinforced concrete or reinforced masonry foundation at a much greater cost, 

anywhere from $5,000 to $50,000. When performing any of these actions, it also is probably worthwhile to 

brace water heaters and add flexible gas connections, together costing $135 to $300.  See Figure 3-6 for 

illustrations of these methods. 
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Figure 3-6: Leading options for improving the seismic resistance of manufactured housing and to reduce 

or prevent-post-earthquake fires. (A) Earthquake-resistant bracing system (ERBS), (B) engineered tie-down 

system (ETS), (C) perimeter wall and footing, (D) securing water heater, and (E) adding a flexible 

connection between the gas line and manufactured home, along with an automatic gas shut-off valve. 

(Images by Henderson Consulting, 2013, and courtesy of SPA Risk LLC, used with permission.) 

In 1994, in response to widespread collapse of manufactured housing in the 1994 Northridge earthquake, 

California amended its Health and Safety Code (California Legislature 1994) requiring tie-downs for new 

manufactured home installations after September 1994. Because design wind loads generally exceed 

earthquake forces, the regulation requires the tie-down to resist 15 pounds per square foot of wind 

pressure (more where the design wind pressure is higher). The act explicitly states its justification and 

urgency: “To ensure that as many manufactured homes and mobile homes as possible are protected at 

the earliest possible time from sudden devastation by earthquakes, it is necessary that this act take effect 

immediately.” A number of commercial systems meet the California Health and Safety Code’s 

requirements, e.g., Oliver Technologies Inc. (2007), Tie Down Engineering (2007), and Minute Man 

Anchors, Inc. (2015). 

3.8.3.3. Literature on Securing Residential Furniture, Fixtures, Equipment, and Contents 

Content damage contributes much of the economic loss in earthquakes. This is because content 

contributes much of the value to buildings and also some contents are easily damaged. The authors of 

FEMA E-74 (Applied Technology Council 2011 p. 2-6) estimate that contents add on about 25% to the 

replacement cost of the construction of an office building. It is common practice in homeowner insurance 

underwriting to estimate the value of contents at 40% to 75% of the building replacement cost 

A  B   C  
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(Insurance.com, 2018). An informal survey by members of the project team among professional 

engineering colleagues at EQE International in the 1990s suggested that their content replacement costs in 

homes typically comprise approximately 50% of building replacement costs. Much of this value is rugged: 

earthquakes tend not to damage soft items such as clothes, books, tables, chairs, sofas, beds, and linens.  

Perhaps 10% of residential content value is comprised of fragile items, such as shelving (book cases, 

freestanding cabinets, and garage storage racks), fragile contents of cabinets and shelves, devices resting 

of desks or countertops (such as computers, monitors, and kitchen appliances), and water heaters. Figure 

3-7 illustrates damage to these component categories. The Associated Press reported (November 30, 

2018) that the Mw 7.0 Anchorage earthquake that day reported that “picture frames and mirrors were 

knocked from living room walls.” 

Tenants and owners can reduce content damage with simple mitigation measures. The Earthquake 

Country Alliance (2019) offers a list of 48 ways to “secure your space,” with a description of the problem 

posed by one kind of building element and instructions to mitigate the problem. FEMA P-58 (Applied 

Technology Council 2012) offers fragility functions (which model damageability) and consequence 

functions (which model the cost of the damage) for each. 

One can reduce earthquake damage to these items at relatively low cost and usually without professional 

help. Several authorities offer detailed recommendations on preventing such damage. FEMA E-74 (Federal 

Emergency Management Agency 2011 E74) provides a practical guide to reducing the risks of 

nonstructural earthquake damage, listing “common-sense measures” to reduce earthquake losses from a 

variety of residential items, such as bookcases, shelving, electronics, water heaters, items on shelves, 

artwork, and countertop items. The guide offers text descriptions and photos of historic earthquake 

damage as well as schematic drawings of remediation measures in sufficient detail. Many homeowners 

can purchase the necessary supplies and perform most of the remediation measures. The U.S. Geological 

Survey’s (2005) handbook Putting Down roots in Earthquake Country and the Earthquake Country Alliance 

(2018) offers resources for a similar variety of components.  
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Figure 3-7: Damage to contents common to residences. (A) overturned bookcase with fallen contents 

(Rhiannon Harris on January 22, 2015, with permission; 

https://triadfellowship.wordpress.com/2015/01/22/hokudan-earthquake-memorial-park-and-nagoya-

flower-market/) (B) contents spilled from cabinets and countertops in a kitchen near the Northridge 

Fashion Center after the 1994 Northridge earthquake (Photo Credit: J. Dewey, U.S. Geological Survey.) (C) 

Overturned desktop contents after the 2018 Anchorage, Alaska earthquake (Alaska Department of 

Transportation and Public Facilities - CC BY-SA 2.0, 

https://commons.wikimedia.org/w/index.php?curid=74853821), and (D) residential water heater (California 

Seismic Safety Commission 2005). 

The foregoing works do not quantify the damageability of furniture, equipment, fixtures, and contents. 

However, the authors of FEMA P-58 (Federal Emergency Management Agency 2012d), including one of 

the project team members (Porter), performed an extensive literature review and supplemental analyses of 

the damageability of residential furniture, equipment, fixtures, and contents, and developed an extensive 

fragility database. The database contains fragility information for 400 nonstructural components under 

various seismic installation conditions.  

In the case of benefit-cost analysis of remediating residential furnishings, fixtures, equipment, and contents 

by the homeowner or tenant, a question arises about whether to include the homeowner or tenant’s labor 

in the cost. The labor to install most remediation measures and cleanup of losses (except overturned water 

heaters) are likely to fall on the homeowner, who will perceive the effort as a significant expense. It seems 

A  B  

C  D  
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reasonable to include and value that labor. The value of volunteer labor seems most relevant here. 

Independent Sector (2019) recommends a value of $24.69 per hour. 

In the case of hot water heaters, the Earthquake Country Alliance (2018) advises that securing the water 

heater can help prevent gas leaks and fires. The advice begs two questions: (1) What fraction of hot water 

heaters currently are unsecured to the building frame, and (2) If a water heater falls over, what are the 

chances that it will break its gas line and a fire ignite as a consequence? On the first point, the 2018 

International Residential Code (International Code Council 2018) requires only that hot water heaters are 

installed according to the manufacturer’s instructions. California Health and Safety Code Section 19211 

(California ND) requires that “all new and replacement water heaters, and all existing residential water 

heaters shall be braced, anchored, or strapped to resist falling or horizontal displacement due to 

earthquake motion. At a minimum, any water heater shall be secured in accordance with the California 

Plumbing Code, or modifications made thereto by a city, county, or city and county pursuant to Section 

17958.5.” The project team could find no similar requirement in Oregon, Washington, Utah, Missouri, 

Tennessee, Kentucky, or South Carolina. It seems reasonable to assume that most hot water heaters in 

California by now are secured to the building frame, and that few are secured in other states.  

What happens if a hot water heater falls over? The California Department of Housing and Community 

Development (1991) reports that fires destroyed two manufactured homes in Watsonville, California, in the 

1989 Loma Prieta earthquake, and that “While the cause of the fires ... is not known, it is suspected that the 

gas piping to either the home itself or to one of the home's gas appliances were ruptured and the 

escaping gas ignited. Gas appliances within the home are required to be secured in place; however, 

previous experience indicates that homeowner replacements of appliances often overlook this 

requirement of HCD and Federal regulations.” 

Williamson (2000) reports that in the 1994 Northridge earthquake, Southern California Gas Company 

reported 2,500 overturned water heaters, while the Los Angeles Fire Department reported 21 fires 

associated with overturned water heaters, suggesting that the chance of an overturned water heater 

causing a building fire is 0.84%.  

Scawthorn et al. (1998) report that the Los Angeles Fire Department estimated that 77 earthquake-related 

fires in the 1994 Northridge earthquake caused $12.4 million in property losses (approximately $21 million 

in 2018), suggesting a per-ignition property loss (building and contents) of $273,000 in 2018 USD, which 

would imply another $27,000 in additional living expenses, using common insurance ratios of dollars of 

additional living expenses per dollar of property loss. It also would imply approximately $14,000 in indirect 

business interruption, using factors detailed in Appendix K of this report. EQE and OES (1995) report that 

one fire-related death occurred in the 1994 Northridge earthquake, suggesting on the order of 0.013 

deaths per ignition. 

Scawthorn (2018) points out that the ignition, growth, and spread of fires after earthquakes is highly 

nonlinear with earthquake magnitude, because of many factors, such as whether the number of ignitions 

exceeds the fire department’s ability to simultaneously fight them all, i.e., because fires can outnumber 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   174 
 

engines. The implication is that the $273,000 in property losses for each ignition in the 1994 Northridge 

earthquake might be too small, considering that larger earthquakes might dominate risk. The Northridge 

earthquake had about 110 total ignitions; Los Angeles Fire Department has about 106 engines. Fire 

departments in Los Angeles County had about 500 engines in the affected area, and about 500 more 

engines nearby.  Engines outnumbered fires, so there was little fire spread.  For a larger event, more fire 

spread would occur and easily could increase by orders of magnitude.  For a hypothetical Mw 7.0 

earthquake on the Hayward Fault in the San Francisco Bay Area, Scawthorn (2018) estimated 668 ignitions 

and $30 billion in property loss alone, equivalent to $45 million per ignition, a figure 165 times larger than 

$273,000 per ignition. 

Finally, it is necessary to estimate the useful life of each mitigation measure. Tops Kitchen Cabinets (2014) 

suggests that cabinets last on average 50 years. Taylor (2019) advises that tank-type water heaters last an 

average of eight to 12 years. Average tenure in a home is currently about nine years (U.S. Census Bureau 

2016), suggesting that mitigation measures for moveable furnishings have an expected life when first 

installed of up to nine years. 

3.8.4. Literature on WUI Fire Retrofit of Private-Sector Buildings 

There is substantial literature on retrofit to comply with the International Wildland-Urban Interface Code. 

Relevant sources include: 

 The 2018 International Wildland-Urban Interface Code itself (International Code Council 2017) 

 The U.S. Fire Administration’s Wildland Urban Interface toolkit (https://www.usfa.fema.gov/wui_toolkit/, 

Figure 3-8) 

 The National Fire Protection Association’s Firewise USA® website (https://www.nfpa.org/Public-

Education/By-topic/Wildfire/Firewise-USA, Figure 3-9) 

 The Insurance Institute for Building and Home Safety’s (IBHS) Prepare for Wildfire website 

(https://disastersafety.org/wildfire/, Figure 3-10) 

 Regional websites such as the West Region Wildfire Council in Colorado (www.cowildfire.org, Figure 

3-11) and Oakland Firesafe Council in the San Francisco Bay Area (http://oaklandfiresafecouncil.org/, 

Figure 3-12) 

Few authors specifically have examined the issue of costs or benefits of retrofitting buildings to better resist 

fire in the wildland-urban interface, or the costs and benefits of producing risk information related to WUI 

fire. Penman et al. (2017) quantified the cost of retrofit in Australian intermix and interface community, 

finding wide variation in the level of preparedness, although intermix houses were better prepared than 

those at the interface. Total up-front costs to prepare residents and their homes significantly varied and 

the financial investment required significantly was higher than residents felt they were able to cover. 

Penman et al. (2016) found that the largest costs resulted from altering landscaping, which implies that 

using non-combustible ground cover greatly would reduce ongoing maintenance costs and the present 

value of retrofit cost.  

https://www.usfa.fema.gov/wui_toolkit/
https://www.nfpa.org/Public-Education/By-topic/Wildfire/Firewise-USA
https://www.nfpa.org/Public-Education/By-topic/Wildfire/Firewise-USA
https://disastersafety.org/wildfire/
file:///C:/Users/Emmy/Desktop/Julian%20Work/In%20Progress/www.cowildfire.org
http://oaklandfiresafecouncil.org/
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Regarding the decision to create a defensible space, Shafran (2008) modeled the problem as a game 

played between neighbors in a wildland–urban interface.  He found that a household’s defensible space 

decision depends on the defensible space outcomes at neighboring sites. That is, the decision reflects 

another aspect of the herd effect in fire risk mitigation. (Herd effect, as used in public health, can be 

defined as the reduction of infection or disease in the unimmunized segment that results from immunizing 

a portion of the population.)  

Mozumder et al. (2009) studied the value of fire risk information and found that homeowners were willing 

to pay more for fire risk maps than it cost to produce the maps in the first place, suggesting that 

homeowners value fire risk information. 

Wildland fires strongly can degrade air quality, even at some distance. This degradation can have 

significant health and economic costs (Bowman et al. 2018; Jones et al. 2016; Kochi et al. 2010, Richardson 

et al. 2012). Urban areas are not immune from these impacts, as was seen most recently in the 2018 Camp 

Fire in California (Figure 3-13 and Figure 3-14). While health and economic costs of such impacts can be 

priced (National Academy of Sciences, Engineering, and Medicine 2017; Prager et al. 2017), these costs 

largely are attributable to the burning of wildland fuels rather than buildings and their contents. That is, 

even if all buildings complied with the International Wildland-Urban Interface Code and none of them 

burned, wildfires still would degrade air quality because most of the smoke and fire byproducts result from 

burning of the wildland vegetation. Admittedly, if structures were extremely fire-resistant and people 

sheltered in place, the change would reduce health costs but perhaps only minimally. Economic costs 

associated with air quality barely would change. Therefore, while WUI fires have significant health and 

economic costs, the project team ignored air quality costs, since they largely are unrelated to building 

damage in WUI fires. 
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Figure 3-8: U.S. Fire Administration Wildland-Urban Interface (WUI) toolkit website. (public domain). 

 

 

Figure 3-9: National Fire Protection Association Firewise USA website 
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Figure 3-10: Insurance Institute for Business & Home Safety Protect Your Home from Wildfire website 

 

Figure 3-11: West Region Wildfire Council (Colorado) website 
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Figure 3-12: Example materials for public dissemination regarding making homes more fire resistive 
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Figure 3-13: Camp Fire smoke at the Bay Bridge in San Francisco, California. Left: San Francisco Oakland 

Bay Bridge on November 16, 2018 during the Camp Fire. Right: same place on October 14, 2018. (Source: 

James R Morrin Jr CC BY-SA 4.0) 

 

Figure 3-14: Camp Fire smoke dispersion across U.S. (Source: NOAA, accessed 20 March 2019 from 

https://www.sfgate.com/california-wildfires/article/camp-fire-smoke-noaa-maps-nyc-texas-paradise-

13408526.php#photo-16533579) 

https://www.sfgate.com/california-wildfires/article/camp-fire-smoke-noaa-maps-nyc-texas-paradise-13408526.php%23photo-16533579
https://www.sfgate.com/california-wildfires/article/camp-fire-smoke-noaa-maps-nyc-texas-paradise-13408526.php%23photo-16533579
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3.9. EFFORTS TO ESTIMATE BENEFITS AND COSTS OF 

FEDERAL GRANTS 

FEMA requires grantees it is asked to fund to provide BCA for most proposed natural hazard mitigation. 

To aid those analyses, FEMA developed BCA software. On January 10, 2017, FEMA released the BCA Tool 

version 5.3.0 to demonstrate cost effectiveness for its Hazard Mitigation Assistance (HMA) grant programs. 

Some major features include: updated standard economic values utilized in analysis; an aquifer storage 

and recovery module for drought mitigation; incorporation of climate-resilient mitigation activities, 

expansion of ecosystem service benefits; updated tornado recurrence information in the saferoom 

module; and updated hurricane wind and earthquake hazard data sets.14 

The 2005 Mitigation Saves study estimated the BCR of FEMA-funded natural hazard mitigation between 

1993 and 2003. Rose et al. (2007) offered a synopsis of the study: “The 2005 study performed an 

independent assessment of the benefits and costs of mitigating hurricane, flood, and earthquake risk, 

mostly in existing public buildings. That study used sampling to estimate the benefits and costs of a few 

dozen grants, extrapolated to the population of grants, and found that the $3.5 billion in mitigation 

spending will save society about $14 billion in avoided future building repair costs, content losses, direct 

and indirect BI, deaths and nonfatal injuries, and environmental and historical value.” 

The National Center for Environmental Economics (2010) offered general guidance on BCA. Particularly 

relevant is its guidance on selecting discount rates. Furthermore, the OMB (Government Publishing Office 

2016) provides guidelines on discount rate values based on treasury notes and bonds with various 

maturities. The discount rate is the price or value of money that reflects the rate at which society is willing 

to postpone a marginal unit of current consumption in exchange for more future consumption and the 

marginal social rate of return on private investment (also termed marginal social opportunity cost of 

capital). An important aspect of the guidance is that federal agencies are instructed to apply 3% and 7% 

annual discount rates to future costs and benefits, including not just the time value of money, but also the 

time value of human life. That is, one must apply 3% and 7% discount rates to savings associated with 

avoided future deaths and nonfatal injuries. Using high discount rates reduces the apparent cost 

effectiveness of natural hazard mitigation compared with lower discount rates. 

Since the Report is an independent assessment of the costs and benefits of natural hazard mitigation, it is 

important to consider other standard texts on BCA. Among the most highly cited texts on engineering 

economic analysis, Newnan (1983) recommended that engineers use the after-inflation cost of borrowing 

if an investment will be paid for with borrowed funds, as in most cases of new design and costly retrofit. 

Zuang et al. (2007) offered a survey of discount rates for BCA, and showed that some agencies use 

discount rates less than 1% and others as high as 10%. Some are based on the cost of borrowing. Others 

considered the social rate of time preference (SRTP), that is, “the rate at which society is willing to 

                                                 
14 See https://www.fema.gov/benefit-cost-analysis for more information. 

https://www.fema.gov/benefit-cost-analysis
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postpone a marginal unit of current consumption in exchange for more future consumption.” Still others 

use the marginal social rate of return on private investment, also termed the marginal social opportunity 

cost of capital. See Appendix H for more discussion on discount rates, and how they are handled in the 

Interim Study. 

3.10. METHODS TO QUANTIFY BUSINESS INTERRUPTION 

LOSSES 

Disasters can cause costly BI losses. The inherent interdependencies across various sectors of the economy 

further exacerbate the direct effects of disruptive events, often resulting in significant ripple effects. A 

survey by Webb et al. (2000) indicated that the direct and indirect BI losses triggered by disasters can be 

as significant as the magnitude of the resulting physical infrastructure and property damages, and 

represent key contributors to disaster risk. McMahon and Friedman (2016) pointed to just-in-time 

inventory management systems as aggravating supply-chain losses. Notably, Allianz Global Corporate & 

Specialty (2015) asserted that BI losses to date account for a much higher percentage of the total loss than 

they did a decade ago. A more recent study by Varney (2016) further emphasized that BI losses have been 

ranked in the top spot of business risks four years in a row. In estimating BI losses, one must understand 

the magnitude and extent of linkages that exist across interdependent sectors of the affected regional 

economy. 

Wassily Leontief was awarded a Nobel Prize in Economics in 1973 for what became known as the input-

output (IO) model for the economy (Leontief, 1936). Miller and Blair (2009) provided a comprehensive 

introduction of the model and its applications. Leontief’s IO model described the equilibrium behavior of 

both regional and national economies (Isard, 1960). The IO model is a useful tool in economic decision-

making processes used in many countries; it presents a framework that is capable of describing the 

interactive nature of transactions among economic systems. Extensions and current frontiers on IO analysis 

can be found in Dietzenbacher and Lahr (2004). It is worth noting that the traditional use of IO analysis for 

estimating the effects of economic shifts (e.g., changes in consumption) has been extended to other 

applications, such as disaster risk management, environmental impact analysis, and energy consumption, 

among many others. For example, IO analysis was used to estimate the economic impacts of the 

earthquake-induced disruption of lifelines in the conterminous United States (Applied Technology Council 

et al., 1991) and can be linked with the direct building occupancy losses that can be extracted from Hazus. 

(FEMA developed the Hazus software to estimate potential losses in disasters.15) 

The IO model and an extension known as computable general equilibrium (CGE) analysis are two of the 

most popular methods typically used in evaluating the efficacy of resilience management to reduce BI and 

other economic losses in interdependent sectors. Rose (2009) provided detailed reviews of economic 

resilience definitions, categories, and enhancement strategies. Furthermore, innovations in disaster 

resilience policy and practical applications to workforce, infrastructure, and economic sectors have been 

                                                 
15 See https://www.fema.gov/hazus/ for more information. 

https://www.fema.gov/hazus/
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developed by the New Zealand research and consulting group Resilient Organizations (2017). To 

complement rebuilding efforts in the aftermath of disasters, Finn et al. (2016) explored the concept of 

citizen-based planning and long-term resilience thinking as applied to communities hit by Hurricane 

Sandy. CGE analysis offers a more complex modeling framework for assessing the impacts of economic 

and disaster resilience policies (Rose and Liao 2005). It shares the capabilities of IO models in itemizing the 

effects of a disruptive event across interdependent sectors. In addition, CGE’s explicit inclusion of prices 

and input substitution via elasticity parameters has the potential to more accurately describe the efficacy of 

strategies for allocating constrained resources, with the aim of minimizing BI and other economic losses. 

Nonetheless, the estimation of BI losses using IO modeling and data analysis are more practical, because 

CGE models are complex, expensive, and not readily available for small geographic areas. The U.S. Bureau 

of Economic Analysis (BEA) is the agency primarily responsible for releasing the official IO accounts for the 

United States at both national and regional levels. 

Note that, in some cases, Hazus software cannot be used to estimate BI losses, e.g., for designing to 

exceed I-Code requirements for seismic design of new buildings. Chapter 4 presents a customized IO 

model to deal with such cases. 

3.11. METHODS TO QUANTIFY SOCIAL IMPACTS 

Though it has been more than a decade since the 2005 Mitigation Saves study, little, if any, advancement 

in methodologies for quantifying societal benefits of hazard mitigation has occurred. In a 2014 review of 

studies focused on BCA, Shreve and Kelman (2014) reviewed 28 studies that assessed the benefits and 

costs of mitigation, highlighting both what was included in the analysis and the limitations of the study. 

Based on the data presented, few studies included societal benefits when analyzing the BCR. In the few 

studies in which BCR was included, avoided losses of life were primarily listed as the major societal benefit. 

The article noted a few exceptions that broaden the analysis to include health impacts and displacement. 

When specified, the authors of these studies almost always acknowledged omitting social benefits; most 

often because they were beyond the scope of the project. 

The Interim Study aims, among other things, to include some broader social benefits beyond those 

included in the 2005 Mitigation Saves study. One of the major limitations of including these types of costs 

is that they often require significant primary research that is beyond the scope of the project. However, 

some recent work by Sutley et al. (2016) led to the development of a methodology to include PTSD costs. 

This work analyzed data to determine a cost-benefit for earthquake structural mitigation in the City of Los 

Angeles, integrating a methodology for inclusion of PTSD costs. The method used in the Interim Study is 

modeled on the work by Sutley et al. (2016a, 2016b). 

In the Interim Study, the project team used a review of the literature to set the rate of PTSD at each 

damage state to be the equivalent of a severe injury, that is, in Hazus’ injury level 3. While the Hazus injury 

scale is problematic to map to abbreviated injury scale (AIS) categories, for consistency, the project team 

used the same mapping as the 2005 Mitigation Saves study. 
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The project team determined the costs of PTSD based on the calculated PTSD rate and estimated costs for 

treatment, absenteeism, and cut back days. The team estimated the cost of treatment at $5,400 per year 

based on a study on veterans conducted by the Congressional Budget Office (CBO, 2012). Jennings (2015) 

calculated costs of absenteeism and cut back days as a function of the annual number of work days lost 

(Kessler and Frank, 1997) and mean salary of the population. 

The rate of PTSD also is probably affected by age, ethnicity, family structure, gender, income, and other 

factors that may be impractical to address in the Interim Study. See, for example, Jennings (2015) and 

Sutley et al. (2016).  

It is important to note that Sutley focused only on earthquakes in the city of Los Angeles, and used 

socioeconomic data from the U.S. Census Bureau (USCB). However, a review of rates of PTSD after 

hurricanes (Perilla et al., 2002; Galea et al., 2008) and floods (McMillen et al., 2002; Norris et al., 2004) 

supported using the same rates across hazards. The project team modified this method for inclusion in the 

Interim Study, as discussed later. 

3.12. METHODS TO QUANTIFY OTHER INTANGIBLES 

The project team addressed other intangibles, such as environmental damage and loss of cultural value 

through damage to historical buildings, with benefit-estimate-transfer approaches. These vary by the type 

of benefit to be recognized: recreational water quality; drinking water; outdoor recreation trips; hazardous 

waste; wetlands; aesthetics; health and safety benefits from underground power lines; and cultural and 

historical resources. (See Appendix J of the 2005 Mitigation Saves study for details.) 

3.13. LAND USE PLANNING TO REDUCE FLOOD HAZARD 

Flood risk can be reduced through land-use planning. Different land use types, such as green spaces and 

wetlands, can collect water and mitigate flooding. Conversely, development that is heavy on asphalt and 

concrete creates impervious surfaces, increasing runoff, flood velocity, and damage potential. 

Infrastructure development can affect the height of flooding upstream or downstream. The NFIP does not 

allow development in floodways that would raise the BFE upstream or downstream by more than 1 foot 

(International Code Council 2014). Floodways are the channel of a river or other watercourse and the 

adjacent land areas that must be reserved in order to discharge the base flood without cumulatively 

increasing the water surface elevation more than a designated height. Because of the way the NFIP maps 

floodways, the NFIP allows new development in the SFHA (the 1% annual chance floodplain) to increase 

flooding by 1 foot. The I-Codes do not allow development to increase the BFE at all (International Code 

Council 2014). 

The Association of State Floodplain Managers (ASFPM) advocates a policy of no adverse impact—

development should not increase flood risk, increase costs, or lower water quality for other people or 

structures in the watershed (2016, 2003). ASFPM has many examples of flood mitigation management that 

can help a community satisfy the no-adverse-impact policy. These measures include removing or 
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relocating structures from floodplains; preventing development in floodplains; zoning areas of land for 

particular uses such as agriculture and green space; preserving wetlands; improving water drainage and 

storage; using green infrastructure (e.g., parks and urban greenways) and materials; and reducing the 

coverage of impervious surfaces.  

Integrated water resources management and its offshoot integrated flood mitigation (IFM) provide a 

framework for reducing flood damages while promoting economic, social, and ecological benefits. This is 

gaining favor over a gray-infrastructure strategy of relying on dams and levees to attempt to contain rivers 

and prevent flooding altogether (e.g., Santoto et al., 2013). While these structural measures may still be 

used, other measures are also available to distribute and absorb water flow while limiting the amount of 

infrastructure in the path of flood waters. IFM plans recognize that a river is a complex system, and all 

parts of it require consideration. Interactions between water, vegetation, and soils contribute to changes in 

stream velocity that can have impacts at points upstream or downstream. 

Owners of properties that have sustained significant flood damage have the option to allow the 

government to acquire the property, also known as a buyout. FEMA works with state governments to 

finance this action. The owner receives the fair market value for the property. The property is demolished, 

permanently avoiding future damages and allowing the floodplain to absorb more water without 

damaging other structures.  

Land use decisions are generally made at the state and local level. However, though land use planning 

and floodplain management are conducted by municipalities and states, floods are not restricted by 

political boundaries. 

The NFIP’s CRS provides incentives for a wide variety of mitigation measures. Communities can earn a 

reduction in flood insurance premiums by implementing these measures. Over 1,000 communities 

participate in the CRS. This is less than 10% of the communities in the NFIP, but nearly 70% of NFIP policies 

are in CRS communities. Florida and other parts of the southeastern United States have the highest 

participation in the CRS. 

While the costs of property acquisition and demolition or relocation are high, future losses are completely 

avoided. Acquired land may be used for public spaces such as parks, creating additional co-benefits. 

FEMA has participated in the acquisition of several thousand properties over the past decade (Federal 

Emergency Management Agency 2017b, Association of State Floodplain Managers 2016). However, there 

are over 5 million properties that have NFIP policies (Federal Emergency Management Agency 2016a), so 

relocation and acquisition account for a small percentage of mitigation actions taken. 

Nature-based solutions or green infrastructure offer some ability to adapt to changing flood risks. Green 

infrastructure also offers many benefits and opportunities for recreation, ecological services, and economic 

development (Kousky and Walls, 2014; Association of State Floodplain Managers 2003) over gray 

infrastructure, such as the use of tunnels and wastewater treatment plants to collect and discharge storm 

water. Gray infrastructure has both high initial costs of development and maintenance costs. It is inflexible 
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and could exacerbate flooding if its limits are exceeded. Green infrastructure is becoming more common 

in either replacing or complementing gray infrastructure, particularly in urban areas. 

IFM strategies may require systemic changes to floodplain management and cause long-lasting 

socioeconomic changes in sectors such as housing, utilities, and transportation (Kundzewicz et al., 2010). 

Redesigning land use code practices for a community may be met with resistance, making communication 

even more important (Association of State Floodplain Managers 2016). 

In one study, FEMA (Federal Emergency Management Agency 2013b) identified 10 success stories of 

integrating hazard mitigation into local planning. The examples were evenly distributed throughout the 

United States and included entire states and individual cities and counties. The actions taken in these case 

studies included improving and coordinating local plans, improving storm water drainage, adding 

sustainable infrastructure, and starting outreach programs. While the benefits of integrating land use 

planning can be substantial, each community has different characteristics and needs, and may choose to 

take different complex actions. Generalizing and quantifying the benefits of land use planning may not be 

possible. 

The 2005 Mitigation Saves study addressed the cost effectiveness of federal buyouts. The federal 

mitigation grants the project team studied for the Interim Study also focused on buyouts in order to 

establish comparable figures with the 2005 study and because, while considered a costly mitigation option, 

buyouts do provide the greatest societal benefit in the form of permanent avoidance of loss. 

3.14. FLOOD RISK MODELING 

Flood risk modeling refers to the process of estimating potential losses and damage for a particular asset 

at risk to a particular flooding event. Assets can include buildings, bridges, utility lines, farms, humans, 

animal stock, and others. A flood risk model can therefore be thought of as a product of the probability of 

hazards occurrence, nature of exposure, and the degree of vulnerability of the elements at risk (Rashed 

and Weeks, 2003). A community can be exposed to flood hazards but, if it has taken measures to lower its 

vulnerability, then it will not experience higher losses. Likewise, a highly vulnerable community will not 

experience any loss if does not actually experience flooding (Rashed, 2005). 

A typical flood risk modeling procedure comprises the following tasks: 

1. Generating a flood hazard scenario, and mapping the extent and intensity of flooding in a region 

based on hydrometeorological data and information about the terrain within the floodplain. The 

scenario can represent a historical occurrence of a flood in a region, or a statistical estimate of the 

probability of occurrence of a flooding event with a particular intensity in that region. 

2. Creating an inventory of the nature and location of all “elements at risk” and assessing their 

vulnerability to flooding according to predefined assumptions about demographics, buildings, 

structures, and other vulnerable elements. The predefined assumptions are typically based on 

historical records that report the degree of damage that elements of the same kind have experienced 
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in the past as a result of flooding. For example, the vulnerability of a particular building type can be 

represented by an empirical damage curve created from recording different degrees of damage this 

type of building has experienced from different flooding events in the past.  

3. Assessing the nature and degree of loss an element of risk may experience as a function of the 

flooding intensity, its vulnerability, and its exposure. The exposure is typically determined by its 

location within the floodplain and its level of inundation. 

In mitigation studies, proper modeling of flood risks is crucial to the proper assessment of mitigation 

strategies. One common way to assess mitigation strategies is through the BCA of mitigation actions, 

where the benefit of an action is estimated in the form of the loss avoided from implementing that action. 

Avoided flood losses are typically estimated by running two scenarios of a flood risk model, one before 

the mitigation action is implemented, and one after its implementation. The difference in the losses 

generated from each scenario reflect the benefit gained from the implementation of the mitigation action. 

BCA has been the principal decision-making technique for water resources planning since the enactment 

of the Flood Control Act of 1936. The primary reason for this is the fundamental framework of rational 

analysis that underpins the comparison of social benefits with social costs of various projects. Though BCA 

data are derived primarily from economic markets, innovations by analysts have enabled economic values 

to be derived for environmental and social amenities and services that were often overlooked in previous 

studies. For example, improvements in multiple-objective water resources planning and management 

pioneered in the late 1950s and early 1960s by the Harvard Water Program preceded the maturation of 

environmental economics as an academic discipline (see Eckstein 1958; Maass et al. 1962). Integration of 

new knowledge in the USACE Principles and Guidelines, which sets the criteria for BCA studies, has been 

fairly continuous (2013). In 2009, the USACE issued its guidance document for a national flood risk 

management program, and has fostered advances in integrated water resources management with 

environmental operating principles (U.S. Army Corps of Engineers 2012). 

As a decision guide for human investment, BCA reveals the most economically efficient choices that 

provide the highest net social benefits to decision-makers. For planners tasked with the challenge of 

mitigating episodic flood hazards, BCA provides analysts with a detailed understanding of what specific 

elements of a mitigation plan or process improve the overall economic viability of any locality (e.g. 

Birchard et al., 2016). While many analysts have pointed out the shortcomings of BCA with respect to key 

intangibles such as the value of human life, the technique has provided decision-makers with a robust 

data-driven approach that is both reproducible and transparent. Similar to the lag time incurred in the 

modernization of building codes, there has been a comparable lag in efforts to keep BCA current with 

new knowledge and improved methods of decision-making. The findings of the Interim Study illustrate 

well the ability of BCA to incorporate a variety of factors deemed important to decision-makers, and 

enable them to make informed choices that are both socially desirable and economically appealing. 

The 2005 Mitigation Saves study used BCA of FEMA mitigation grants and eight community studies. The 

flood module of FEMA’s Hazus software had not yet been fully developed, so other methods were 
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necessary. The 2005 project team calculated BCRs of flood mitigation by identifying the locations of 

buildings affected, calculating the potential for hazards in that location, calculating the vulnerability 

(potential for damage) before and after mitigation, estimating the present value of losses under both 

conditions, and dividing the difference by the cost of mitigation.  

The Interim Study uses Hazus software to conduct BCA of both above-code design and public-sector 

mitigation for riverine floods. The 2017 project team used the flood module of FEMA’s Hazus release 3.2 

software for the Interim Study. (Details of the Hazus loss estimation methodology for the flood hazard are 

described in the Hazus 2.1 Flood Technical Manual (Federal Emergency Management Agency 2006c) while 

key aspects of the model relevant to this project are described in the Interim Study.) 

Hazus components include models for flood hazard, inventory, and damage and loss. Hazus allows users 

to apply default settings and databases for each of the inputs, but it also provides options for 

incorporating detailed data, if available, to reduce the margin of error and thereby expand the potential 

applicability of the model for a broader range of uses.  

The building inventory models the location, characteristics, and property value of buildings in the Interim 

Study area. Except for selected building types such as schools and fire stations, the default Hazus building 

inventory, referred to as the GBS, aggregates to 2010 census blocks in the Hazus 3.2 flood model. The GBS 

inventory is compiled using a variety of data resources such as the 2010 census (to determine building 

count and distribution) and RSMeans (to estimate building replacement costs). Hazus categorizes the GBS 

into seven broad occupancy classes (e.g. residential, commercial, etc.) and 33 subclasses referred to as 

specific occupancies (e.g. single family, manufactured housing, etc.). Hazus has traditionally assumed that 

buildings in the GBS are evenly distributed throughout a census block, but recent releases now apply 

asymmetrically adjusted census block boundaries to better ensure that buildings are more likely to be 

placed in populated areas. That methodology uses 2011 satellite data to clip the census blocks to remove 

typically unpopulated areas such as forests, vacant land, and water bodies. For blocks that are intersected 

by the calculated flood hazard extent this should more accurately estimate the number of buildings 

damaged in those blocks. In general, this reduces estimated losses, particularly in rural areas. 

The square footage of buildings in the default Hazus inventory is estimated using data on the heated floor 

area from the Energy Information Administration (EIA). The area is converted into income groups that vary 

by geographic region. Regional breakdowns of the percentage of buildings that have different occupancy 

types, number of stories, foundation types, age, and other characteristics are downscaled to estimate the 

number of buildings with those properties in each block. 

 

The Hazus Comprehensive Database Management System allows users to supplement or entirely replace 

default inventory with information on specific buildings or to create more accurate aggregated data. One 

particularly useful component of the Hazus inventory is referred to as a user-defined facility (UDF). Hazus 
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requires a UDF to have information on the foundation type, number of stories, first floor elevation, and 

occupancy class of the individual building. 

Hazus uses depth-damage functions to associate the depth of water with the amount of damage a 

building sustains. The functions require information on building characteristics as well as the depth of flood 

waters. The main source of Hazus depth-damage functions (DDF) is the USACE. There are different 

groups of functions for different geographic regions. Each grid cell in the floodplain is assigned the 

appropriate flood depth and resulting damage value for the DDF. The number of cells for each flood 

depth in a census block is used to weight damage at that depth for each occupancy type. This approach 

means that results for individual census blocks may not be accurate, but high and low estimates tend to 

balance out if a larger area, such as a county, is considered. Users can edit the default functions or import 

functions from other sources. Hazus applies the same depth-damage functions to UDF, as it does for the 

GBS. This results in estimates for building loss amount, building damage percent, content loss amount, 

and inventory loss amount. 

Hazus estimates losses in terms of both the cost of rebuilding and replacing buildings and other structures, 

as well as losses from disruption to the community, such as businesses being unable to operate. However, 

not all ripple effects of a disaster on the socioeconomic landscape can be represented. Estimates of direct 

physical damage to the GBS require building occupancy class, foundation type, first floor elevation, and 

flood depth. Hazus uses the DDFs to calculate a damage state for a census block as a percentage of the 

total building value damaged. The building states are separated into different percentage categories to 

aggregate estimates. Estimated building replacement costs are based on the building’s size and 

occupancy class. The contents replacement value of a structure is assumed to be a percentage of the 

structure’s replacement value, depending on the occupancy type. Business inventory values are calculated 

using the building’s annual sales per square foot. The contents replacement value and building inventory 

value are multiplied by the appropriate depth-damage function to estimate losses. 

Restoration time factors into many indirect loss calculations. Tables based on occupancy, flood depth, and 

location relative to the SFHA determine the restoration time in months. This includes the time to repair the 

building, remove debris, approve permits, and inspect buildings. If building damage is at least 50%, it is 

assumed that the building will be demolished and rebuilt (with modifications, if the building is in the SFHA). 

Relocation costs are disruption costs that building owners experience due to moving and renting 

temporary space, depending on the occupancy type. They are incurred when building damage is greater 

than 10%. Business proprietor losses, wage losses, and output (sales) losses are calculated using the 

amount of time to restore function, tables for building occupancy, the square footage of buildings, and 

income recapture. The number of days of employment lost is calculated by multiplying output loss by 

each industry’s employment/output ratio. Rental income losses are calculated using the occupancy, square 

footage, damage state, rental cost, and recovery time. 

Expected annualized loss (EAL), sometime called AAL, can be calculated by running Hazus for multiple 

flood probabilities and summing the product of the probabilities and damages caused. EAL can be 
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compared for scenarios with and without mitigation strategies, such as building elevation or removal, to 

evaluate the losses those strategies would avoid (Kousky and Walls 2014). In the FEMA Region IV losses-

avoided study discussed in Section 3.5 (FEMA 2014e)., it was estimated that losses avoided were 

underestimated by 10 to 20% because of missing data and data refinement. The assumption of perfect 

building code enforcement led to a 5 to 10% overestimate of losses avoided. It is possible to standardize 

estimates of enforcement based on CRS and BCEGS data. That study used lower-, average-, and upper-

bound DDFs to obtain a range of loss estimates.  

Hazus makes many assumptions in all aspects of its analysis, and these can contribute to a high degree of 

model uncertainty and sensitivity (Tate et al. 2015, Kousky and Walls 2014, Federal Emergency 

Management Agency 2006c). Hazus may be best utilized to estimate the magnitude of damage rather 

than make precise predictions (Kousky and Walls 2014). It does not output a measure of uncertainty for its 

flood hazard-related estimates. Hazus gives users the option to use default settings or provide more-

detailed information for several analysis inputs. In general, one would expect that more-detailed user-

defined data would produce more-accurate estimates. However, Tate et al. (2015) found that using a 

combination of default and more-detailed datasets can produce unstable results. Ideally, more detailed 

inputs would always be used, but this is not always possible or practical due to resource availability and 

computation time. 

3.15. ESTIMATING FUTURE GROWTH 

Some costs and benefits change over time as the population grows or moves. The Interim Study attempts 

to estimate costs and benefits decades into the future. As a baseline or minimum, one can project growth 

in new buildings by recognizing that new buildings are added on average at a rate of approximately 0.01 

per year times the existing building stock (e.g., Ravetz, 2008). If a certain census tract has 100 buildings at 

the end of 2016, one can estimate that it will have on average 101 at the end of 2017, 102.01 at the end of 

2018, and so on (101  1.01 = 102.01), or in general 1.01n times the original estimate at the end of n years. 

This simplistic approach does not account for population spread, e.g., people moving into previously 

unoccupied places, or growth in one place differing from the pattern of growth in another, but it is easy. 

Using a more complex approach, the USCB offers state population projections through 2030 based on 

Census 2000 (UCSB 2004). This approach offers the advantage of authoritativeness (USCB) and carries 

some disadvantages: (1) complexity: 50 state-level extrapolations rather than one simple mathematical 

rule; (2) somewhat detached from the value of exposed buildings: change in population is not the same as 

construction of new buildings; and (3) insufficient duration: the analysis requires extrapolating growth of 

the building stock for much more than 15 years. 
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3.16. ALTERNATIVES TO BCA FOR NATURAL HAZARD 

MITIGATION 

For a widely used textbook on engineering economics, see Park et al. (2007). Park and other common 

textbooks identify BCA as one of several approaches to quantify the desirability of an investment. One can 

also estimate ROI, in which one calculates the ratio of net benefits (the difference between benefits and 

cost) to total cost. It measures profitability. A higher ROI means a more profitable investment. It uses the 

same quantities as BCR. Or one can measure the desirability of an investment with an internal rate of 

return (IRR): the discount rate at which the present value of all future cash flow is equal to the initial 

investment or, in other words, the rate at which an investment breaks even. One can measure the 

desirability of an investment with its expected value of utility, a somewhat abstract measure of satisfaction, 

preference, or happiness, usually of an individual, that underpins game theory and Stanford-style decision 

analysis. 
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4. Methodology Employed in This Study 

4.1. ENGINEERING APPROACH TO BCA 

As done in the 2005 Mitigation Saves study, the project team for the Interim Study used an engineering 

approach to estimate BCR. Figure 4-1 and the process below summarize the steps of an “engineering 

approach.” 

1. Exposure data. Acquire available data about the assets exposed to loss. Often these data come in 

formats intended for uses other than those to which the analyst intends to put them.  

 

2. Asset analysis. Interpret the exposure data to estimate the engineering attributes of the assets 

exposed to loss. These attributes (denoted by A) may include quantity (e.g., square footage), value 

(e.g., replacement cost), and other engineering characteristics (e.g., model building type) exposed to 

loss in one or more small geographic areas. Occasionally assets are described probabilistically (e.g., 

the probability P that each asset has some set of attributes A, given the exposure data D, denoted by 

P[A|D]). Combine the data D and the asset model P[A|D] to estimate the probability that the assets 

actually have attributes A, denoted by P[A].  

 

3. Hazard analysis. Select one or more measures of environmental excitation H to which the assets are 

assumed sensitive (e.g., peak wind gust velocity at 33 ft elevation in exposure category C), and 

estimate the relationship between the severity of those measures and the frequency (events per unit 

time) with which each of many levels of excitation is exceeded. The relationship is denoted as P[H|A], 

(e.g., the probability that the environmental excitation will take on value H, given attributes A). 

Combines P[A] and P[H|A] to estimate the probability of various levels of excitation, denoted by P[H].  

 

4. Loss analysis. Select loss measures to quantify, for example, property repair costs, casualties, duration 

of loss of function, etc. For each taxonomic group in the asset analysis, estimate the relationship 

between the measure of environmental excitation H and each loss measure L. This relationship is 

called the vulnerability model, denoted by P[L|H]. Loss measures are usually expressed at least in 

terms of expected value, and often in terms of the probability distribution of loss conditioned on (e.g., 

given a particular level of) environmental excitation. Use the theorem of total probability to estimate 

either the expected value of loss or the probability of exceeding one or more levels of loss, for each 

loss measure. Sometimes one estimates and separately reports various contributors to loss by asset 

class, by geographic area, by loss category, etc. One combines P[H] and P[L|H] to estimate the 

probability of various level of loss, denoted by P[L].  

 

5. Decision-making. The results of the loss analysis are almost always used to inform some risk-

management decision. Such decisions always involve choosing between two or more alternative 
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actions, and often require the analyst to repeat the analysis under the different conditions of each 

alternative, such as as-is and assuming some strengthening occurs. 

 

Figure 4-1: An engineering approach to risk analysis (image credit: Porter 2017, used with permission). 

4.2. BCA FOR MITIGATION ESTIMATES LONG-TERM 

AVERAGES 

This project quantifies the desirability of natural hazard mitigation using BCRs, meaning the ratio of the 

present value of reduced future losses (the benefit) to the added construction cost or retrofit cost of those 

mitigation efforts (the cost). The benefits average over time, considering large and small disasters that may 

occur at any point in time during the economic life of the mitigation measure, and considering the 

likelihood that these events will happen at all.  

The more likely a disaster is to occur, or the more severe its outcomes, the greater the expected value of 

the benefit that mitigation will produce. In the case of a mitigation measure that applies to many buildings, 

the more buildings that are likely to be affected by a disaster during their economic life, the greater the 

calculated benefit, because the benefit represents an average over all the mitigated buildings.  

As a consequence of this averaging process, BCA has an important limitation when applied to natural 

hazard mitigation: a BCR by itself tells the decision-maker nothing about the chance that the mitigation 

measure will actually be needed during the economic life of a building. The rarer the disaster, the less likely 

that a mitigation measure will actually produce value by reducing loss. While the BCR accounts for that 

likelihood through the averaging process, some decision-makers may object to the fact that money is 
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definitely being spent up front to reduce a loss that may never occur to their building, and that the benefit 

of mitigation may only be enjoyed by somebody else, or by nobody at all. 

4.3. CALCULATING AGGREGATE BENEFIT-COST RATIO 

This project aims ultimately to estimate the aggregate nationwide BCR for a suite of natural hazard 

mitigation measures, along with BCRs for subsets of mitigation efforts, such as by peril. Once a sufficient 

number of mitigation strategies and their BCRs are studied, the project team will calculate the aggregate 

BCR for public- and private-sector investment in mitigation by aggregating results from each strategy.16  In 

the case of the 2005 Mitigation Saves study, the overall BCR of 4.0 was calculated based on a sample of 

particular mitigation measures. The sample was scaled up to estimate the benefit of all FEMA-funded 

mitigation from 1993 to 2003. The same scaling-up procedure is used here. Equation 4-1 throughEquation 

4-7 show how that scaling works. The equations can be explained as a four-step process: 

Step 1. Select a sample mitigation effort. Calculate its expected (e.g., average) annualized loss (EAL) 

due to natural disasters in the absence of mitigation strategy i, as shown in Equation 4-1. In the 

equation, λ(x) denotes the mean exceedance rate of environmental excitation x (for example, wind 

speed) to a sample facility; y(x) denotes the mean loss to the sample facility (as a fraction of 

replacement value) when subjected to excitation x absent mitigation strategy i; and V denotes the 

value exposed to loss, absent the mitigation strategy. Note that the vulnerability function y(x) 

represents more than property loss. It also comprises time-element losses, losses associated with 

deaths and nonfatal injuries, loss of employment, and may include a variety of financial, social, and 

cultural losses. Then repeat this calculation for the same facility but under remediated conditions, that 

is, with a mitigation strategy applied. That is, calculate EAL’ (what-if-mitigated EAL) using a what-if-

mitigated vulnerability function y’(x), using the same Equation 4-1. 

Note that some mitigation measures can produce benefits for several different perils, such as 

engineered tie-down systems. Equation 4-1 would be applied separately for each peril and then 

summed to estimate EAL and EAL’ from each relevant peril. Note also that some perils change over 

time: for example, a recent model of California seismic hazard accounts for estimated time 

dependency (Field et al. 2015). SLR changes the coastal flooding hazard and tsunami hazard.  

In some situations, Equation 4-1 involves integration over time. That is, V, G, and perhaps y may also 

be functions of time, so the equation more properly has a second integral over time. The second 

integral is omitted from the equation for clarity, but this work attempts wherever practical to quantify 

the three variables as functions of time and carry out the second integral. For example, where dealing 

with the costs and benefits of designing new buildings to exceed I-Code minima, the project team 

recognized that the quantity of buildings (an aspect of V) grows approximately exponentially. Coastal 

                                                 
16 Given the limited number of mitigation strategies covered in the Interim Study, the project team decided not to 

provide an aggregate BCR at this time to avoid future confusion. 
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flooding hazard (G) will change with local sea level (LSL) rise, which may vary nonlinearly with time. 

This aspect may generate controversy and criticism, so the project team attempted to use the best 

practical science and engineering to model how exposure and hazard will change over time in the 

future. The Interim Study documents reasonable alternatives and explains choices later in the work. 

(Nonstationary vulnerability is more dubious than time-varying exposure and hazard. The temporal 

changes of material strength and stiffness observed in the laboratory, such as with concrete cylinder 

strength, are small compared with uncertainty in vulnerability. The analysis generally assumes 

therefore that engineering vulnerability y remains constant over time.) 

Step 2. Calculate the benefits for an individual mitigation strategy (denoted by bi) over time t, as 

shown in Equation 4-2. In that equation, EAL and EAL’ represent the expected annualized disaster 

losses to a sample facility before and after applying mitigation strategy i. The term r denotes the after-

inflation annual discount rate (which measures the time value of money), and t denotes the number of 

years that mitigation strategy i is effective. Multiply bi by the ratio of nationwide expenditures to the 

expenditures represented by the sample (Ei and ei respectively), as shown in Equation 4-3. The product 

is the nationwide benefit of strategy i (denoted by Bi). Note that Equation 4-2 accounts for the 

possibility that the mitigation measure is never actually used—that the peril does not occur during the 

effective life of the mitigation measure. It says that benefits do not accrue after time t. 

Step 3. Sum over all mitigation strategies (i = 1 to n) for a first-order estimate of the nationwide 

aggregate benefit of all the strategies considered, as shown in Equation 4-4. Add the synergy benefit, 

that is, the benefit that accrues because of interaction between two or more mitigation strategies: 

strategies i and j in the double summation in Equation 4-4, or strategies i, j, and k in a triple 

summation. For example, a facility that was built stronger, with ongoing nonstructural mitigation, and 

uses an up-to-date business continuity plan, is likely to resume business more quickly than one where 

only one or two of those measures have been implemented. The term m in Equation 4-4 represents a 

multiple reflecting the fractional increase in benefit that accrues because of synergies between 

mitigation measures.  

Step 4. Calculate the aggregate and per-strategy BCRs. The aggregate nationwide cost is calculated 

similarly to the first-order benefit, as in Equation 4-5. The ratio of the aggregate nationwide benefit to 

the aggregate nationwide cost is the aggregate nationwide BC, as in Equation 4-6. The Interim Study 

also includes an estimate of BCRs for individual mitigation strategies, as shown in Equation 4-7. 

𝐸𝐴𝐿 = 𝑉 ∫ −
𝑑𝐺(𝑥)

𝑑𝑥
𝑦(𝑥)𝑑𝑥

∞

0

 

Equation 4-1 
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𝑏𝑖 =
𝐸𝐴𝐿 − 𝐸𝐴𝐿′

𝑟
(1 − 𝑒𝑥𝑝(−𝑟𝑡)) 

Equation 4-2 

 

𝐵𝑖 =
𝐸𝑖

𝑒𝑖
𝑏𝑖 

Equation 4-3 
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𝑛
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𝑛
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𝑛

𝑖=1

+ ⋯ 

Equation 4-4 

 

𝐶 = ∑
𝐸𝑖

𝑒𝑖
⋅ 𝑐𝑖

𝑛

𝑖=1

 

Equation 4-5 

 

𝐵𝐶𝑅 =
𝐵

𝐶
 

Equation 4-6 

 

𝑏𝑐𝑟𝑖 =
𝑏𝑖

𝑐𝑖
 

Equation 4-7 

In the case of values that change over time and accumulate over a geographic area, such as codes in 

which effects change with population, Equation 4-1 can be recast by summing over area A and integrating 

over time t, as in: 
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∞
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) 𝑑𝑡
𝑇

𝑡=0

)

𝐴

 

Equation 4-8 

The ultimate goal is to estimate whether or not natural hazard mitigation is cost effective, but it is only 

practical to calculate BCR for a sample of projects. What can one say about the true, population-wide BCR 

based on the sample? Sums of many uncertain numbers tend to take on a particular probability 

distribution—the familiar bell-shaped curve of the normal distribution. The true population-level BCR is 

related to the sample-average BCR through a quantity called the standard error, which is calculated using 

Equation 4-9. One can use that standard error to estimate the probability that mitigation is actually cost 

effective (e.g., that the population-level BCR exceeds 1.0) using Equation 4-10. That is, Equation 4-10 

estimates the chance that, if one were able to perform a BCA of every mitigation effort and add up all their 

costs and benefits, benefits would exceed costs. The equation assumes that the sample is unbiased; that is, 

on average, if one were to select many different samples, the average of their BCRs would equal the 

population-level BCR. The 2005 Mitigation Saves study found a grant-sampling strategy that is indeed 

unbiased, which will be further discussed in Section 4.9. 

𝑠 =
1

𝑛
´√∑(𝑏𝑐𝑟𝑖 − 𝑏𝑐𝑟̅̅ ̅̅̅)

2
𝑛

𝑖=1

 

Equation 4-9 

 

𝑃[𝐵𝐶𝑅 > 1] = 1 − Φ (
1 − 𝑏𝑐𝑟̅̅ ̅̅̅

𝑠
) 

Equation 4-10 

In Equation 4-10, P[ ] denotes the probability that the statement inside the square brackets is true,  

denotes the standard normal cumulative distribution function, and 𝑏𝑐𝑟̅̅ ̅̅̅ denotes the sample average BCR, 

calculated as shown in Equation 4-11.  

𝑏𝑐𝑟̅̅ ̅̅̅ =
1

𝑛
∑ 𝑏𝑐𝑟𝑖

𝑛

𝑖=1

 

Equation 4-11 
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4.4. SELECTION OF DESIGNS TO REFLECT BELOW-CODE 

PRACTICE 

4.4.1. Below-Code Designs for Wind 

The differences between below-code designs for hurricane wind and the 2018 I-Codes are due to both the 

change in wind hazards identified in ASCE 7-16 and the prescriptive and performance-based requirements 

set forth by the IBC/IRC. As identified in Section 3.3.1, roof design pressure requirements increased 

significantly when comparing pre-Hurricane Andrew construction to 2018 I-Codes. 

The project team used the calculated roof design pressures to choose the Hazus parameters most 

representative of the typical construction at the time. The current Hazus technical manual identifies the 

component resistance values of each mitigation option utilized in their damage functions. For example, for 

single-family residential structures, the roof sheathing with 6d nails, spaced at 6”/12” is assumed to have a 

mean uplift resistance of 61 psf. For the models considered in the analysis with plywood sheathing, the 

mitigation option is chosen where capacity values are greater than the design pressure requirements. In 

some cases, the prescriptive requirements of the IRC will override; therefore that mitigation option is 

chosen. This scenario is repeated for each mitigation option of four model building types.  

For this study, three low-rise commercial structures (a retail strip mall with open web steel joists, a retail 

strip mall with a wood roof diaphragm, and a hotel/motel with a wood diaphragm) and a single-family 

residential structure (single-story, wood-framed) were chosen to represent typical commercial and 

residential construction in the areas of interest (the Gulf and Atlantic Coasts). 

4.4.2. Below-Code Designs for Flood 

The primary differentiator between the baseline/below-code buildings and the I-Code compliant buildings 

is the elevation of the lowest floor. For riverine locations, the I-Codes do not provide any significant 

changes to the NFIP that could be reasonably modeled. In coastal areas, the I-Codes utilize the Coastal A 

Zone, for which IBC incorporates higher requirements since the 2006 version of the I-Codes and for IRC 

buildings has been recognized since 2015. 

Since the majority of buildings are designated as Risk Category II, the Interim Study focused on common 

commercial use buildings and single-family residential buildings to represent savings for the built 

environment. Building types evaluated were: 

 Office building (business), 1-story (2,000, 7,000, and 25,000 square feet): (a) vinyl clapboard over wood 

frame, (b) stone veneer over wood frame, (c) fiber cement over rigid steel, (d) EIFS over rigid steel, (e) 

precast concrete over reinforced concrete, and (f) brick veneer over reinforced concrete 

 Office building (business), 3 stories (5,000, 16,000, and 80,000 square feet): (a) vinyl clapboard over 

wood frame, (b) stone veneer over wood frame, (c) fiber cement over rigid steel, (d) EIFS over rigid 

steel, (e) precast concrete over reinforced concrete, and (f) brick veneer over reinforced concrete 
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 Retail store (4,000, 10,000, and 22,000 square feet): (a) vinyl clapboard over wood frame, (b) fiber 

cement over wood frame, (c) EIFS and metal studs over steel joists, (d) stone veneer over rigid steel, (e) 

brick veneer over reinforced concrete, (f) stucco over reinforced concrete 

 Warehouse (10,000, 30,000, and 60,000 square feet): (a) metal panel rigid steel, (b) pre-engineered 

metal building rigid steel, (c) EIFS over rigid steel, (c) brick veneer reinforced concrete, (d) precast 

concrete reinforced concrete, (e) tilt-up concrete panels 

 One-story house (1,500 and 3,000 square feet): (a) wood siding - wood frame, (b) brick veneer - wood 

frame, (c) stucco on wood frame, (d) solid masonry 

 Two-story house (2,400 and 4,800 square feet): (a) wood siding - wood frame, (b) brick veneer - wood 

frame, (c) stucco on wood frame, (d) solid masonry 

Commercial buildings often are not constructed with basements since this would require them to be dry 

floodproofed. In the Interim Study, commercial buildings are assumed to have slab-on-grade foundations 

with a stemwall perimeter wall. Any mechanical, electrical, or plumbing system that was located below the 

slab would have been protected by the stemwall and fill from flood damage. This means that for each 

building the primary exposure was when flood elevations met or exceeded the lowest floor elevation. 

Residential buildings were evaluated in a similar manner to the commercial buildings. Note that the size of 

the single-family residential buildings matched the first phase of this project for consistency. The 

foundation systems for the residential buildings were a mixture of stemwall foundations with a slab-on-

grade over the enclosed fill material and crawlspace foundations using masonry block with interior 

masonry piers. Since the NFIP requires that all materials below the lowest floor be flood damage-resistant 

materials, the project team assumed that any flooding damage below the lowest floor elevation was 

minimal. Since approximately 18 different variations in floodplain cross section were evaluated, foundations 

were applied based on the cross slope of the floodplain. In shallow floodplains where the difference in the 

10-year flood and 100-year flood were less than 3 feet, the project team assumed that homes would be 

constructed on stemwall foundations. When the floodplain slope resulted in the difference between the 

10-year flood and 100-year flood was between 3 feet and 5.5 feet, a 50-50 split was applied to stemwall 

foundations and crawlspace foundations. Floodplains where the difference in the 10-year and 100-year 

flood exceeded 5.5 feet used only crawlspace foundation. This assumption was used to reflect that in 

steeper cross-section floodplains it was more cost-effective to use a crawlspace and to avoid the cost of fill 

placement, even in foundations compliant to the BFE. 

4.4.3. Below-Code Designs for Earthquake 

Seismic design procedures have appeared in model building codes since the 1927 edition of the UBC. 

They have grown in length and complexity, in several general ways: 

1. By accounting for regional seismicity through the use of zone maps. 

2. By accounting for local differences in seismicity first through the introduction of near-source terms 

and then through seismic microzonation, via several iterations of maps of rare shaking, maps 
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produced the U.S. Geological Survey (USGS) National Seismic Hazard Mapping Program (NSHMP) 

and its predecessors. 

3. By accounting for resonance of the building with earthquake ground motion, first through number 

of stories, and later via height and lateral force resisting system. 

4. By accounting for the ductility capacity of the building’s lateral force resisting system, with a gradually 

expanding list of systems, each with its own estimate of ductility capacity. 

5. By accounting for the societal importance of a building through an earthquake importance factor I, 

later denoted Ie. 

6. By accounting for the amplification of ground motion associated with lower shear wave velocity in 

surficial soil versus rock. 

7. By changing from ASD to load and resistance factor design.  

8. By changing from no explicit reliability goal, to one of low probability of life-threatening damage 

under shaking with a factor of 2,500-year shaking (as expressed in the reliability index underlying 

seismic design using load and resistance factor design), to low probability of collapse during the 

building’s design life (as proposed by Luco et al. 2007).  

9. By controlling displacement, again using a parameter that depends on lateral force resisting system. 

As detailed in Appendix M, one can quantify a long-term average trend of increasing strength of 

approximately 4% per 3-year code cycle, or 50% per 30 years. In the approximately 40 years during which 

the UBC and IBC limited deflection, they generally increased the design base shear. While the base shear 

increased, allowable deflection did not. Since stiffness is commonly defined as force (here, design base 

shear) per unit of displacement (here, allowable deflection), the increase in strength has required a 

proportional increase in stiffness. 

Below-code designs are therefore taken here as buildings just like those constructed to comply with the 

2018 I-Codes, but to reflect design to strength and stiffness requirements approximately like 30, 60, and 90 

years ago. That is, with current values divided by 1.5, 1.52, and 1.53, or equivalently, multiplied by 0.67, 0.44, 

and 0.30, respectively. See Appendix K for details. 

4.5. SELECTION OF DESIGNS TO EXCEED 2015 I-CODE 

REQUIREMENTS 

The previous section covered the calculation of BCRs for ex post mitigation, e.g., mitigation after a building 

is built (often called retrofit or remediation). This section examines ex ante mitigation, that is, mitigation 

prior to the event, in this case, constructing new buildings to exceed the current local minimum 

requirements. The math is largely the same. 

Specifically, estimate the benefits and costs that would result from designing buildings to exceed I-Code 

requirements using the methods described in Section 4.1. For all perils except fire at the WUI, the project 

team estimated the costs and benefits of exceeding I-Code requirements relative to I-Codes published by 

October 2016. For simplicity, the team considered only the ordinary buildings—Risk Category II buildings 
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under ASCE 7-10. The project team then estimated EAL in all the categories listed in Chapter 0. To select 

design options, the project team weighed the advantages and disadvantages of options discussed in 

Section 3.2 and selected those shown in Table 4-1 for analysis. 

Table 4-1: Selected mitigation strategies for exceeding I-Code requirements. 

Peril Selected design option Rationale 

Flood and 

storm surge 

Increase elevation beyond the 1 foot 

required above BFE. 

Straightforward to implement both in 

calculations here and in practice. All designers 

possess the necessary skills.  

Earthquake Increase ASCE 7-10 strength and 

stiffness requirements by a factor Ie.  

Straightforward to implement both in 

calculations here and in practice. All designers 

possess the necessary skills. Growing support 

within the earthquake engineering community 

and a few informed building owners. Relevant 

to perhaps 82% of new buildings in seismic-

prone areas that have adopted disaster-

resistant building codes. Addresses both 

structural and much (though not all) 

nonstructural damage. 

Hurricane 

wind  

IBHS FORTIFIED Home and 

Commercial Hurricane program.  

Straightforward to implement both in 

calculations here and in practice. Well 

documented. Growing support and 

implementation within hurricane-prone 

regions. 

Fire Adopt ICC 2015 IWUIC Strong support from the ICC. Well 

documented. Straightforward to implement. 

Readily calculated.  

  

4.6. SELECTION AND ANALYSIS OF PRIVATE-SECTOR 

RETROFIT MEASURES 

4.6.1. Selection and Analysis of Flood Retrofit of Single-Family Dwellings 

4.6.1.1. Benefit Categories Considered for Flood Retrofit 

Table 4-2 summarizes the benefit categories that seem to result from each retrofit option considered here. 

More information on the benefit categories is provided in Section 5.5. 
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Table 4-2: Benefit categories associated with each flood retrofit option 
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Acquisition 
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Retrofit elevation 
✔ ✔ ✔ ✔ ✔  ✔  

Wet floodproof basement 
✔        

Elevate air conditioning and heat pump; relocate ducts 
✔        

Relocate furnace and water heater 
✔        

✔ - Indicates a category of benefits or avoided damage considered for the mitigation option 

The project team was unable to quantify some important hazard and benefit issues. At some point, flood 

hazard may change because of future development, changes in flood protection, and changes in 

precipitation rates, but it was impractical to consider these issues here. Households’ socioeconomic status 

affects their ability to recover from flooding, but the project team could not quantify that effect in such a 

general study. As with other mitigation measures considered here, flood retrofit can provide a number of 

intangible benefits such as peace of mind and protection of heirlooms and pets, but the project team was 

unable to estimate the monetary value of these benefits.  

Flood mitigation differs from seismic and hurricane wind mitigation in that the flood risk quickly varies in 

space, over tens or hundreds of feet horizontally and a few feet vertically. By contrast, wind and seismic 

risk are more regional in nature. Therefore, retrofit options, including the acquisition (also called buy out) 

of a property, were selected based on factors of commonality of the measure and the ability to model the 

risk reduction achieved by its implementation. The study focused on mitigating single-family houses, which 

represent a large portion of the private-sector buildings vulnerable to flood risk and which receive a 

significant amount of government grant funding. Additionally, the study primarily addresses riverine flood 

risk with no focus on coastal flood risk.  The applicability of these measures in areas subject to coastal 
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flooding is dependent upon the consideration of flood conditions, such as waves of higher velocity storm 

surge. Some measures, such as wet floodproofing of basement areas, may be less applicable than filling of 

basement areas due to the risk of collapse during storm surge. This study evaluated flood risk based on 

inundation flooding and, as indicated in Section 5.5, does not address velocity flows.   

The primary mitigation measures studied were acquisition of flood-prone properties, retrofit-elevation of 

properties, wet floodproofing of basement areas, and utility retrofits. Retrofits present some regulatory 

challenges within floodplains.  All buildings within the Special Flood Hazard Area (SFHA) are subject to 

substantial-improvement requirements. FEMA defines substantial improvement as “any reconstruction, 

rehabilitation, addition, or other improvement of a structure, the cost of which equals or exceeds 50 

percent of the market value of the structure before the start of construction of the improvement. This term 

includes structures that have incurred substantial damage, regardless of the actual repair work performed.” 

(https://www.fema.gov/floodplain-management-old/substantial-improvement) If the cost of the retrofits 

meet or exceed the substantial-improvement threshold, the building would need to comply with the 

current locally-adopted floodplain management requirements, which must equal or exceed the NFIP 

minimum requirements.  Basically, if the consideration of a costly retrofit means that a residential building 

would be substantially improved, the owner then would need to elevate the building to comply with NFIP 

requirements.  It was therefore only appropriate to consider either acquisition, retrofit elevation, or low 

cost retrofit options. This study did not consider retrofit options that would either violate the NFIP 

minimum requirements or potentially increase the safety risk to occupants. 

Additionally, this study did not consider other retrofit 

measures such as dry floodproofing, berms, and ring 

levees as none of these measures can be used to bring a 

non-compliant building into compliance with current 

floodplain management requirements. Dry 

floodproofing, which also could include the use of 

emergency house wraps or sandbags, was considered 

too risky in many instances since many of these 

approaches depend on wall systems as one of the 

structural components.  Wall systems would need to be 

carefully evaluated for strength and could require costly 

retrofits to be considered sufficient to resist flood loads.  

Under high flood conditions, these systems could either 

put occupants at risk or result in significant structural 

damage to the building.  These measures also are 

subject to overtopping, meaning that the mitigation measure is nullified once floodwaters exceed the 

flood protection elevation.  These measures may be applied on a small scale for nuisance flooding in areas 

outside the SFHA, but the focus of the study was to address the risk to buildings that are within the SFHA 

and have the lowest floor or components currently below the BFE. 

Allowable Residential Dry Floodproofing 

Although, it could be noted some 

communities within the NFIP allow the dry 

floodproofing of residential buildings, it 

must be pointed out that this represents 

approximately 54 communities that have 

received exemptions from FEMA out of 

over 20,000 total NFIP communities (FEMA 

2018). This suggests that where dry 

floodproofing is allowable for residential 

properties, it is not a statistically significant 

percentage for a national study. 

 

https://www.fema.gov/floodplain-management-old/substantial-improvement
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4.6.1.2. Selection and Analysis of the Building Types for Flood Retrofit 

Buildings analyzed in this study represented both one- and two-story single-family dwellings using 

common construction approaches. 

 One-story house (1,500 square feet and 3,000 square feet): (a) wood siding - wood frame, (b) brick 

veneer - wood frame, (c) stucco on wood frame, (d) solid masonry 

 Two-story house (2,400 square feet and 4,800 square feet): (a) wood siding - wood frame, (b) brick 

veneer - wood frame, (c) stucco on wood frame, (d) solid masonry 

The use of the square foot sizes of houses and construction types were consistent with the approach used 

in previous interim studies within this report. However, it should be noted that according to the U.S. 

Census Bureau data, the average year-round house size is approximately 1,500 sf, while the average 

owner-occupied house is approximately 1,800 sf. Therefore, though newer houses are larger than older 

ones, the flood retrofit analysis should focus on older houses constructed prior to an area being mapped 

in the SFHA. The project team assumes, once an area is mapped, that the majority of houses will be 

constructed to a compliant elevation and will have a significantly lower flood risk than existing houses. 

The project team evaluated house foundations as both slab-on-grade buildings, where the lowest floor is 

the top of the floor slab, and crawlspace and basement foundations. For some mitigation measures, only 

the evaluation of crawlspace and basement foundations mattered as the flood retrofits only applied to 

houses with basements or crawlspaces. 

The project team additionally used lowest floor elevations as a key elevation reference point for the 

majority of the flood retrofit measures. For acquisition and retrofit elevation the lowest floor became a 

reference for the depth-damage function (see Section 5.5) and as a reference point from which to 

associate a depth-damage function for other retrofit measures. The analysis evaluated buildings with a 

lowest floor a BFE-1 through BFE-4 for all flood retrofit options, but also included BFE-5 through BFE-8 for 

acquisition projects. 

Similar to the study conducted on the value of buildings meeting the 2018 IBC and IRC, this study used 

hypothetical floodplains based on numbered A Zone data and therefore discusses mitigation projects 

based on their lowest floor relationship to BFE rather than specific geographic areas. See Section 5.5 for 

more information. 

4.6.1.3. Selection and Analysis of the Acquisition of Single-Family Dwellings 

The acquisition of flood-prone properties represents the most effective flood mitigation option.  This 

approach removes the potential for a property to experience flood damage in perpetuity and assumes 

that the community permanently will avoid using the land in ways that would result in flood damage. Such 

mitigation often exists in direct comparison with retrofit elevation when communities are looking for more 

permanent flood protection measures.  Acquisition or “buyout” means a property owner would financially 

be compensated for the fair market value of the property and relocate to another property – ideally 
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outside the SFHA.  The costs associated with property buyout include not only the value of the single-

family house, but also the lot and any improvements to it, thereby usually making it more costly than a 

retrofit elevation.  By comparison, the acquisition and subsequent demolition of the property means that 

there will be no flood damages to it.  Retrofit elevations still have residual risk since the house is still subject 

to flooding and can experience significant damage once the flood elevation exceeds the elevated lowest 

floor (BFE +1 for this study).  Although there is a significantly lower probability of this occurring, it still 

represents residual risk. 

The evaluation of all types of single-family dwellings covered potential flood damage from BFE-1 to BFE-8.  

The cost to acquire the property was not adjusted based on 

the risk of flooding because data on reduced property 

values for buildings subject to flooding did not appear to 

sufficiently be stratified to accommodate values on the 

reduced value per foot below the BFE.  Costs, based on third 

quarter data from the Federal Housing Finance Agency 

(FHFA) dated October 2018, also considered U.S. national 

data as well as the FHFA New Release dated January 23, 

2019. 

Readers should consider that, although this study evaluates 

the cost effectiveness of acquiring single-family houses, an 

effective overall mitigation strategy also should take into 

account similar benefits for acquiring various types of 

properties.  Manufactured homes, townhouses, and 

apartment buildings are other types of residential properties 

that may be viable acquisition projects.  In fact, acquisition 

could solve many problems arising from trying to retrofit 

apartments and townhomes as elevation could be difficult 

and dry floodproofing is not a viable option for residential 

properties.  Elevation as an option for manufactured homes 

depends on the location as it could result in increased risk of 

wind or seismic damage. 

4.6.1.4. Selection and Analysis of Retrofit Elevation of Single-Family Dwellings 

The team evaluated retrofit elevation projects in two primary categories, slab-on-grade and crawlspace 

foundations, to appropriately designate the cost of elevation. For cost purposes, the assumption stands 

that houses would be elevated from an existing condition of BFE-1 through BFE-4 up to an elevation of 

BFE+1, that is, base flood elevation plus 1 foot of freeboard. Post-retrofit elevation was based on the 

requirements for the lowest floor to be in a post-mitigation minimum elevation that matches the 

requirements of the 2015-or-later International Residential Code and ASCE 24. A significant number of 

Comparing Acquisition with Retrofit Elevation 

Readers should note that acquisition was not an 

initial mitigation measure scoped for the study 

and it was added at the request of the 

Association of State Floodplain Managers 

(ASFPM).  Due to the approach used to 

calculate BCAs for acquisition, this was not a 

significant change in scope.  Retrofit elevation 

scopes to be studied from BFE-1 to BFE-4 since 

considering the additional height would require 

significant modifications to the cost-estimating 

approach to reflect the necessary changes to 

foundation elements, including block thickness, 

additional reinforcing, and changes in footing.  

Readers should consider the differences in the 

initial lowest floor elevations considered when 

comparing acquisition to retrofit elevation. Study 

of the cost effectiveness of retrofit elevation for 

houses with a lowest floor below BFE-4 is a topic 

being considered for future study. 
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grants from FEMA and HUD would require a minimum elevation meeting either the code/engineering 

standard minimum elevation or the local floodplain ordinance, whichever is higher. To calculate a national 

value for the reduced flood damages associated with retrofit elevation, this approach represents an 

assumed common final elevation for the lowest floor. While it is possible for some retrofit elevation 

projects to exceed BFE+1, others may be allowed to use BFE depending on the funding source. All 

elements below the lowest floor have been assumed to be compliant with the use of flood damage-

resistant materials and an appropriate number of flood openings.   

Additionally, the team assumed that homes with a crawlspace were constructed on wood-framed floor 

systems with either a concrete masonry unit (CMU) block perimeter wall or a poured concrete perimeter 

wall foundation.  The retrofit elevations utilize a series of steel-lifting beams and a series of synchronized 

lifting jacks to elevate the house.  After the extension of jacks, large stacked timbers act as cribbing to 

support the elevated house, while the jacking system is reset. In a series of small lifts, the house 

incrementally elevates to its final position.  In some instances, it is possible to reuse portions of a 

foundation, but this study assumed that the older foundation would need to be removed and a new one 

constructed.  While these assumptions could impact the price of construction, there was no consistent way 

to assume the percentage of foundations that are sufficient to remain as compared with the number that 

would need to be replaced. 

Slab-on-grade (SOG) single-family houses present additional challenges.  Often the slab possesses 

minimal reinforcement to protect it from cracking caused by thermal expansion and contraction and the 

minor soil changes that come with moisture.  This minimal reinforcement, however, is insufficient to 

structurally support a slab, when it is only buttressed by a perimeter crawlspace wall or interior piers.  

Elevating such a slab violates concrete design standards and should be avoided for the safety of the 

occupants.  In such instances, the walls and roof of the house become elevated and disconnect from the 

slab.  To thoroughly retrofit SOG single-family dwellings, the construction of a new wood-framed floor 

system beneath the walls must be accompanied by piers to support the floor system, typically on top of 

the slab.  In some areas, soil conditions dictate the structural reinforcement of a slab, which sometimes can 

be supported by below-ground piles.  The elevation of a slab with the walls attached thus is dependent on 

sufficient reinforcement.  The construction may then allow for a new foundation system that has sufficient 

bearing capacity to support the elevated slab house above. 

As previously stated, this study only evaluated elevations between BFE-1 and BFE-4.  There was significant 

debate on whether additional buildings below BFE-4 should be considered and whether the study should 

also evaluate buildings elevated to a height of eight feet regardless of the elevation to which the building 

initially was constructed.  Even though homeowners often want to elevate to a height of eight feet or an 

entire story to gain additional parking space, this proposition posed two problems.  First, the issue of 

owners reconverting spaces such as below-house garages into livable space and thus increasing the flood 

vulnerability of the building.  Although this is not the case with every building, these conversions do occur 

and local officials often do not become aware of it until a flooding event damages the reconverted spaces. 

Often this is because a homeowner chooses to elevate their house and then sells it, and the new 
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homeowner is not aware of the restrictions associated with the enclosure below the lowest floor. The 

second issue is that insufficient data exists to understand the percentage of people who elect to elevate 

the additional height above BFE+1 to have sufficient space for parking. This group would be a 

combination of people personally funding the entire elevation and those using grant money to have their 

house lifted.  Additionally, it was not feasible within the confines of the study to calculate the additional 

property value achieved by having parking below the house as compared with the available parking prior 

to the elevation.  It is important to remember that, while residents may apply the space for other uses, the 

study only wants to consider allowable below-lowest-floor functionality – parking, building access, or low-

value contents storage. Single-family houses below BFE-4 may be unreasonable to consider based on the 

increasing number of variables that this creates.  Each additional foot below BFE requires the development 

of a cost estimate, which must consider the size of the structure, height above ground of the lowest floor 

in the existing state, and total foundation height after the elevation.  Higher elevations can require 

additional structural considerations such as thicker foundation walls as well as piers and other 

reinforcement requirements. 

The project team estimated costs using a cost-estimation tool that counts fixed costs (i.e., costs that do not 

depend on house size) and those that vary with the size of the building, such as length of foundation walls, 

foundation height, number and size of interior piers, and number of required flood openings.  These cost 

estimates were compared with FEMA P-259, Engineering Principles and Practices of Retrofitting Flood Prone 

Residential Structures 3nd Edition (Federal Emergency Management Agency 2012e) and inflated to 2018.  

Additional comparisons were made with data provided by Louisiana State University Department of 

Construction Management. Both sources agreed with the project team’s cost estimates, given adjustments 

to meet the needs of a national study.   

4.6.1.5. Selection and Analysis of Wet Floodproofing Basements of Single-Family Dwellings 

Wet floodproofing of basements represents a less expensive retrofit project that homeowners could 

pursue themselves. Wet floodproofing is defined here as permanent measures that allow floodwater to 

flow through a section of building and only require cosmetic repairs.  This study evaluated retrofits to a 

basement area that is subject to flooding when floodwaters enter through a basement at-grade window 

and water fills the space.  Basements for the purposes of this study are defined as space with a floor that is 

below grade on all sides. Wet floodproofing also could be done on walk-out basements or crawlspaces to 

reduce flood damage.  Basement areas often are finished to varying degrees with either drywall on the 

exterior walls and on interior partitions. They can include some floor covering over the floor slab.  

Additional areas of common damage are insulation, interior finishes, and electrical systems that are not 

designed for contact with floodwater.  The present study did not consider plumbing fixtures in the 

basement area, such as basement-level bathrooms. The wet floodproofing evaluation did not consider the 

relocation of a furnace, water heater, ductwork for upper floors, which are treated separately here.  
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The project team used RSMeans Costworks to estimate the cost to replace common wall coverings with 

more flood-resistant materials and to move basement-level electrical systems.  Flood openings also were 

incorporated into the cost of the system to reduce the potential for a structural failure in a basement wall 

when floodwaters rise above the exterior grade. These costs were then compared with costs 

independently developed by FEMA in FEMA P-259, Engineering Principles and Practices of Retrofitting 

Flood Prone Residential Structures 3rd Edition (Federal Emergency Management Agency 2012e) and 

inflated to 2018. 

4.6.1.6. Selection and Analysis of Utility Retrofits of Single-Family Dwellings 

The utility retrofits addressed here refer to modifications to the mechanical and plumbing systems for 

components below the lowest floor.  This analysis evaluated the cost effectiveness of relocating ductwork 

from the underside of wood-framed floor systems to a location above the lowest floor; elevation of air 

conditioning or heat pump units that are commonly located beside houses; and relocation of furnaces and 

water heaters from basements. These mitigation measures were considered for houses that would not be 

elevated. They focus on common retrofits that would not result in a designation of substantial 

improvement. The analysis focused on flood damage to the mechanical and plumbing equipment and the 

benefits resulting from elevating the equipment at least to the lowest floor level of the house.  Although 

maintaining this equipment may make the houses more comfortable, the analysis did not incorporate 

displacement from the houses as part of the total avoided flood damage. 

Heating and air-condition ductwork commonly is installed on the underside of the lowest floor in houses 

with crawlspaces or basements.  In one-story houses, this ductwork often can be relocated into an attic 

space.  The furnace or air handler also can be relocated to the attic.  Two-story homes are more difficult to 

retrofit. The second-story ductwork already is located in the attic area, and the first-floor ductwork usually 

is located on the underside of the first floor. Retrofitting the first-floor ductwork often requires the addition 

of furring around the first-floor ductwork trunk lines on the soffit of the second floor. The present analysis 

assumed that existing (pre-mitigation) ductwork was located approximately two feet below the finished 

floor of the first story and that as soon as floodwater touched the ductwork, it would need to be removed 

and replaced to avoid risk of spreading mold or other contamination into the house through the 

mechanical system. 

This study also examines efforts to elevate exterior air conditioning units or heat pumps.  These units often 

are located on concrete pads at ground level outside of houses.  Lines run to either units located under 

the first floor or up into units placed in the attic.  The mitigation often requires placement of the units onto 

either wooden platforms, raised concrete platforms, or onto platforms cantilevered off the house. 

Although there may be some variability in the height of units above the ground, the present analysis 

assumed existing units were located at approximately the same elevation as the ductwork in relationship to 

the lowest floor, or approximately two feet below the top of the lowest finished floor. To consider the 

potential for floodwater damage to electrical components or corrosion of unit coils, the present study 

made a further assumption that when floodwater touched the units, they would have to be replaced.  
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The present study characterizes the retrofit of these utilities as elevating furnaces and water heaters from 

the concrete pad to an elevation above the lowest floor.  Relocation could be done into a space, such as a 

garage or closet above the elevation of the lowest floor or into an attic area.  The relocation of a furnace 

unit would require reconfiguration of ductwork and associated fuel or electrical lines.  Water heater 

relocation would require installation of fuel supply lines (either electrical or gas lines), reconfiguration of 

cold-water inlet piping and hot water outlet piping, and any other associated, including necessary 

drainage piping and flue outlets for gas-powered units. Similar to the assumptions associated with other 

mechanical and plumbing units, the present study assumed that when floodwater touched the units the 

equipment would have to be replaced.  The study again referenced the location of the equipment to the 

lowest floor, but assumed the equipment would be 100 percent damaged at three feet below the lowest 

floor.  This could be applied to either common crawlspace areas or water entering through basement 

windows and quickly filling a basement. 

The project team used RSMeans Costworks to estimate the costs to relocate mechanical and plumbing 

equipment and to make all necessary reconfigurations to central air systems and, in the case of the water 

heater, the house plumbing system. These costs were compared with a web-based cost review for the 

installation of similar types of mechanical and plumbing work.  The utility analysis should give readers an 

overview of the benefits of undertaking these smaller flood mitigation projects to avoid equipment 

damage.  The present study does not count among the benefits the additional value of being able to 

continue using the equipment after a flood, nor does it quantify the hassle associated with replacing these 

items following a flood. 

4.6.2. Selection and Analysis of Hurricane Wind Retrofit of Private-Sector 

Buildings 

4.6.2.1. Selection and Analysis of Hurricane Wind Retrofit for the IBHS FORTIFIED Home Program 

for Existing Residential Structures 

Hurricane wind vulnerability is estimated here using Hazus damage functions. The project team selected 

the functions that most closely approximate pre-retrofit (for existing construction) and post-retrofit (IBHS 

FORTIFIED) conditions. The parameters that determine the damage function for the Hazus hurricane wind 

module include roof shape, roof-deck attachment spacing and sizing, secondary water protection, 

opening protection via shutters, garage door upgrades, and roof-to-wall connections. In some cases, 

especially where newer standards are involved and Hazus cannot incorporate deviations in design that 

might be reflected in these standards, the project team used judgment to scale Hazus results. In all cases, 

the project team applied numerous tests to ensure that modified damage functions were consistent with 

basic engineering principles related to wind performance and experience (e.g., incorporation of factors of 

safety as scalars). Especially helpful in this process has been the interaction with various trade groups, such 

as the Insurance Institute for Business & Home Safety. A similar methodology was employed in other parts 

of the study; see Sections 4.4.2 and 4.13.4. 
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To calculate a nationwide BCR for the IBHS FORTIFIED Home program, one must select damage functions 

to reflect pre-mitigation (or baseline) conditions, as well as post-mitigation (retrofitted) conditions. The 

baseline damage function must be representative of common construction practices and minimum 

building code requirements in force at the time of construction. Note that pre-mitigation manufactured 

homes are not uniform. Newer homes were built to stricter standards even without retrofit, under codes 

that evolved as described in Section 3.8.2.1. 

The project team chose two baseline conditions: (1) single-family dwellings built before Hurricane Andrew 

in 1992 in compliance with older legacy codes (National Building Code and Standard Building Code), and 

(2) after Hurricane Andrew in compliance with modern I-Codes (the International Residential Code, IRC). 

Hazus damage models include mitigation options. The appropriate Hazus mitigation options were chosen 

based on the prescriptive and some performance-based requirements. Homes located in regions of 

higher basic wind speeds have a separate set of Hazus baseline parameters, as design requirements 

change based on the increased design pressures. Hazus offers a finite set of options that sometimes do 

not exactly match the conditions the project team needed to model, so the team chose the closest option 

and in some cases scaled the damage function by a constant factor to better reflect conditions consistent 

with the respective codes. 

For example, code-compliant fastener schedules for roof sheathing were checked for comparison with the 

FORTIFIED Roof designation. Pre-Andrew sheathing attachment was modeled using 6d nails with 6-inch 

edge spacing and 12-inch field spacing. The project team modeled post-Andrew sheathing connections 

for buildings in regions with ASCE 7-16 wind speeds of at least 130 mph using 8d nails with 6-inch edge 

and 6-inch field spacing. In locations with ASCE 7-16 design wind speeds less than 130 mph, the project 

team modeled roof-sheathing connections with 8d nails with 6-inch edge spacing and 12-inch field 

spacing. The IRC opening protection requirements for wind-borne debris regions (ASCE 7-16 design wind 

speed greater than 130 mph and less than one mile from the coast, or greater than 140 mph regardless of 

coastal distance) was checked for comparison with the FORTIFIED Silver designation. Opening protection 

was modeled with wood structural panels as temporary shutters. No opening protection was assigned for 

the legacy codes. For comparison with the Gold designation, uplift values were calculated and checked to 

see if the three 8d nails for the roof-to-wall connection were capable of resisting the uplift values, or if 

hurricane straps were required.        

Likewise, the project team selected the most similar Hazus damage models to reflect IBHS FORTIFIED 

Roof, Silver, and Gold designations. The prescriptive requirements for each designation were identified 

and the appropriate Hazus mitigation options were selected. FORTIFIED Roof requires adding ring shank 

nails between existing fasteners. The project team modeled this measure using 8d nails at 6-inch edge and 

6-inch field spacing. Hazus cannot appropriately model the additional pullout capacity of ring shank nails 

and closer nail spacing (4-inch spacing) for roof sheathing. IBHS engineers estimated a constant reduction 

factor for the closest Hazus damage model to reflect the expected damage. 
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FORTIFIED Roof designation adds secondary water resistance, which is not required by either legacy or I-

Codes. All structures (regardless of location) also were modeled with opening protection products to 

satisfy the FORTIFIED Silver requirements. The project team assumed installation of metal hurricane 

shutters, given that they are commonplace and relatively inexpensive to install. For regions where the 

ASCE 7-16 design wind speed is less than 120 mph, the project team modeled wood structural panels as 

temporary shutters, as allowed by the current FORTIFIED standards. For FORTIFIED Gold designation, all 

residences are modeled with hurricane straps, regardless of the calculated roof uplift values. 

Inadequate damage models exist to reflect certain retrofit measures of the IBHS FORTIFIED program. 

These include retrofitting gable ends (FORTIFIED Roof and Silver), retrofitting soffits (FORTIFIED Roof), 

improving anchorage of attached structures (Silver), securing chimneys to the structure (Gold), and 

improving wall shear strength and anchorage (Gold). The reader can find a full list of the required IBHS 

FORTIFIED retrofit features in the latest edition of the IBHS Hurricane Standards. For the features that could 

not be modeled, the project team considered neither the benefits nor the costs. Thus, unmodeled costs 

and benefits would accrue if such retrofits were completed. 

To characterize the number of structures exposed, the project team obtained 2010 U.S. Census population 

and building data at the census-tract level. These data contain counts of single-family dwellings, their 

location (latitude and longitude), and an estimate of the building age distribution by decade of 

construction, by census tract. The project team used these data to calculate the number of pre- and post-

dwellings by census tract. The project team used a geographic information system to overlay census-tract 

boundaries and the ASCE 7-16 wind speed maps, and calculated the total number of dwellings by age and 

wind band. Each bin—each combination of age and wind speed—was analyzed for each FORTIFIED Roof, 

Silver, and Gold retrofit option. Resulting reductions in losses between the non-retrofitted options were 

aggregated by ASCE 7-16 wind bands, and ultimately rolled up to calculate nationwide totals. 
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Figure 4-2: Location and count of RES1 tracts from 2010 Census (Houston, TX is shown in the center). 

The project team estimated the cost of retrofit using several sources. IBHS provided component-level cost 

estimates for each FORTIFIED retrofit designation. The project team also used RSMeans and Xactimate to 

create an itemized database of quantities for each FORTIFIED requirement. The project team compared 

these costs with those provided in FEMA P-804 (Federal Emergency Management Agency 2010), which as 

previously noted closely relates to the IBHS program. FEMA’s cost estimates agreed with those of IBHS 

within 10%. 

4.6.2.2. Selection and Analysis of Hurricane Wind Retrofit for Manufactured Housing 

The project team acquired the U.S. Department of Homeland Security (DHS) Homeland Infrastructure 

Foundation-Level Data (HIFLD) database of individual manufactured housing complexes created for 

emergency preparedness and evacuation purposes. Each record provides the location (latitude and 

longitude) and the size of the complex in three ranges: A small complex means fewer than 50 homes. 

Medium means 51 homes to 100 homes. Large means more than 100 homes. The database does not 

report the exact number of manufactured homes in each complex. So the project team acquired estimates 

of the number of manufactured homes by county from the U.S. Census Bureau’s 2017 American 

Community Survey (https://www.census.gov/programs-surveys/acs). With both the total number of homes 

https://www.census.gov/programs-surveys/acs
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and count of small, medium and large complexes known per county, the project team estimated a 

weighted average count of homes per small, medium, and large complex, and applied these weighted 

averages to the HIFLD complex locations. 

 

Figure 4-3: Location of Manufactured Housing Complexes per the U.S. Department of Homeland Security 

The project team used a geographic information system to calculate the ASCE 7-16 wind hazard for each 

complex. Hazus uses HUD wind zone as one of its damage-functions parameters for manufactured 

housing. This parameter was taken from the U.S. Code of Federal Regulations, Title 24, section 3280.305, 

which identifies each county’s wind zone.  

Since most existing manufactured homes already are tied down, the project team needed to estimate the 

percentage of homes that currently are not anchored to their foundation. Statistics from the U.S. Census 

Bureau (2018-KP2) provide estimates of unanchored manufactured homes for seven states and 43 

metropolitan areas. In regions specifically identified by the U.S. Census Bureau (e.g., Florida cities), the 

applicable percent of unanchored homes was used for the analysis. For states and cities not identified, a 

regional average was calculated based on those listed states and metropolitan areas in the Census data. 

Based on an average of the 18 Census locations listed within the hurricane-prone regions, the project team 

estimates 12% of manufactured homes in the eastern United States are unanchored. A state-by-state and 

proxy breakdown of unanchored manufactured housing units can be found in Section 4.6.3.2 of the 

seismic retrofit for manufactured housing (Table 4-5). 
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To estimate the age distribution for each complex, the project team used a database of manufactured 

housing by year built, provided by HUD and taken from the 2017 American Housing Survey (see the U.S. 

Census Bureau’s American Housing Survey Table Creator https://www.census.gov/programs-

surveys/ahs/data/interactive/ahstablecreator.html). The database that the project team used provides the 

number of manufactured housing units built per decade by census division (e.g. New England, Middle 

Atlantic, South Atlantic, etc.). To estimate counts before the advent of the Manufactured Home 

Construction and Safety Standards in 1976, the project team assumed 60% of the total count between 

1970 and 1979 predate the standard. The project team likewise assumed that 60% of the total count 

between 1990 and 1999 post-dated the 1994 addition of wind zones to the standards and its associated 

changes to construction and installation. 

Table 4-3: Age Distribution by Census Division 

Year 

Built 

New 

England 

Middle 

Atlantic 

East 

North 

Central 

West 

North 

Central 

South 

Atlantic 

East 

South 

Central 

West 

South 

Central 

Mountain Pacific 

1930 

to 

1939 

0 3,286 0 8,902 11,436 14,955 5,920 3,642 10,264 

1940 

to 

1949 

813 0 5,563 2,126 18,699 9,156 12,846 5,018 0 

1950 

to 

1959 

372 21,012 12,223 199 32,581 10,119 14,489 26,455 24,746 

1960 

to 

1969 

3,807 38,471 66,711 30,859 151,129 42,822 45,099 48,778 98,234 

1970 

to 

1979 

52,431 126,042 172,835 114,774 409,492 112,437 166,700 292,666 279,956 

1980 

to 

1989 

19,475 94,767 113,245 90,144 622,843 223,137 329,201 207,267 187,535 

1990 

to 

1999 

16,367 93,537 238,324 117,780 717,936 336,058 333,934 199,373 149,269 

2000 

to 

2009 

25,768 48,594 101,157 51,400 361,986 176,001 314,736 155,259 106,174 

https://www.census.gov/programs-surveys/ahs/data/interactive/ahstablecreator.html
https://www.census.gov/programs-surveys/ahs/data/interactive/ahstablecreator.html
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Year 

Built 

New 

England 

Middle 

Atlantic 

East 

North 

Central 

West 

North 

Central 

South 

Atlantic 

East 

South 

Central 

West 

South 

Central 

Mountain Pacific 

2010 

to 

2017 

2,573 43,915 38,967 29,773 85,836 39,309 121,761 29,750 23,531 

Total 121,607 469,624 749,025 445,957 2,411,939 963,993 1,344,687 968,207 879,710 

Using the estimates of the age distribution, locations, counts, wind hazard, and wind vulnerability of 

manufactured housing along the Gulf and Atlantic coasts, the project team estimated the benefits and 

costs of engineered tie-down systems. Hazus provides fragility functions for five groups of manufactured 

housing, denoted here by pre-HUD (prior to 1976), 1976 HUD (1976-1993), 1994 HUD Wind Zone I, 1994 

HUD Wind Zone II, and 1994 HUD Wind Zone III. 

It appears that engineered tie-downs provide little benefit to pre-1976 manufactured housing, whose 

vulnerabilities in the structure above the frame make securing the frame to the ground fairly immaterial to 

wind loss.  The ETS does not help much because there are weaker links in the chain. Pre-HUD 

(construction prior to 1976) manufactured homes therefore are ignored in this analysis. (Section 5.9.2 

provides a sensitivity analysis that includes benefit-cost ratio for scenarios where pre-HUD manufactured 

homes are included, as well as an isolated analysis of post-1994 HUD homes only).  

An important consideration for ETS: Because of the relatively low cost of manufactured housing, residents 

often have lower income, higher vulnerability, and may be less able to recover from costly damage to their 

home. The project team has not attempted to quantify the costs and benefits of ETS (or other mitigation 

measures) particularly for vulnerable populations, or somehow to reflect the disproportionate benefits that 

mitigation provides to these populations. It merely recognizes that the issue exists, and could be 

addressed by other studies. 

4.6.3. Selection and Analysis of Seismic Retrofit of Private-Sector Buildings 

4.6.3.1. Selection and Analysis of Seismic Retrofit for Soft-Story Wood Frame Multifamily 

Dwellings 

The project team reviewed the available loss models for soft-story wood-frame buildings without and with 

seismic retrofits. Among the options the team reviewed, the vulnerability functions developed for the 

CAPSS soft-story study (Porter and Cobeen 2009) seem to best suit the project needs. Their advantages 

are several: (1) They offer relationships between repair costs, damage states, and ground motions for 

particular, practical retrofit designs; (2) They use something close to state-of-the-art performance-based 

methods; (3) Prominent structural engineers peer reviewed them; (4) Their construction costs were 

estimated by professional cost estimators; (5) They form the basis of a major mandatory seismic retrofit; 

and (6) They reflect some of the diversity of soft-story buildings. 
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Disadvantages of the CAPSS vulnerability functions include that (1) They were based on nonlinear 

pseudostatic structural analysis rather than nonlinear dynamic structural analyses—the latter of which 

generally is believed to better reflect reality; and (2) The vulnerability functions purely are analytical, 

without laboratory tests to support them. Other options such as Mar and Korolyk (2012) offer something 

closer to state-of-the-art structural analysis, while the NEES-Soft studies (e.g., van de Lindt et al. 2013) offer 

the benefit of laboratory testing, but these alternatives lack one or more features required for the present 

analysis, especially the seismic vulnerability functions and costs of particular retrofit designs. 

For practicality, the project team chose to reflect the equally weighted average of the costs and 

vulnerability functions of the four CAPSS buildings. The CAPSS project estimated costs in 2008 in San 

Francisco. The project team updated the construction cost to account for inflation using RSMeans’ ratio of 

the national location cost index to that of San Francisco, and RSMeans’ inflation cost factors for 2018 and 

2008. The CAPSS vulnerability functions only express mean damage factor for building repair cost and the 

Hazus-style structural damage states. Most of the other loss categories are directly calculated from these, 

as detailed in Appendix K. The exception is content repair cost, which is recalculated as shown in Appendix 

K from original, unpublished CAPSS data having to do with spectral acceleration response at each 

performance point. 

4.6.3.2. Selection and Analysis of Seismic Retrofit for Manufactured Housing 

ETS seem to provide good seismic restraint for manufactured housing at fairly modest cost and 

simultaneously resist overturning in strong winds, suggesting a common and potentially cost-effective 

method for retrofitting manufactured housing for both wind and earthquake. The project team derived an 

earthquake collapse fragility function for manufactured housing prior to the addition of ETS using the 

survey data gathered by the California Department of Housing and Community Development (1991), 

discussed in Section 3.8.3.2, using standard methods offered by Porter et al. (2007) for performance-based 

earthquake engineering. 

Correlation between collapse rate and either peak ground acceleration or peak ground velocity is very 

poor. Of the two measures of ground motion, peak ground velocity correlates with collapse probably 

slightly more strongly, but exhibits a coefficient of determination less than 0.1. One can say little more 

about the data of peak ground velocity and collapse rate than that, at peak ground velocities between 20 

and 60 cm/sec, about 1 in 4 manufactured homes collapsed. Table 4-4 and Figure 4-4 show the Loma 

Prieta collapse data. Circles in the figure indicate individual manufactured housing development surveyed 

by California Department of Housing and Community Development (1991) after the 1989 Loma Prieta 

earthquake. Each park is assigned the value of peak ground velocity recorded at the nearest strong-

motion instrument, according to the US Geological Survey’s event page for that earthquake 

(https://earthquake.usgs.gov/earthquakes/eventpage/nc216859/, retrieved November 27, 2018). 

Data for 17 of the largest parks are shown, representing approximately 92% of the units surveyed. The 

diamond represents the weighted average of the parks data, weighted by number of homes per park. The 

peak ground velocity for the diamond, 40 cm/sec, is calculated as the weighted average of the values in 

https://earthquake.usgs.gov/earthquakes/eventpage/nc216859/
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the table, weighted by number of units. The collapse rate for the diamond is calculated as the total 

number of collapses in the table divided by the total number of units in the table. The smooth curve shows 

a lognormal cumulative distribution function with median of 69 cm/sec and standard deviation of the 

natural logarithm equal to 0.8, which can be used as a collapse fragility function for manufactured housing 

without positive restraint. 

Table 4-4: Manufactured housing performance in the 1989 Loma Prieta earthquake. 

Name Lat Lon PGV 

cm/sec 

Units Collapses Collapse 

rate 

Hill Haven Trailer Park 37.150 -121.806 12 44 2 5% 

Morgan Hill Apartments and 

Trailer Park 

37.135 -121.658 26 25 12 48% 

Green Valley Estates  36.941 -121.795 26 105 57 54% 

Colonial Manor 36.931 -121.791 26 71 8 11% 

Meadow Manor 36.934 -121.770 26 276 14 5% 

Freedom Mobilehome Park 36.972 -121.869 26 45 13 29% 

Vista Del Lago 37.040 -122.029 26 202 1 0% 

Pacific Mobile Estates 36.998 -121.573 29 178 36 20% 

Hacienda Valley 37.158 -121.674 30 165 14 8% 

Wagon Wheel 37.019 -121.571 39 121 9 7% 

Rancho Cerritos 36.919 -121.858 40 144 92 64% 

Pinto Lakes Estates 37.006 -121.934 53 174 82 47% 

Monterey Vista Mobile Estates 36.924 -121.791 53 122 70 57% 

Old Mill Mobilehome Park 36.990 -121.958 53 39 14 36% 

Portola Heights 36.920 -121.764 53 119 10 8% 

Mission Oaks Mobilehome Park 36.852 -121.424 63 225 120 53% 

Madrone Estates 37.146 -121.894 66 173 8 5% 

Total   40(1) 2,228 562 25% 

Fraction of homes surveyed by California Department 

of Housing and Community Development (1991) 

 92% 95%  

1. Weighted average PGV, weighted by units 
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Figure 4-4: Fragility function and collapse data for manufactured housing in the epicentral region of the 

1989 Loma Prieta earthquake. 

The project team estimated building repair cost resulting from collapse as $17,400 per collapse, based on 

the California Department of Housing and Community Development’s (1992) data, increased by a factor of 

2.36 to account for inflation (using RSMeans historical cost indices for July 1990 and July 2018—94.3 and 

222.9, respectively), producing a 2018 loss estimate of $41,129 per collapse. The project team estimated 

content loss conditioned on collapse as $0.27 per $1.00 of building repair cost, consistent with the 

insurance loss data offered by Steinbrugge and Schrader (1979). 

To estimate casualty risk, consider that two deaths occurred among the 6,000 manufactured homes that 

collapsed from their foundations in the 1994 Northridge earthquake. Assuming the average unit had an 

area of 1,440 sf (a 24 ft by 60 ft double-wide, which is fairly common) and an occupancy load consistent 

with the Hazus inventory (631 sf/occupant), Northridge data suggest a fatality rate of 0.015% among 

collapsed manufactured homes, consistent with Hazus-MH’s recommended an indoor fatality rate of 

0.01% for manufactured homes that suffer complete structural damage without collapse. (Hazus’s 5% 

fatality rate among the collapsed area of manufactured houses seems unreasonably high.) 

For nonfatal injuries conditioned on the manufactured home falling from its supports, the project team 

applied the Hazus injury rates corresponding to the complete structural damage without collapse: 5% in 

Hazus injury severity level 1, 1% in severity level 2, 0.01% in severity level 3, and 0.01% experiencing post-

traumatic stress disorder, as in Section 4.19.2. Some of these injuries would occur regardless of whether 
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the manufactured home fell from its supports, owning to behavior, contents, etc. The resulting vulnerability 

functions are calculated as collapse probability times severity of loss given collapse, and are illustrated in 

Figure 4-5. 

Not shown in the figure are losses for other categories: repair duration, additional living expense losses, 

and indirect business interruption, which are taken as the same as elsewhere in this study for residential 

buildings affected by earthquakes. 

 

Figure 4-5: Vulnerability functions for manufactured housing without an engineered tie-down system. 

To estimate manufactured housing vulnerability with the retrofit, the project team assumed that the 

addition of the retrofit makes the units effectively rugged to resist collapse. That is not to say that the 

project team assumed that the retrofitted units cannot collapse in reality, but rather that the collapse 

probability is so small after retrofit that for purposes of benefit-cost analysis, it might as well be treated as 

zero. Contents probably fall regardless of whether the building collapses, but at a lower rate. The project 

team assumed that half the content loss is associated with collapse and accordingly reduced the content 

vulnerability. Nonfatal injuries are (Hazus severity levels 1, 2 and 3 and post-traumatic stress disorder) 

similarly are taken as half the values for the non-retrofitted case, since nonfatal injuries tend to be more 

associated with nonstructural items and behavior. Additional living expenses and indirect business 

interruption are taken as zero absent collapse.  

To estimate the fraction of manufactured housing units that are not anchored to their foundation, the 

project team recognized that the fraction varies geographically and used U.S. Census Bureau (2018-KP2) 

statistics where applicable. It was estimated that in the western United States, the fraction is approximately 

30%; this includes Montana, Wyoming, Colorado, New Mexico, and states west. The fraction is estimated 
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to be 12% in the central and eastern regions of the country, which includes 48 conterminous states. See 

Table 4-5 for the estimated fraction of manufactured housing units not currently anchored to their 

foundations. In the table, WUS refers to the western United States, and CEUS refers to the central and 

eastern United States. 

Table 4-5: Fraction of manufactured housing units not anchored to their foundation. Units not reporting 

anchorage condition are not shown in the table. 

StateFIPS State % not anchored Anchored, 

1000s 

Not anchored, 

1000s 

Proxy, where statewide 

estimates are unavailable 

01 AL 12%   CEUS 

04 AZ 21% 64.4 17.1 Phoenix MSA 

05 AR 12%   CEUS 

06 CA 38% 242.5 147.1  

08 CO 28% 67.7 26.0  

09 CT 23% 2.7 0.8 Hartford MSA 

10 DE 12%   CEUS 

11 DC 13% 10.8 1.6 Washington MSA 

12 FL 13% 475.7 72.4  

13 GA 14% 48.8 7.7 Atlanta MSA 

16 ID 30%   WUS 

17 IL 16% 14.5 2.7 Chicago MSA 

18 IN 12%   CEUS 

19 IA 12%   CEUS 

20 KS 23% 8.6 2.5 Kansas City MSA 

21 KY 4% 22.5 1.0 Louisville MSA 

22 LA 12% 13.7 1.8 New Orleans MSA 

23 ME 12%   CEUS 

24 MD 7% 10.5 0.8 Baltimore MSA 

25 MA 31% 2.4 1.1 Boston MSA 

26 MI 12%   CEUS 

27 MN 19% 16.4 3.9 Minneapolis-St. Paul MSA 

28 MS 6% 35.3 2.4 Jacksonville MSA 

29 MO 23% 8.6 2.5 Kansas City MSA 

30 MT 30%   WUS 
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StateFIPS State % not anchored Anchored, 

1000s 

Not anchored, 

1000s 

Proxy, where statewide 

estimates are unavailable 

31 NE 12%   CEUS 

32 NV 22% 15.8 4.5 Las Vegas MSA 

33 NH 12%   CEUS 

34 NJ 20% 12.6 3.1 Northern New Jersey MSA 

35 NM 30%   WUS 

36 NY 26% 130.1 46.6  

37 NC 10% 26.0 2.8 Raleigh MSA 

38 ND 12%   CEUS 

39 OH 12% 135.4 18.6  

40 OK 9% 27.5 2.6 Oklahoma City MSA 

41 OR 31% 21.9 9.9 Portland MSA 

42 PA 37% 95.7 55.9  

44 RI 12%   CEUS 

45 SC 12%   CEUS 

46 SD 12%   CEUS 

47 TN 13% 15.4 2.2 Memphis MSA 

48 TX 9% 558.9 54.8  

49 UT 30%   WUS 

50 VT 12%   CEUS 

51 VA 18% 10.3 2.2 Richmond MSA 

53 WA 13% 41.0 6.0 Seattle MSA 

54 WV 12%   CEUS 

55 WI 32% 1.9 0.9 Milwaukee MSA 

56 WY 30%   WUS 

As noted in Section 3.8.3.2, the population in manufactured homes tends to have lower household 

income than the general population, and approximately 29% have income below the federal poverty line. 

But at the national level, occupants of manufactured homes do not seem to be significantly older than the 

general population of householders: The mean age of the former is 53; the latter, 52, and the probability 

distributions are very similar (Figure 3-5). It seems reasonable therefore not to attempt to adjust casualty 

rates for manufactured homes. However, the lower income level of occupants of manufactured homes 
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suggests that they would be less able to afford repairs, and might be displaced longer than the general 

population suffering similar levels of loss.  

What about fires? Among the 2,432 manufactured homes in the survey by California Department of 

Housing and Community Development (1991), in addition to the 592 that collapsed, the survey report 

notes that “In addition to the homes that went down during the Loma Prieta earthquake, four (4) homes 

were destroyed. Two (2) of these homes were structurally damaged beyond repair and two (2) others 

were burned.” This suggests that, while fires do occur and their occurrence is probably influenced by 

collapse of the manufactured house, loss does not appear to greatly be aggravated by fires. One 

reasonably can estimate collapse damage to manufactured houses without amplifying the effect to 

account for fire following earthquake. 

It is necessary to show that the same engineered tie-down system works as both seismic and wind retrofit. 

As a test case, consider a double-wide manufactured house measuring 28 ft by 56 ft (1568 ft2) by 14 ft tall, 

including the skirt and weighing W = 25000 lb. As a test of high seismicity, let it be located in Palm 

Springs, California (33.788N, 116.479W). Palm Springs is in one of the highest seismicity regions in the state. 

Let us say the home is secured to the ground with an ETS rated for the current design wind load at that 

location. It has no supplemental seismic restraint. Assume mean shearwave velocity in the upper 30 meters 

of soil (Vs30) equal to 293 m/sec (site class D), using the Wills et al. (2015) site classification map developed 

for the California Geological Survey. Let the seismic loading be as described in ASCE 7-16. The designer 

must ask: 

1. What is the design lateral wind load that must be resisted by the ETS? 

2. What is the design lateral seismic load that must be resisted by the ETS? 

3. Is the ETS sufficient to restrain the home against the seismic loads that would be specified for a 

modern wood-frame dwelling of the same dimensions at the same location? 

This is an enclosed simple diaphragm building per ASCE 7-16 section 26.2, so one can use ASCE 7-16 

chapter 27 part 2. The building is risk category II and occupancy category II. Its basic wind speed V = 97 

mph per Applied Technology Council Hazards by Location application at 

https://hazards.atcouncil.org/#/wind?lat=33.788&lng=-116.479. The wind directionality factor, Kd, per 

Section 26.6, Table 26.6-1, is 0.85. Its exposure category, per section 26.7, has surface roughness B 

(suburban area) upwind for 1500 ft, and therefore exposure category B. The topographic factor, Kzt, per 

Section 26.8, for a level site is 1. Its enclosure classification, per section 26.10, is enclosed building. 

p0 = ph = 16.7 transverse direction from ASCE 7-16 Table 27.6-1 

= 14.5 longitudinal direction from ASCE 7-16 Table 27.6-1 

A = 56 ft·14 ft = 784 ft2 (transverse direction) 

= 28 ft·14 ft = 392 ft2 (longitudinal direction) 
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Fwind = 16.7 psf· 784 ft2 = 13093 lbf (transverse direction) 

= 14.5 psf · 392 ft2 = 5684 lbf (longitudinal direction) 

Seismic load: 

SDS = 1.084g, per Applied Technology Council Hazards by Location application at 

https://hazards.atcouncil.org/#/seismic?lat=33.788&lng=-116.479 

R = 6.5 per ASCE 7-16 Table 12.2-1 

I = 1.0 

CS = SDS/(R/I) per ASCE 7-16 Equation 12.8-2 

= 1.057/6.5 = 0.16 

V = CS  W per ASCE 7-16 Equation 12.8-1 

= 0.16·25,000 lb 

= 4000 lbf < Fwind
 for longitudinal wind < Fwind

 for transverse wind 

Since the seismic design base shear is less than wind lateral load in either direction, an ETS designed to be 

just sufficient to restrain the home against wind loads will be more than sufficient to restrain the building 

against seismic loads. The fact that these calculations ignored the net lateral wind load on the roof means 

the ETS would have to be stronger than indicated, even more able to resist seismic loading. Also, the ETS 

is probably even stronger than implied here. It is likely overdesigned because it must be sufficient for taller 

buildings (i.e., a bigger sail), higher basic wind speed, and it has to resist uplift as well as lateral loading, 

which would increase design load and therefore design strength of the components. 

One can conclude that an ETS designed for California winds would be sufficient to resist the design seismic 

forces for manufactured housing in the highest seismic hazard location in the state for a building on the 

worst soil. The implication is that in other places, where wind speeds are higher or ground motions lower, 

an ETS designed for wind would be even better able to resist seismic forces. 

4.6.3.3. Selection and Analysis of Securing Residential Furnishings, Fixtures, Equipment, and 

Contents 

Among the Earthquake Country Alliance’s list of 48 ways to secure your space, five seem particularly 

commonly performed, likely to apply to large numbers of people and be cost effective: 

1. Securing water heaters to the building frame 

2. Adding child safety latches to kitchen cabinets 

3. Securing bookcases, shelving, and display cases to the building frame 

4. Strapping desktop electronics, especially freestanding monitors and televisions 

5. Securing fragile objects on shelves or in display cases with museum putty 
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These five measures are examined here. As with other mitigation measures examined in this study, to 

perform a benefit-cost analysis of mitigation, one needs to know: 

1. Values exposed to loss. Section 3.8.3.3 discusses available literature on values exposed to loss, 

although some judgment is required to assign quantities and replacement cost to particular kinds of 

residential contents. The project team found it necessary to estimate some of the values exposed to 

loss, as will be discussed later in this section.  

2. Mitigation cost. To estimate mitigation cost here means finding the retail price of common mitigation 

materials, such as museum putty and estimating the time required to perform the measure. This 

assigns a value to the homeowner’s time. The project team used the value of volunteer time, as 

described in Section 3.8.3.3. 

3. Fragility of the items under as-is and what-if-mitigated conditions. Fragility information comes from 

FEMA P-58, with two notable exceptions: FEMA P-58 does not offer fragility information for hot water 

heaters or freestanding monitors. New fragility functions are presented later in this section. 

4. Consequences of damage in terms of repair costs, life-safety impacts, and time-element losses. Some 

of these can be taken as the replacement cost and value of time to clean up the damaged 

component, such as freestanding monitors and televisions. Others lack existing models of 

consequences, such as overturning of bookcases. The items whose consequences are not available 

in the existing literature are developed later in this section.  

5. Life of the mitigation measure. The life of water heater remediation has as its upper bound the life of 

the water heater. Child safety latches are effective until the cabinet doors are replaced. Remediation 

of bookcases, desktop electronics, and fragile objects on shelves can last only as long as the tenure 

of the tenant or homeowner in the home. The project team took these durations as described in 

Section 3.8.3.3. 

Water heater fragility function. The FEMA P-58 database does not contain fragility function for an 

unsecured hot water heater, so one is developed here. Residential water heaters generally take the form of 

a vertical tank with a base of 1.5 ft to 2 ft and a height of 4 ft to 5 ft. In the case of most residential 

buildings, they are at or near ground level, as illustrated in Figure 4-6. FEMA P-58 offers fragility functions 

for overturning of various objects, but not unanchored water heaters. However, one can treat them as 

rigid blocks. FEMA P-58 also lacks a fragility function for the overturning of a rigid block, but one readily 

can derive such a fragility function. 

“Rigid block” is a generic term referring to the multitude of unsecured furnishings that can overturn in 

earthquake shaking. The project team developed a generic and simplified rigid-block fragility function and 

applied it to unanchored water heaters. It is common to assume that a block overturns when peak floor 

acceleration makes the force vector acting on its center of gravity point outside its footprint, but the fact is 

that dynamics make that model too simple and wrong. In addition to aspect ratio, object size matters as 

well as base-motion pulses. 

 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   224 
 

 

Figure 4-6: Typical residential water heater. 

Makris and Zhang (1999) and several subsequent authors offer an analytical solution for the overturning of 

a rigid block. Makris and Zhang consider the response of a block to a sinusoidal pulse, which the reader 

can think of as the strongest back-and-forth shaking, during the earthquake ground motion. The essential 

elements are these: overturning depends on the amplitude of an acceleration pulse a, the slenderness of 

the object α (the arctangent of block’s base divided by its height), the angular frequency of the pulse w, 

and the frequency parameter of the block p, which has to do with its size and is shown in Figure 4-7. 

Equations Equation 4-12,Equation 4-13, andEquation 4-14 define p and other important parameter values. 

In the equations, g is the acceleration due to gravity, b is the width of the block, and h is its height.  

 

Equation 4-12 

 

Equation 4-13 

 

Equation 4-14 
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Figure 4-7 shows the model: The gray area shows the combination of these values that lead to 

overturning, either on the first tip (the large gray space in the upper left labeled “overturning with no 

impact”) or after rocking once (the lower gray lobe labeled “overturning with one impact”). 

 

Figure 4-7: Overturning of rigid blocks (after Kostanidis and Makris 2010). 

One can simplify the failure space as shown with the red lines in Figure 4-7, which separate the unsafe 

space from the safe space show in Equation 4-15. In the equation, ap is the amplitude of the floor-motion 

pulse (defined in terms of ground motion later). 

 

Equation 4-15 

To relate an earthquake to a sinusoidal pulse, one can make the following approximation. For objects 

located above the ground floor, the natural frequencies of the building tend to dominate motion, so the 

pulse frequency ωp is taken to be the angular frequency of the building’s fundamental period of vibration. 

For objects on the ground floor, the pulse period is that of the ground motion. Ground-level ωp can be 

estimated based on Somerville’s (1998) relationship between pulse period and magnitude, where the 

pulse-period grows in relationship to the fault dimension. For earthquakes of magnitude between 6.5 and 

7.5, that period can be taken as approximately 3 seconds, so at ground level, ωp is taken here as 2 rad/sec. 

To account for uncertainty (introduced in part by simplifications shown here), one can take the boundary 

between the unsafe and safe spaces as the median capacity of the object to resist overturning and assume 

a logarithmic standard deviation of 0.4, as suggested by Porter et al. (2007). Thus, we estimate the 

probability that a rigid block overturns as 
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Equation 4-16 

where  

a = Sa(3.0 sec, 5%) for rigid blocks at ground level 

    = Sa(T, 5%) for rigid blocks at upper floors of a building whose fundamental period is approximately T 

θ = αg  

   ≥ 5αg(2/p – 7) for rigid blocks at ground level 

   ≥ 5αg(ωp/p – 7) for rigid blocks at upper floors  

β = 0.4  

With the dimensions and ground-story location of a typical water heater, one can create the following 

fragility function. First, with the parameter values shown here, p is 3 sec-1, α is 0.3 (rad), so θ is 0.3 g in 

terms of SA30, or if using SA10 or PGA, θ is 0.9g, or if SA03, about 2.25g, each with β = 0.4. Notice that θ 

is much larger than 0.3g of PGA, which a simpler-minded fragility function might have assumed. 

Fragility of freestanding monitors and televisions. These slender items often rest on a relatively narrow base, 

with an expect ratio (height to width) of 3:1. The project team therefore used the rigid-block fragility 

function described above with α = arctan(0.33).   

Consequences of water heaters overturning. It seems reasonable to assume that an overturned water 

heater would be replaced, at a current cost of approximately $1,000. Furthermore, if a water heater 

overturns, it can rupture the gas line, providing fuel for a fire, and its pilot light can provide a nearby 

ignition source, lighting the fire. The fire can burn a portion of the building, the entire building, or many 

buildings. 

Recall that Williamson (2000) estimates 0.84% of overturned water heaters ignite fires.  Scawthorn et al. 

(1998) suggest $270,000 of property damage per ignition in an earthquake in which engines outnumber 

fires, whereas Scawthorn (2018) estimates $45 million in property loss per ignition in a large earthquake in 

which ignitions outnumber fires—a difference of more than two orders of magnitude (log10 

($45,000,000/$270,000) = 2.2). It is beyond the capacity of the present study to estimate risk on the basis 

of how many big earthquakes occur and how many small earthquakes occur, and how each of many sizes 

of earthquake contribute to overall risk. For present purposes, the project team uses the geometric mean 

of these two endpoints: (270,000 x 45,000,000)0.5 = $3,500,000 in property loss per ignition, that is, 

$270,000 times 101.1.   

Property losses can be divided among building and contents using common homeowner insurance policy 

provisions: about $0.55 of building and ancillary structures coverage and $0.35 of content coverage per 

$1.00 of homeowner policy coverage. The remaining $0.10 is additional living expense.  
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To estimate fire-related deaths and nonfatal injuries, as elsewhere in this study, the project team reviewed 

U.S. fire statistics for the period 2003-2015 (USFA 2018). In that period, on average, there were 0.27 

fatalities and 1.39 nonfatal injuries per million dollars of property loss. For purposes of assigning an 

acceptable cost to avoid a statistical nonfatal injury, the nonfatal fire injuries are treated here as if they 

were all Hazus injury severity level 2, that is, emergency department treat and release. Instances of post-

traumatic stress disorder are taken as equal to the number of nonfatal injuries.  

The total loss given to hot water overturning therefore can be taken as the property loss given that a water 

heater overturns and does not ignite (99.16% probability, $1000 replacement cost of the hot water heater) 

or that it overturns and does ignite (0.84% probability, and all the property loss and life-safety 

consequences listed above). The expected value of loss in the event of a water heater overturning is 

approximately $53,000.  

Finally, recall that virtually all water heaters in California are required to be braced to the building frame, as 

has been the case since 1982, but that 2,500 water heaters overturned in the 1994 Northridge earthquake. 

Despite the 1982 law, guidelines for how to strap water heaters were not issued until 1992 (Stone, 1999), 

which may explain why many heaters were not secured by 1994. 

Consequences of bookcases overturning. People get hurt when bookcases and other large items fall on 

them. FEMA P-58 PACT suggests that being struck by a large falling object can result in serious injury or 

death, but offers little guidance on the degrees and probabilities. In the present work, the project team 

observed that nonstructural damage in past earthquakes tended to injure and not kill people; the team 

divided the injuries in proportion to injuries treated by medical personnel in the 1994 Northridge 

earthquake. See Figure 4-8, which suggests 16,400 injuries of Hazus severity 1 and 8,200 of Hazus severity 

2, with very smaller rates of Hazus severity 3, neglected here for simplicity. Thus, injuries were modeled 

here as 2/3rds severity-1 injuries and 1/3rd severity-2 injuries. Note that overturning bookcases can kill: Reed 

(1986) and Dotinga (2010) report one fatality in the July 13, 1986 Oceanside, California earthquake, when an 

87-year-old man was buried for 11 hours under thousands of books. However, the probability of death 

from overturning bookcases seems low enough to neglect without biasing the benefit-cost ratio 

excessively low. 
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Figure 4-8: Northridge Earthquake injuries. “HH” indicates number of households in which at least one 

person experienced this level of injury (Porter et al. 2005 after Seligson and Shoaf 2003). 

FEMA P-58 PACT recommends that each bookcase threatens occupants within 20 sf of floor area. The 

project team estimates that the average person occupies the home about 12 hours per day and that the 

average home has two freestanding bookcases. So if people are uniformly distributed around a house of 

area 600 sf to 1000 sf per occupant, the expected value of the number of people struck given that 

bookcases overturn is 2 bookcases / household x 20 sf/bookcase x 1 occupant / 800 sf x 12 hours of 

occupancy / 24 hours per day = 0.025 injuries per household. The project team divides injuries between 

Hazus injury severity levels 1 and 2 in proportion to treated injuries in 1994 Northridge Earthquake (Porter 

et al. 2005). 

Fragility functions and consequence functions used here. The measures considered here are those that a 

homeowner or tenant conceivably could perform without help, so the project team treats the cost as just 

the cost of the materials, which can be estimated from online catalogs like Amazon. Table 4-6 lists a 

subset of items in the Earthquake Country Alliance’s list: those common to homes, commonly appear to 

be damaged in earthquakes, result in a financial loss or injury if damage occurs, and are relatively 

straightforward for a homeowner or tenant to remediate. A few elements that are distinct in the 

Earthquake Country Alliance’s list are combined in the table here for convenience and simplicity.  

The table lists the items in the first column. The second column provides a reference to the fragility 

functions as identified in FEMA P-58 PACT (Applied Technology Council 2012). The third column describes 

the PACT damage state. The fourth column provides the present project team’s estimate of a common 

quantity of such items in a home. The fifth column provides the PACT fragility function parameters. The 

sixth column provides the expected value of the consequences of the damage state occurring. The project 
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team assigned dollar values to consequences largely based on its own judgment (PACT does not offer 

dollar values). The last column provides the material cost of remediation and homeowner or tenant effort. 

For purposes of benefit-cost analysis, homeowner or tenant effort is valued at IndependentSector.org’s 

value of volunteer time, currently $24.69 per hour.  

It is assumed here that remediation mostly prevents damage. While damage still can occur to the 

remediated item, the project team assumes that the damage is so greatly reduced that any remaining 

damage represents statistical noise compared with the uncertainty in the model of damage to the 

unremediated item, and therefore can be ignored. 

Table 4-6: Residential retrofit measures and parameter values 

Element PACT ID Damage Quantity IM, fragility 

parameters  

Consequence  Remediation 

and cost 

Life 

(yr) 

Water 

heater 

None Overturns 1  PGA, θ = 

0.29g, β = 

0.5 

$50,000 Strap to 

building 

frame, $20 + 

2 hr labor 

10 

Kitchen 

cabinets 

E2022.013 Doors 

open, 

contents fall 

out 

14 doors PGA, θ = 

0.25g, β = 

0.5 

$1,850 to 

replace 

broken china 

& glasses + 4 

hr labor 

Child-proof 

latches, $14 + 

2 hr labor 

50 

Bookcases, 

shelving, 

and display 

cases 

E2022.104a Overturns 2 

 

PGA, θ = 

0.14g (a), β = 

0.5 

Hazus level-1 

injury with 

probability 

0.077 and 

level 2 with 

probability 

0.0083 

Furniture 

safety straps, 

$20 + 2 hr 

labor 

9 

Monitors 

and TVs 

None Overturns 2 

monitors 

or TVs 

PGA, θ = 

0.33g PGA, β 

= 0.50 

$1,000 to 

replace 

broken 

monitors + 1 

hr cleanup 

labor 

TV safety 

straps, $16 + 1 

hr labor 

9 

Fragile 

objects on 

shelves or in 

display cases 

E2022.013 Falls and 

breaks 

10 fragile 

items 

PGA, θ = 

0.25g, β = 

0.5 

$1,000 to 

replace 

broken items 

+ 4 hr cleanup 

labor 

Museum 

putty, $10 + 1 

hr labor 

9 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   230 
 

(a)  PACT suggests PGV with θ = 14 cm/sec. Approximated using PGA = 0.14g, based on Boore et al. 

(2014) ground motion prediction equations for Mw 6.5 earthquake at 25 km distance, Vs30 = 315 

m/sec, 300 m depth to 1000 m/sec rock. 

4.6.4. Selection and Analysis of WUI Fire Retrofit of Private-Sector Buildings 

The dominant option for retrofitting private-sector buildings to better resist fire in the wildland-urban 

interface is to retrofit them to comply with the 2018 International Wildland-Urban Interface Code. No other 

option was considered here. 

4.7. IDENTIFYING THE IEMAX LEVEL OF ADDITIONAL 

MITIGATION 

The selected options to exceed I-Code requirements for flood, wind, and earthquake each offer a range of 

design levels. For example, one can design new buildings to be a little higher above BFE or a lot higher. 

Under standard BCA procedures, the IEMax level of investment requires that both the total benefit 

exceeds the total cost and the incremental benefit exceeds the incremental cost. For example, suppose 

one could choose to build new buildings in coastal velocity zones (V-zones) 1 foot above BFE, 2 feet, 3 

feet, 4 feet, etc.  

The IEMax level of additional mitigation is the point on a geographic and mathematical basis where the 

last incremental improvement in the design cost effectively captures the last incremental benefit. One of 

the most widely cited texts on engineering economic analysis (Newnan et al. 2006, p. 503) uses the term 

“best alternative” defined to be the “maximum investment such that each ratio of equivalent worth of 

incremental benefits to equivalent worth of incremental costs is greater than 1.0.” The present analysis uses 

IEMax to avoid the word “best,” recognizing that significant benefits can be achieved cost effectively at 

various levels of design up to the IEMax, meaning that one can enjoy cost-effective improvement without 

designing all the way up to the IEMax level. 

Suppose it is cost effective to build 2, 3, or 4 feet above BFE on a benefit-cost basis. That is, the total 

benefit exceeds the total cost for each of those elevations. In each case, it costs more to build n + 1 feet 

above BFE than n feet, and there may be an additional benefit as well. The analyst must estimate whether 

the additional benefit of the additional foot—increasing from n feet to n + 1 feet—exceeds the additional 

cost, that is, whether the last foot of additional elevation is cost effective.  

Figure 4-9 illustrates the concept: each dot represents one possible level of design to exceed code 

requirements: “2” means BFE plus 2 feet, “3” means BFE plus 3 feet, etc. Each dot has a cost (its x-value) 

and a benefit (its y-value). C denotes the incremental cost of building n + 1 feet rather than n feet above 

BFE, and B denotes the incremental benefit. One can say that the IEMax investment is the last value of n 

+ 1 for which B is greater than C, or in other words, B/C > 1.  
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Figure 4-9: Incremental benefits and costs when evaluating a range of possible degrees of mitigation 

investment. 

4.8. BCA OF FEDERAL MITIGATION GRANTS 

This section describes the BCA of federal mitigation grants studied in this project. The analysis involves 

three major steps. In Step 1, a stratified sample of mitigation grants is created. A stratified sample consists 

of individual grants selected according to hazard (earthquake, wind, flood, and fire) and mitigation types 

(project and process activities). In Step 2, the BCR for an individual project within a stratum is calculated. In 

Step 3, the benefits and costs from the sample are scaled up to the entire population of project and 

process activities, as described in the previous section. 

4.9. GRANT SAMPLING STRATEGY 

This section only applies to the study of federally funded mitigation grants, not design to exceed I-Code 

requirements. Recall that Step 1 in Section 4.1 required selecting a sample mitigation measure. The 

population of all grants is first stratified (grouped) by peril. Thus, one such stratum (or group) contains only 

flood-related mitigation projects. Another contains only mitigation activities related to hurricane winds. The 

reason for stratifying in this way is that BCRs may differ among these broad categories of mitigation 

grants, and it is desirable to ensure that several activities in each stratum are represented in the sample. 

Activities within a stratum do not contribute equally either to total benefit or to total cost. It is likely that a 

small number of costly activities dominate both cost and benefit. 

To ensure reasonable results, this fact should be reflected in the sample. Furthermore, it is desirable that 

activities of all cost levels are present in the sample. Therefore, mitigation activities within each stratum are 

sorted by cost. They are binned (grouped in batches of similar total cost) so that the total cost of each bin 

is approximately equal. Thus, one bin contains a few high-cost projects, another contains many lower-cost 

mitigation activities. One mitigation activity is then selected at random from each bin. As a result, the 
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sample contains more grants for high-cost mitigation activities than for low-cost ones, and yet still contains 

at least some grants for low- and medium-cost activities. Mathematical tests performed in the 2005 

Mitigation Saves study confirm that this approach produces more accurate estimates for the population 

benefit with less uncertainty than any of several competing alternatives. 

Figure 4-10 illustrates the sampling scheme. The red highlighted layer (flood, project, high) defines one 

stratum within the entire population of all grants. A sample of N projects from the stratum are desired for 

detailed BCA. First, all the projects in the stratum are sorted by project cost. The projects are grouped in 

bins. (In the figure, the bins are represented by the stacked boxes on the right and each project is 

represented by an “o” in the bins.) The first bin (the top one in the upper right of the figure) contains the x 

most-costly projects, the sum of their costs equaling approximately 1/N times the sum of all project costs 

in the stratum. In the second box, x=3, that is, the next three most-costly grants contribute approximately 

1/N times the sum of all project costs in the stratum. The project team selected one of these three at 

random for detailed BCA. (The selected grant is indicated by the red circle.) In the same manner, the figure 

shows that that the next most-costly five grants also cost approximately 1/N times the sum of all project 

costs in the stratum. The project team selected one of these five at random for detailed analysis. And so 

on. 

 

Box 4-1. The Impact of Sampling Strategy on Cost-Effectiveness 

The 2005 Mitigation Saves study considered the approach outlined in Section 4.6 and three others, 

such as randomly sampling grants with equal probability of picking any grant, regardless of cost. The 

sampling strategy used here results in the least difference between sample-average BCR and that of 

the population. It also results in the smallest standard error s in Equation 4-8, e.g., the smallest 

uncertainty where the true population BCR lies relative to the sample average. Both facts are important 

because the project’s ultimate goal is to estimate the probability that mitigation is cost-effective, e.g., 

whether the true, population-wide BCR > 1, as shown in Equation 4-10.  
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Figure 4-10: Stratified sampling scheme for federal mitigation grants. 

4.10. NOTES ON RIVERINE FLOOD METHODOLOGY 

The project team used different methods to estimate the benefits and costs to mitigate the four perils 

examined here. In some cases, the project team used Hazus largely as-is. This section presents some 

details on the largely Hazus-based methodology for estimating benefits and costs of mitigating riverine 

flooding. See later sections of this chapter for other details, including flood hazard, vulnerability, loss 

categories, calculation of benefits, and calculation of the BCR.  

Figure 4-11 depicts the approach the project team applied to estimate the benefits and costs of exceeding 

I-Code requirements. The approach seeks to identify elements that were both consistent across 

geographic locations as well as those that were likely to be more regionally or locally unique. As shown in 

the figure, the methodology calculated BCR values for elevating single-family homes above I-Code 

requirements. The effectiveness was determined by calculating the ratio of the amount of saving resulting 

from the loss avoided due to the elevation of a single-family dwelling (e.g., benefits), to the costs 

encountered in elevating the dwelling. 

Hazus was used to assess building and content losses of single-family homes before and after elevation, as 

well as to estimate the economic impacts of the elevation activity on the census block in which these 

homes are located. The Interim Study modeled these impacts both for as-is circumstances reflective of the 

current built environment in the sample communities, as well as for new construction of single-family 

dwellings exceeding 2015 I-Code requirements. Benefits were calculated in terms of the amount of loss 

avoided by elevating new single-family homes to a particular x foot above I-Code requirements at the 
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same location of the existing homes. The analysis resulted in estimates of a BCR per additional x foot of 

elevation, accounting not only for building losses but also losses resulting from BI and social impacts 

resulting from elevating single-family homes as described elsewhere in the Interim Study.  

 

Figure 4-11: Methodology to estimate BCR for designs exceeding I-Code requirements for riverine flood. 
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Costs. The cost of constructing a new single-family residential dwelling an additional x feet above that 

required by the 2015 I-Codes is calculated using Equation 4-17. 

𝐶(𝑥) = 𝛼 + 𝛽 ´ 𝑥 + 𝜏 ´ 𝑥 

Equation 4-17 

Where, 

α = fixed cost of elevating a residential structure of a given type and area 

β = incremental cost of elevating a structure of a given type by an additional foot 

τ = cost to comply with the Americans with Disabilities Act of 1990 (ADA) for each additional foot 

of elevation 

Equation 4-17 is an approximation. It attempts to capture all significant cost components, but costs may 

vary between communities. The equation may omit some costs such as code enforcement, if designing to 

exceed I-Code requirements involves any additional enforcement cost. 

Figure 4-12 summarizes the project team’s approach to estimating the effectiveness of federal mitigation 

grants directed to acquisitions of flood-prone structures. As in the analysis of designing to exceed I-Code 

requirements, the Interim Study used a geographic information system (GIS) with Hazus. 

 

Figure 4-12: Use of Hazus to estimate benefits and costs of federal grants for riverine flood. 

4.11. ESTIMATING EXPOSURE 

4.11.1. Present Day Exposure 

Exposure here refers to the engineering characteristics of the assets at risk: the buildings, utilities, and 

transportation infrastructure one might enhance with natural hazard mitigation. Engineering characteristics 

include geographic location, use, structural system, replacement cost, year built, and others.  
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Grant applications contain most or all of the necessary exposure data for mitigation projects funded by 

FEMA, EDA, etc. To estimate the costs and benefits of designing to exceed I-Code requirements, one must 

first estimate the quantity of buildings exposed to natural hazard loss by geographic region, occupancy 

class, building type, and time of day. Table 4-7 lists several options for how to estimate exposure including 

the advantages and disadvantages of each. For designing to exceed I-Code requirements for earthquake, 

the project team used the Hazus inventory created for USGS PAGER, updated to October 1, 2016. For 

flood and wind, which do not require a nationwide inventory, the project team used superior site-specific 

information. 

Table 4-7: Options for exposure data. 

Option Advantages Disadvantages Comments 

Hazus Well documented, 

nationwide scope, fairly 

authoritative, nationwide 

inventory tabulated for 

USGS PAGER project in 

2008 

2008 data are based on 

2002 Hazus data; 

estimated from proxies of 

population and 

employment data 

Can approximate growth 

since 2002 based on state 

population growth and 

construction cost indices to 

account for the increase in 

square-foot construction 

costs since 2002.  

Population alone 2015 estimates available No commercial, 

industrial, government, 

nonprofit. 

 

Tax assessor files Actual enumeration of 

taxable property 

No central resource; 

costly; diverse formats; 

often inconsistent 

valuation procedures; 

often lacks required 

parameters 

1111 Broadway, Oakland lacks 

material, LFRS, height, year 

built, floor area, building 

replacement cost new, 

occupants... 

OpenStreetMap Free and detailed 

outlines of building 

footprints contributed by 

the open GIS 

community. Spatially 

accurate 

Sparse attributes, typically 

incomplete or not fit for 

purpose 

Appropriate for 

disaggregating census data 

or for sampling possible 

locations when assessing 

detailed hazards, such as 

coastal surge or flood 

Remote sensing Efficient use of remote 

sensing can be used as a 

stratified sampling 

technique to apply 

engineering expertise or 

observations to an 

existing hazard data 

source, such as Hazus, 

Remote sensing 

technologies require 

subject matter experts.  

Useful when there are limited 

or broad regional 

assumptions in mapping 

occupancy to structural type 

as well as occupancy to 

assumed “model building 

type” for estimating 

replacement cost.  
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and increase the 

accuracy of replacement 

cost and vulnerability 

assumptions.  

 

Hazus offers the relevant aspects of its U.S. building-stock inventory in a normalized database of 15 tables 

for each state. To make use of these normalized data, in 2008 Porter compiled the data into a single 

denormalized table, one table for each state and the District of Columbia (a total of 51 tables). Each table 

contains one record (one row) for each unique combination of U.S. Census tract, Hazus model building 

type, code level, and Hazus occupancy classification. For each combination, the inventory provides the 

Hazus default estimate of total building area in square feet, number of occupants at three times of day (2 

PM, 5 PM, and 2 AM), building replacement cost (new), and content replacement cost (new).  

Census tract was the smallest practical geographic unit of deaggregation for the earthquake risk analysis, 

owing to limits in file size in Microsoft Access, which was used to create the inventory. (Analyses for other 

perils such as riverine flood are performed at a census-block or other level. That level of detail is 

impractical for the earthquake risk analysis, which deals with many combinations of model building type 

and occupancy class in each census area.) U.S. Census tracts generally have a population size between 

1,200 and 8,000 people, with an optimum size of 4,000 people. They can be geographically large or small 

depending on population density. Greater population density means smaller tracts. Miami-Dade County, 

Florida, for example contains 360 tracts with an average area of approximately 14 square kilometers (U.S. 

Census Bureau 2010). Figure 4-13 shows the size of a census tract in downtown Oakland, California. The 

blue lines delimit census tracts. The tract with a blue dot in it contains approximately 32 city blocks. The 

blue dot represents the geographic center (called the centroid) of the tract. If one treats all the people and 

property in the tract as if they were all at the centroid, one sacrifices little accuracy in estimating seismic 

hazard, because the centroid is on average less than 250 meters from any given building in the tract. In 

suburban and rural communities, the distance is greater, but the value exposed is also lower and the error 

contributes less to the estimate of societal risk. The usefulness of census-tract-level information varies by 

peril: it is most useful for earthquake and perhaps tornado, least useful for riverine and coastal flood. 
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Figure 4-13: Census tracts near downtown Oakland, California. 

WUI exposure has been mapped for the conterminous United States at the census block level (Martinuzzi 

et al., 2015a, 2015b). This dataset provides information on housing units and population in each census 

block and is the basis for analysis of assets at risk. Analysis of all census blocks in the conterminous United 

States was computationally infeasible, so the project team did analysis at the census block level for four 

counties (population in millions in parentheses): Los Angeles County, California (10.12), Alameda County, 

California (1.61), Ada County, Idaho (0.43), and Atlantic County, New Jersey (0.28). These four counties 

were selected as spanning the range of WUI fire hazard severity—Ada County has some of the highest 

BPs in the entire nation, parts of Los Angeles County are also high fire hazard with a very large population, 

Alameda County similarly is at high risk and was the site of the 1991 East Bay Hills fire, perhaps the largest 

WUI fire loss in modern history; Atlantic County is more typical of moderate fire hazard in the eastern 

United States. 

The project team analyzed one single-family dwelling prototype in each census block (e.g., all housing 

units in the WUI are assumed to be this prototype). The project team recognized that there are many 

other buildings and physical assets at risk within the WUI, beyond the single-family dwelling prototype—

not even all housing units are single-family dwellings. However, the analysis is confined to this one 

prototype because 1) nationwide, it is by far the most prevalent building type within the WUI; 2) many 

other building types in the WUI (e.g., small stores, offices, places of business in general, commercial strip 

malls, schools and places of assembly) are often of wood frame construction, and do not differ significantly 

from the prototype with regard to fire vulnerability; 3) even non-combustible construction when subjected 
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to WUI fire attack, if undefended, will, in most cases, burn to destruction; 4) the focus of the IWUIC is 

clearly on wood frame construction, for which the prototype is the most common example. Beyond 

buildings, other assets in the WUI fall broadly into two categories: 1) human-made, such as roads, bridges, 

tunnels, airports, utilities, larger infrastructure such as electric transmission facilities, water supply reservoirs, 

etc. None of these are the subject of the IWUIC, and their consideration is beyond the scope of this 

project; 2) natural environmental assets, including flora and fauna. While of enormous value, again these 

are not impacted by the 2015 IWUIC and their consideration is beyond the scope of this project. 

Hazus model building types for earthquake risk analysis are listed in FEMA (Federal Emergency 

Management Agency 2012) Table 5.1, among other places. Model building types generally classify 

buildings by structural material (mostly wood, reinforced concrete, steel, or masonry), lateral force resisting 

system (generally shearwall, frame, or bearing wall), and height class (1-3 stories, 4-7 stories, or 8+ stories). 

Hazus classifies a building as having one of four code levels: pre-code, low code, moderate code, or high 

code, generally referring to the degree to which the code in force at the time of construction specified 

sufficient lateral strength and structural detailing requirements to ensure a complete load path, among 

other goals. Hazus also allows for three more classes of special construction, called “above-code” in 

Federal Emergency Management Agency (2012e) but more accurately referring to buildings that would 

have been built according to code requirements for hazardous or essential facilities (Risk Category III or IV, 

in the terminology of the American Society of Civil Engineers Structural Engineering Institute [2010]). See 

Federal Emergency Management Agency (2012e) Table 15.1 for Hazus occupancy classes; it lists 33 classes, 

generally subcategories of residential, commercial, industrial, agriculture, religion, government, and 

education. 

The 51 inventory tables (one for each state plus the District of Columbia) were originally compiled in 2008 

and reflect the inventory that the Hazus developers provided in 2002. The population has grown since 

2002 and construction prices have increased. One can reflect these increases as follows: Factor square 

footage and number of occupants by a population growth factor F1 to account for population growth on a 

state-by-state basis from January 2002 to October 2016 (the date of the beginning of the present project). 

See Equation 4-18. Factor building and contents replacement costs by both the population growth factor 

F1 and a factor F2 to account for both population growth and the increase in per-square-foot construction 

costs over time. See Equation 4-19. In the equations, P(year) denotes the USCB’s population estimate as of 

the stated year (U.S. Census Bureau 2004). The factor 14.75/13 is used to linearly extrapolate from January 

1, 2002 to October 1, 2016. The term C(year) denotes RSMeans’ 2015 national 30-city average historical city 

cost index (CCI) as of the stated year. Its national 30-city CCI reflects an estimate of the nationwide 

average growth in construction costs (RSMeans n.d.).  

𝐹1 =
𝑃(2015)

𝑃(2002)
⋅

14.75

13.00
 

Equation 4-18 
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𝐹2 =
𝐶(2015)

𝐶(2002)
⋅

14.75

13.00
 

Equation 4-19 

Recall that the inventory of buildings representing code-compliant design is to be modeled as if designed 

to the 2015 IBC, but using each state’s local mix of lateral force resisting systems, building heights 

categories, and occupancy classes. To reflect that mix, the project team modeled the code-compliant 

inventory in each state using the distribution of the most recent construction as reflected by the highest 

code level in that state’s inventory. In cases where even that most-recent design level includes obsolete 

building types such as unreinforced masonry (URM) bearing walls, one can change obsolete types to 

similar but non-obsolete types. For example, the project team changed all mid-rise URM bearing wall 

buildings to high-code reinforced masonry buildings with rigid diaphragms. To reflect designing to exceed 

2015 I-Code requirements, the analysis uses the same mix of structural systems, heights, and occupancies, 

but with greater strength and stiffness, as discussed later.  

Content and stock damage are also modeled, because their damage will be affected by the designing to 

exceed I-Code requirements. Their replacement-cost values are estimated as a factor of building 

replacement cost, using the same factors assumed by the Hazus developers. 

Note that for purposes of evaluating benefits of designing to exceed I-Code requirements, the project 

team mapped BCR on a geographic basis (e.g., bi/ci of Equation 4-7), e.g., without multiplying by total 

expenditures (Ei in Equation 4-3). The exposed values, their geographic locations, and their change over 

time only matter when one estimates the aggregate benefits and costs (B and C of Equation 4-6). The 

method to project population growth and spread is discussed next. 

4.11.2. Creating a Proxy Portfolio for Designing to Exceed I-Code 

Requirements for Riverine Flood 

The project team used a purposive sampling technique of typical cases of communities that represent 

common floodplain conditions and residential structures found in riverine flooding across the United 

States. The word typical here implies that the results and conclusions are illustrative for all communities in 

the United States that meet the characteristics of the urban and rural communities analyzed in the Interim 

Study. 

The decision to apply a purposive sampling approach to select target communities was justified by the 

following: 

 The existence of a relatively small number of geographic areas (sample areas) where detailed data are 

available and where the built environment is diverse enough to allow for the exploration of various 

elevation scenarios; and 
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 A recognition that both the nature of the analysis performed in the Interim Study and the generated 

benefit and cost functions per foot of elevation require close consideration for specific flood events in 

specific communities. 

 Use of a regression model to generalize results of the analysis to similar characteristics across the United 

States (see Section 2.2.1 of the Interim Study). 

The selection of sample communities was based on a number of different factors. Among these were: 

 House size 

 Foundation types: open (crawlspace/pier foundation) versus closed (slabs) 

 Construction cost 

 Flood hazard conditions (1% versus 0.2% annual chance of flooding) 

The following parameters likely matter most to the cost effectiveness of designing to exceed I-Code 

requirements for riverine flood: 

 Footprint area 

 Number of stories 

 Foundation type (piers or piles, open or closed) 

The project team evaluated the cost effectiveness of designing to exceed I-Code requirements for riverine 

flood for four building sizes (Table 4-8), six foundation types and five elevations (Table 4-9), and four 

geographic regions (Figure 4-14). The four regions were Monroe and Fulton Counties in Georgia, and 

Elkhart and Allen Counties in Indiana. Monroe County is rural, while the rest are pronominally urban. All 

the buildings are single-family dwellings (RES1 in Hazus nomenclature). The four counties have different 

distributions of house size (in terms of stories and total floor area) and foundation type (open or closed), 

as summarized in Table 4-10. All the houses are located in the 500-year (0.2% probability per year) flood 

area. Only rural Monroe County, Georgia has open-foundation houses in the 0.2% annual chance flood 

area; houses in the 0.2% annual chance flood area in the more-urban counties all have closed 

foundations. Section 2.2.1 further presents regression models the project team developed to generalize 

the results of the analysis. 

Table 4-8: Four building sizes used to determine BCRs for riverine flood. 

Building size Length (ft) Width (ft) Stories Footprint (sf) Floor area (sf) 

1 50 30 1 1,500 1,500 

2 50 30 2 1,500 3,000 

3 60 40 1 2,400 2,400 

4 60 40 2 2,400 4,800 
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Table 4-9: Foundation and elevations used to determine BCRs for riverine flood. 

Flood hazard zone Foundation types Lowest floor elevation (ft) 

A 

Timber pile 

Concrete pile 

Masonry pier 

8" masonry pier 

12" masonry pier 

Fill and slab-on-grade 

BFE +1 

BFE +2 

BFE +3 

BFE +4 

BFE + 5 

 

 

Figure 4-14: Locations used to determine BCRs for riverine flood. 

Table 4-10: Portfolio of foundation type (open or closed) and house size (stories and total area) by county, 

used to determine BCRs for riverine flood. 

 Open foundation Closed foundation 

County 1 story 

1500 sf 

2 story 

3000 sf 

1 story 

2400 sf 

2 story 

4800 sf 

1 story 

1500 sf 

2 story 

3000 sf 

1 story 

2400 sf 

2 story 

4800 sf 

Allen, IN 0 0 0 0 97 49 41 6 

Elkhart, IN 0 0 0 0 82 59 223 48 

Fulton, GA 0 0 0 0 195 161 99 168 

Monroe, GA 15 6 9 2 1 0 1 0 

Workflow. The project team applied a GIS to carry out the following analytical steps. (The steps mix the 

tasks of developing a sample inventory and characterizing hazards.) 
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Step 1: Develop depth grids. The project team used Hazus to generate two depth grids: one grid 

showing depths at each grid point in each county with a 1% exceedance probability in 1 year (100-year 

MRI) and another showing depths with 0.2% exceedance probability in 1 year (500-year MRI). Recall 

that the 2015 I-Codes require the first floor elevation be at least BFE + 1, e.g., 1 foot above the depth 

with 100-year MRI. 

Step 2: Classify depth grids based on water level. The project team classified depth grids for the 1% 

annual chance and 0.2% annual chance year return periods developed in Step 1 based on water level 

(e.g., flood inundation level). The classification resulted in two zone categories: shallow water or deep 

water. The project team classified cells with depth less than the median as lying in the shallow-water 

zone, labeled “zone 1” for brevity. The team classified cells having depth greater than the median as 

lying in the deep-water zone, or “zone 2” for short. 

Step 3: Create a proxy building inventory based on the real building stock. Each house in the real 

building stock of the four sample counties is unique. To make the BCA tractable, the project team 

simplified the real building stock by imagining that new buildings of a limited number of designs were 

to be built in place of the existing ones in the 1% annual chance flood plain. Every building in the real 

inventory was mapped to its closest approximation in Table 4-8, first considering number of stories, 

then by nearest total square footage. For example, if an actual single-family dwelling had 1 story, it was 

mapped to either size 1 or 3, e.g., either a 1-story, 1,500-square-foot house or a 1-story, 2,400-square-

foot house. If the real house had a total floor area of 1,450 square feet, it was mapped to (in a sense, 

replaced by) the 1-story, 1,500-square-foot house (size 1 in Table 4-8), for purposes of BCA. That is, 

the project team estimated benefits and costs for a new size-1 house built at the location of the real 

house.  

Step 4: Assign foundation types to the proxy building inventory. The project team assigned each 

building in the proxy portfolio to one of two foundation types: open or closed, based on which Hazus 

foundations type the real building has, as shown in Table 4-11. With four building sizes and two 

foundation types among the proxy buildings, each real building maps to one of 8 models, labeled A 

through H, as shown in Table 4-12.  

Step 5: Associate each house with a grid cell and thus a depth zone: shallow (zone 1) or deep (zone 2). 

With four possible building sizes, two possible foundation types, and two possible depth zones, the 

project team mapped each real house in the four sample counties to one of 16 cases, that is, 

combinations of size, foundation type, and depth zone, listed in Table 4-13.  

Step 6: The project team used 16 different cases shown in Table 4-13 to randomly stratify census 

blocks in the four sample counties to model the effectiveness of building new single-family dwellings 

to greater elevation. The team selected these census blocks by first determining the dominant building 

classification in each census block; and second by ensuring that each of the four counties had as many 

as possible of the 16 cases represented.  
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Step 7: Update the Hazus GBS and Hazus UDF inventories. The project team updated the Hazus GBS 

inventory with all buildings located in the stratified census blocks. The project team updated the Hazus 

UDF inventory only with the single-family dwellings contained within the stratified census blocks. The 

project team used the Hazus GBS inventory to determine BI values within the impacted area 

considering all occupancy classes rather than just single-family dwellings (RES1). The team used the 

Hazus UDF inventory to derive all other impacts: building damage, content damage, etc. Table 4-14 

provides the number of buildings included in the final dataset modeled for each case and county.  

Table 4-11: Assigning foundation type to riverine flood proxy portfolio. 

Real house has this foundation type Proxy house was assigned this type 

Crawl space  Closed 

Basement  Closed 

Slab  Closed 

Pier  Open 

Pile  Open 

Fill  Closed 

Wall  Closed 

Table 4-12: Assigning model label to riverine flood proxy portfolio buildings based on size and foundation. 

Model Description 

A Size 1, open foundation 

B Size 1, closed foundation 

C Size 2, open 

D Size 2, closed 

E Size 3, open 

F Size 3, closed 

G Size 4, open 

H Size 4, closed 

Table 4-13: Assigning a case identifier to riverine flood proxy portfolio buildings based on size, foundation, 

and depth. 

Case Description Case Description 

A1 Size 1, open foundation, shallow A2 Size 1, open foundation, deep 

B1 Size 1, closed, shallow B2 Size 1, closed, deep 

C1 Size 2, open, shallow C2 Size 2, open, deep 

D1 Size 2, closed, shallow D2 Size 2, closed, deep 
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E1 Size 3, open, shallow E2 Size 3, open, deep 

F1 Size 3, closed, shallow F2 Size 3, closed, deep 

G1 Size 4, open, shallow G2 Size 4, open, deep 

H1 Size 4, closed, shallow H2 Size 4, closed, deep 

Table 4-14: Number of buildings by county and size-foundation-depth case in sampled census blocks of 

the riverine flood proxy portfolio. 

Case 
Number of Buildings 

Monroe County, GA Fulton County, GA Elkhart County, IN Allen County, IN 

A1 33 0 0 0 

B1 0 201 105 62 

C1 16 0 0 0 

D1 0 120 85 44 

E1 10 0 0 0 

F1 5 98 106 58 

G1 0 0 0 0 

H1 0 280 61 8 

A2 9 0 0 0 

B2 0 118 149 6 

C2 10 0 0 0 

D2 0 57 55 35 

E2 13 0 0 0 

F2 0 45 104 20 

G2 9 0 0 0 

H2 0 204 61 0 

Total 105 1,123 726 233 

4.11.3. Estimating Building Exposure for Riverine Flooding 

To estimate the pre-mitigation building stock for regions subject to riverine flooding, particularly to 

analyze federal grants, the project team combined the Hazus GBS data with a UDF inventory. The UDF 

inventory was updated to represent the pre-mitigation location and conditions of the structures acquired 

by each grant. Where possible, the locations of these structures were based on the information in the 

grant database. However, in some cases, it was necessary to adjust these locations slightly because they 

either were not located in the Hazus generated depth grid or they were not located within one of the 

dasymetric census block boundaries. 
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When this adjustment was made, the project team moved the locations of the points as little as possible so 

that they fell within the 100-year flood inundation area and within a dasymetric census block boundary. In 

addition, the team chose the locations of moved structures to ensure that the depth of water in the 100-

year flood exceeded the first-floor elevation of the building. The 1% annual chance event was selected 

because it was assumed that acquisitions were unlikely as a results of lesser flooding events. 

To estimate post-mitigation building stock, the project team duplicated the pre-mitigation inventory, 

changing it to reflect the grant activity, e.g., by removing buildings acquired through the grant. Tables 

specifically modified included those reporting square footage, building count, dollar exposure and content 

exposure. 

4.11.4. Estimating Building Exposure for Coastal Inundation 

Coastal inundation presents a special problem for BCA, so a special approach is required to deal with it. 

The project team considered several options for constructing the building exposure database used to 

model the effects of designing new coastal buildings to exceed building code requirements for elevation. 

Each has advantages and disadvantages.  

Typically, regional studies rely on census or regional data to approximate the building stock. Such an 

approach has a number of severe disadvantages. Exposure to storm surge changes throughout a coastal 

census tract or block with site elevation, coastal distance, and other local topographic and bathymetric 

features. Hazard can vary over distances of tens of meters, much smaller than a census tract, block group, 

or even census block, so building locations within the block or tract matter a lot. Coastal homes tend to be 

irregularly distributed within a block or tract, and are more likely to be clustered around streets that follow 

the coast, rather than close to the water on the beach. Census blocks extend past the coast, so an 

automated approach to estimating building locations based solely on census block boundaries and 

numbers of people or buildings in the census block is likely to estimate unrealistic building locations. One 

would likely estimate building locations as being in the surf, exaggerating the hazard and grossly under- or 

overestimating BCRs.  

Local studies may use site-specific building data in the form of street addresses. While it can produce 

better accuracy than distributing building within census boundaries, geocoding addresses can also 

misrepresent building locations enough to matter to a BCA. Automated geocoding can result in estimated 

locations that are evenly offset (set back) from the street, but the true setbacks can differ significantly from 

a geocoding program’s default setback, potentially by tens of meters, enough to produce large errors in 

hazard.  

OpenStreetMap (OSM) offers a third option: building footprints (OpenStreetMap 2017). OSM building 

footprints allow sampling of actual site-specific building locations more accurately than geocoding and far 

more accurately than census data. Its disadvantage is that with greater accuracy comes greater 

computational burden. Weighing the advantage of accuracy against the computational burden, the 
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project team opted to estimate coastal building exposure using OSM building footprints, and dealt with 

the computational burden as described next.  

Approximately 30,000 buildings from Texas to Maine intersect (lie within or touch) the FEMA NFIP V- or 

VE-zones (Federal Emergency Management Agency 2014d). For purposes of estimating the cost 

effectiveness of designing new buildings to exceed code requirements, imagine that new buildings are 

built to replace existing ones, always at the same location. A total of 30,000 buildings in V- and VE-zones 

were available for processing, though building footprints were not provided for every building. To make 

the problem computationally tractable, the project team randomly selected up to 1,000 building footprints 

per each of seven states, for a total of 7,000 locations. The project team extracted the latitude and 

longitude of the centroid of each of these 7,000 footprints and performed BCA for a new house located at 

that point. 

4.11.5. Number of People and Households Based on Number of Buildings 

In some cases (especially riverine flooding), the project team knew the number of residential buildings and 

needs to estimate number of occupants and number of households. The project team estimated number 

of occupants using Table 4-15. The table lists the residential occupancy classes examined for riverine 

flooding using the Hazus notation. With the number of occupants determined, the project team estimated 

number of households by dividing number of residential occupants by 2.5 people per household. 

Table 4-15: Estimated building occupancy for riverine flooding. 

Occupancy Description Number of occupants 

RES1 Single-family dwelling 2.5 people per building 

RES2 Manufactured housing 2.5 people per building 

RES3A Duplex 5 people per building 

 

4.12. ESTIMATING HAZARD 

In the present context, hazard refers to a relationship between environmental excitation and exceedance 

frequency in events per year. Environmental excitation refers to the forces or other loading conditions that 

the natural environment imposes on infrastructure. Table 4-16 lists hazard measures and sources. Details 

are provided in the following sections. 
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Table 4-16: Hazard measures and sources. 

Peril Measures, units Source 

Flood Depth (A-zone), m 

Momentum flux (V-zone), m3/sec2 

Hazus 

Hurricane wind 10-meter 3-sec peak gust velocity (m/sec) ASCE 7-16(a) 

Tornado wind N/A. See Section 4.12.4 NWS 

Storm surge 10-meter 3-sec peak gust velocity (m/sec) 

 

MOMS (Maximum of MEOWs (Maximum 

Envelope of Water), Category 1-5, ft of surge 

height. 

 

Projected sea level rise (cm) given GMSL 

scenario. Posted by tide gauge location. 

 

Sea level rise on land given sea level rise, ft 

 

Extent of “V” or “VE” zone. 

 

Elevation, feet 

ASCE 7-16 (American Society of Civil 

Engineers Structural Engineering 

Institute 2017) 

 

NOAA 2013 SLOSH modeling 

(National Hurricane Center 2014) 

 

NOAA Technical Report NOS CO-

OPS 083 (Sweet, et al., 2017) 

 

NOAA SLR Viewer (National Oceanic 

and Atmospheric Administration 2017) 

 

FEMA Flood Maps (Federal 

Emergency Management Agency 

2014d) 

 

USGS (U.S. Geological Survey 2017) 

Earthquake Sa(0.2 sec, 5%), g or Sa(1.0 sec, 5%), g, both 

geographic mean of two orthogonal directions. 

Petersen et al. (2014); Vs30 from 

OpenSHA.org site data app at tract 

geographic centroid (preferred value), 

FV from 2015 NEHRP Recommended 

Provisions (Federal Emergency 

Management Agency 2015d). 

Fire Burn probability  

Flame intensity level  

Finney (2011); Short (2016) 

Byram (1959); Scott (2013) 

(a) 2016 represents the best available hazard information. 

4.12.1. Estimating Riverine Flood Hazard 

A flood risk model has three key components: the delineation of the flood hazard; the exposure (buildings, 

population, etc.); and the methodology that relates the hazard to the exposure to derive economic and 

social impacts. These components can be compared to the legs of a chair. If one of the legs is weak, the 

chair collapses, or, in the case of a model, the model produces output that may lack credibility. 
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As discussed in Chapter 3, the lack of detailed flood hazard and exposure data was a limitation of the 

flood analysis in the 2005 study. In addition, at the time that study was completed, there were limited 

options for using GIS tools to analyze flood impacts. The lack of data limited the potential value of 

technologies such as Hazus. The present Interim Study applied improved modeling capabilities, and 

integrated data resources that were unavailable for the 2005 study. 

The project team determined the majority of loss calculations in Hazus by applying depth-damage 

functions to evaluate the relationship between exposed buildings and other community assets, and a flood 

depth grid that defines the extent and severity of the hazard. Users can either create a depth grid with 

Hazus or they can provide their own depth grid. Since the 2005 study was completed, depth grids have 

been developed for a number of communities across the United States. FEMA’s Risk MAP program has 

been especially helpful in this as it has led to the development of new information, including depth grids in 

some cases, to help communities understand and mitigate the impact of flood hazards. 

The project team evaluated the availability of depth grids from Risk MAP and other sources for the Interim 

Study but determined that none were available within areas for which other critical study input such as 

building inventory was available. Accordingly, the project team used Hazus Release 3.2 to generate the 

depth grids needed for above-code measures as well as federal mitigation grants. While Hazus may 

deliver less-precise depth grids than those produced with more robust engineering tools and methods, 

they seem adequate for the Interim Study.  

To support the analysis of designing to exceed I-Code requirements, the project team used both 1% 

annual chance return period (1% annual chance) and 500-year return period (0.2% annual chance) depth 

grids for each of the four counties included in the Interim Study (see Section 4.11.2) using the Hazus suite-

of-return-periods option. These were based on a 1 arc-second digital elevation model and a 5-square-

mile drainage threshold. To study the cost effectiveness of federal grants, the project team sometimes 

used a drainage threshold of less than 5 square miles, but always large enough to estimate flood hazard 

at the location of the mitigated building.17 

4.12.2. Estimating Storm Surge Hazard 

Nobody offers hazard data on regional probabilistic coastal surge. The project team therefore estimated 

probabilistic storm surge. In summary (details follow), the project team used worst-case evacuation maps 

that show evacuation zones for each of several Saffir-Simpson categories. The project team scaled the 

estimated surge heights to match local flood studies, and estimated the MRI from wind speed maps. The 

steps listed here provide a brief explanation of each dataset, followed by a description of the steps to 

estimate probabilistic storm surge elevation: 

Step 1: Flood maps for NFIP (Federal Emergency Management Agency 2014d). FEMA digital flood 

maps provide the extent of analysis where a significant risk from storm surge justifies building above 

                                                 
17 For details on how Hazus generates depth grids, see Federal Emergency Management Agency (2011b). 
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the required code. These data also provide a key indicator of the BFE: 6 feet above ground elevation 

at the landward edge of the delineated zone according to FEMA P-55 (Federal Emergency 

Management Agency 2011a). This provides a method to estimate the BFE regionally. The project team 

downloaded data for all states in the conterminous United States exposed to coastal storm surge. 

Although most areas had digital FEMA flood maps available, South Carolina did not have data 

available. 

Step 2: Preliminary design wind speed maps from ASCE 7-16 (American Society of Civil Engineers 

Structural Engineering Institute 2017). Design wind speeds were used to model the probable return 

interval of hurricanes corresponding to the SSHWS. The project team acquired the data just before 

general release. The data are generally consistent with ASCE 7-10, but include the 3,000-year MRI to 

characterize rare storms. 

Step 3: MOMs surge heights by SSHWS from NOAA (National Hurricane Center 2014). Emergency 

managers use the surge height estimates primarily for evacuation purposes. The surge heights also 

provide a consistent nationwide data source for assessing coastal surge hazards from hurricanes. 

NOAA delivers the data in separate GIS layers, each representing the maximum probable surge 

heights for a given SSHWS category. Using the ASCE 7-16 wind speeds (American Society of Civil 

Engineers Structural Engineering Institute 2017), one can assign each storm category a MRI given the 

wind hazard at the coast. (This process is discussed below.) The project team adjusted the maximum 

surge height regionally to represent a mean surge elevation using the FIS performed for the NFIP 

(FEMA, 2003, 2006a, b, 2007b, c, 2008c, d, 2009a, b, 2012a, b, c, 2013a, 2014b, c). The project team 

used approximately a dozen FIS studies to scale the MOMs and applied scaling factors for each of 

three regions: (1) Gulf states including western Florida; (2) eastern Florida up the coast to South 

Carolina, and (3) from North Carolina northward. 

Step 4: USGS National Elevation Dataset (U.S. Geological Survey 2017). Ground elevation at a given site 

combined with the location nearest to a border between a V- or VE-zone in the FEMA flood maps 

(FEMA 2014d) provide the ground required to estimate the BFE at each location. 

Step 5: NOAA global and regional SLR scenarios for the United States (Sweet et al. 2017). NOAA 

estimates SLR for gauge locations globally. The project team chose four scenarios: low, intermediate-

low, intermediate-high, and extreme to represent a low, moderate, high, and extreme SLR scenario, 

and assigned the regional SLR by creating Theisen polygons surrounding each location and assigning 

the closest gauge. The result is a map of likely regional SLR though time for off-shore point locations. 

Intermediate-low was chosen as the mean scenario, corresponding to global rise of 50 cm, ± 2 cm 

(approx. 20 in. ± 0.8 in.).  

Step 6: NOAA SLR (National Oceanic and Atmospheric Administration 2017). In tandem with the Sweet 

et al. (2017) data, the NOAA SLR spatial datasets provide projected SLR on shore and on land for six 

scenarios representing 1 to 6 feet of inundation. The estimates do not model complex coastal impacts 

or erosion.  
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Recall from Section 4.11.2 that the analysis uses 7,000 sample locations from the OpenStreetMap (2017) 

footprint data set. The project team estimated probabilistic hazard at the centroid of each sampled 

footprint, as follows: 

Step 1. Estimate BFE. Estimating the BFE required two elevation levels: the elevation at the centroid of 

the OSM footprint (E1) and the elevation at the inland location representing the transition from the V- 

or VE-zone (E2) (FEMA 2011a). The project team did not analyze the cost effectiveness of building 

above coastal A-zones because these zones are not identified in the NFIP data. The project team 

determined the location at which to estimate E2 using a custom Python application that accesses a 

PostgreSQL database (an open-source relational database system) developed for this purpose. One 

can then calculate BFE as shown in Equation 4-20. See Step 5 below for the meaning of the factor of 

1.55.  

𝐵𝐹𝐸 = (𝐸2 + 3.85 − 𝐸1) ´ 1.55 

Equation 4-20 

Step 2: Estimate mean recurrences interval using Saffir-Simpson category. NOAA provides MOMs 

surge estimates (National Hurricane Center 2014) for Category-1 to Category-5 storms, but what is 

their MRI? The ASCE 7-16 wind speed data (American Society of Civil Engineers Structural Engineering 

Institute 2017) provides wind speeds with each of seven MRIs. The project team used the latter to 

estimate the former, as follows. Let i denote an index to seven pairs (xi, yi) of data, where xi denotes 3-

second peak gust velocity at 10-meter elevations and yi denotes MRI in years. The project team 

extracted seven such pairs from the ASCE 7-16 wind speed maps for each location of interest. The 

pairs have common y values: y1 = 10 years, y2 = 25 years, etc., at each location. The other y values are 

100, 300, 700, 1,700, and 3,000 years. Let x denote the wind speed at the midpoint between lower and 

upper bounds of the peak gust velocity for each Saffir-Simpson category. The project team estimated 

y, the MRI for each Saffir-Simpson intensity at each location by linear interpolation within (xi, yi) data, 

e.g., Equation 4-21, where x0 refers to the maximum xi such that xi ≤ x, x1 refers to the minimum xi such 

that x < xi, and y0 and y1 are the y-coordinates of x0 and x1, respectively.  

𝑦 = 𝑦0 + (𝑥 − 𝑥0)
𝑦1 − 𝑦0

𝑥1 − 𝑥0
 

Equation 4-21 

Step 3. Estimate surge height. For each location, use GIS to extract the surge elevation by Saffir-

Simpson category from the NOAA MOMs (National Hurricane Center 2014). Given that NOAA MOMs 

provide a worst-case scenario for evacuation purposes, these estimates need to be adjusted to 

represent mean surge elevation. Several FIS studies (Federal Emergency Management Agency 2003, 

2006a and b, 2007b and c, 2008c and d, 2009a and b, 2012a, 2013a, 2014b and c) provide surveyed 

data suitable for adjusting the expected surge elevation given a return interval. For each study, the 

project team entered surge estimates for approximately 5 locations into a GIS database and extracted 
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the estimated storm surge by Saffir-Simpson category. For each Saffir-Simpson category, analysts 

used linear interpolation to assign a return interval using the same method described in Step 2 above. 

The result was two datasets: MOMs surge height versus MRI and FIS surge height versus MRI. The 

project team took the FIS as a mean estimate of surge and MOMs as an upper bound. The ratio of the 

latter to the former at a given MRI estimates the degree to which MOMs surge heights are greater 

than best estimates. The project team used the ratio to de-amplify MOMs surge heights to best 

estimates. Figure 4-15 provides an example for Pinellas County, Florida (FEMA 2009b). 

 

Figure 4-15: Sample data for adjusting NOAA MOMs surge elevations (National Hurricane Center 2014) to 

FEMA FIS estimates, Pinellas County, Florida (Federal Emergency Management Agency 2009b). 

Step 4. Accounting for SLR. SLR is a cumulative hazard that impacts coastal surge elevation as well as 

the effectiveness of mitigation. For each location and for each SLR scenario, the NOAA global and 

regional SLR scenarios (National Oceanic and Atmospheric Administration 2017) provide an estimated 

height in feet (data set 5, above). Given that elevation in feet, the project team added the 

corresponding NOAA projected SLR (data set 6) to the NOAA MOMs (National Hurricane Center 

2014). To account for SLR, the project team divided the 75-year projected lifespan of a building into 

five 15-year intervals and assessed benefits at the midpoint (2025, 2040, 2055, 2070, 2085). Future 

benefits for distant time slices were discounted accordingly.  

Step 5. Accounting for wave height. MOMs (National Hurricane Center 2014) estimate stillwater surge 

elevation. After adjusting these values and added SLR, the project team multiplied the values by 1.55 

to account for wave height. Hence the factor of 1.55 in Equation 4-19. 

Step 6. Removal of benefits for locations under water due to SLR alone. In cases that the SLR reaches 

the building footprint, no benefits are realized from that year on. That is, if a house is still dry between 

high and low tide given a SLR estimate, there may be benefits to mitigation. However, if the house is 
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not dry between high and low tide, benefits are no longer realized. The BCR excludes any benefits to 

buildings that cannot be reached because the surrounding land is regularly flooded. 

Step 7. Estimation of surge depth. The project team assessed damage using the value of projected 

surge depth above lowest floor elevation. For records not removed under Step 6 above, this is the 

difference between the value from Step 5 and the value in Step 1, modified to account for additional 

elevation above the BFE.  

4.12.3. Estimating Hurricane Wind Hazard 

The project team used the wind speed maps from ASCE 7-16 (American Society of Civil Engineers 

Structural Engineering Institute 2017). These maps, which were delivered to the project team before 

general release, show wind speeds for different return intervals. For the Interim, the area of analysis covers 

all locations where a wind speed with 7% exceedance probability in 50 years exceeds 115 mph, and in 

some cases 110 mph where BCR exceeds 1.0. The analysis does not consider mitigation benefits for those 

structures subject to tornado wind. This choice refers to the basic wind speed used for design of ordinary 

buildings, ASCE 7-10 Risk Category II. The wind speed with a 7% exceedance probability in 50 years 

corresponds to a 700-year MRI. 

Assessing BCR for this wide area required geographic simplification. There are thousands of combinations 

of wind speeds by return interval throughout the entire area. Two places where 700-year wind speed of 

120 mph can have different values of wind speed with a different MRI. It turns out however that, 

considering places with the same 700-year wind speed, the variability of the wind speeds associated with 

the other MRIs was quite small: their standard deviation was less than 5 mph. The project team therefore 

estimated exposure by 700-year wind speed, and estimated a population-weighted average of the wind 

speed with other MRIs, as described next. Simplifying the hazard in this way allows for a more 

sophisticated assessment of options to designing to exceed I-Code requirements associated with the IBHS 

FORTIFIED Home Hurricane and High Wind program (Insurance Institute for Business & Home Safety 

2012, 2015). 

When designing most ordinary buildings to meet the 2015 IBC, engineers start with a so-called basic wind 

speed that has approximately a 7% probability of exceedance in 50 years, which corresponds to an annual 

exceedance probability of 0.00143 and a MRI of 700 years. In this section, the project team was not so 

much concerned with design as with wind hazard—engineers’ best estimate of the frequency with which 

various wind speeds are exceeded. Here is how to calculate a population-weighted-average wind speed 

for MRIs other than 700 years, namely 10, 50, 100, 300, and 1,700 years.  

The project team created a spatial overlay that included the remaining MRI wind contours and the Atlantic 

and Gulf Coast state boundaries. This resulted in a set of polygons that represented wind speeds for all 

MRIs for each location. For example, see how various contours for South Florida cross in Figure 4-16, 

creating polygons with various combinations of wind speeds with 10, 50, 100, 300, 700, and 1,700-year 

MRIs. Rather than deal with the thousands of polygons, the project team estimated the population by 700-
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year wind speed band and, for each band, calculated the weighted average wind speed for the remaining 

MRIs (10, 50, 100, 300, and 1,700 years) using the population of each polygon. 

 

Figure 4-16: South Florida wind speed combination example. 

As a simplified example, suppose the population where 700-year wind speed is approximately 115 mph is 

1,000 people. Suppose two contours for the 1,700-year MRI intersect the region, one with a population of 

750 and a 1,700-year wind speed of 120 mph, and the other with a population of 250 with a 1,700-year 

wind speed of 130 mph. Thus, 75% of the population have a 1,700-year wind speed of 120 mph and the 

other 25% have a 1,700-year wind speed of 130 mph, and all 1,000 have a 700-year wind speed of 115 

mph. The project team replaced the two subgroups with a single population of 1,000 where 1,700-year 

wind speed is 0.75·120 mph + 0.25·130 mph = 122.5 mph. That is, treat the hazard where those 1,000 

people live as uniform: all 1,000 people are exposed to a 700-year wind speed of 115 mph and a 1,700-

year wind speed of 122.5 mph. Table 4-17 shows the resulting weighted average wind speeds by MRI. For 

example, suppose a location has a 700-year wind speed of 110 mph according to the ASCE 7-16 map of 

basic wind speed for occupancy category II buildings. Reading the first row of Table 4-17, that location 

would be estimated to have a 10-year wind speed, e.g., the wind speed associated with a MRI of 10 years, 

of 71 mph, as shown in the first column of the first row. 

ASCE 7-16 identifies wind-borne debris regions along the Gulf and Atlantic Coast where 700-year wind 

speeds are greater than 130 mph. The project team created a 1-mile buffer for these areas and intersected 

with the hazard map through a GIS process. The resulting map allowed the project team to extract the 

values (mph) for any given return interval, at any location, and identify whether the property is within 1 mile 

of the coast. Although the 1-mile buffer is not visible at this scale, Figure 4-17 depicts the final hazard map 

with county boundaries. 
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Table 4-17: Population-weighted wind speeds (mph) by return interval, given 700-year wind speed 

contours. 

 

Mean recurrence interval (years) 
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71 85 95 105 110 120 

71 87 95 105 115 120 

73 91 98 110 120 129 

75 98 107 120 130 139 

77 101 112 129 140 149 

75 100 119 130 145 150 

80 110 121 138 150 161 

80 119 130 149 160 172 

80 120 137 151 170 181 

81 130 147 166 180 196 

(a) 700-year wind speed is a baseline, meaning that one applies wind hazard curves—essentially rows in this table—to a 
location based on its 700-year wind speed. The other columns in the row give the population-weighted average wind speed 
with the specified mean recurrence interval, even though the wind speed with 10-, 50-, 100-, 300-, or 1,700-year mean 
recurrence interval may differ at an actual location with the specified 700-year wind speed. 
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Figure 4-17: ASCE 7-16 700-year wind speeds. 

4.12.4. Estimating Tornado Wind Hazard 

Because of rapid population growth and observation bias in existing tornado databases, it is difficult to 

characterize tornado wind hazard effectively. However, given that tornado shelters mitigate injuries and 

loss of life only, tornado hazard can be assessed indirectly, based on the number of fatalities (i.e., risk 

rather than hazard), for which there are good statistics. NOAA’s NWS (National Weather Service 2017) 

provides a database of fatalities by state and by year from 1950 to 2016. The project team divided these 

values by the USCB’s state population estimates (U.S. Census Bureau 2017) to estimate fatalities per capita 

per year by state. This analysis assumes safe rooms and shelters are perfectly effective in preventing death 

and injury when people use them. The analysis excludes data prior to 1950 to recognize the widespread 

use of tornado sirens and how sirens greatly reduce fatalities. 

4.12.5. Estimating Seismic Hazard 

This work considers ground shaking as the main peril that causes damage in earthquakes, and ignores 

other perils, such as liquefaction, landsliding, and fault offset. These other perils can be important in certain 

circumstances. For example, in the 2011 Christchurch (New Zealand) Earthquake, liquefaction damage 

contributed a much larger fraction to aggregate loss than is usual in California earthquakes. Closer to 

home, the 1906 San Francisco Earthquake might have had a much milder outcome if liquefaction had not 

heavily damaged the water supply system. Water supply damage prevented effective fire department 

response. Fire led to the bulk of the losses and deaths. However, setting aside urban conflagration, shaking 
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tends to dominate U.S. building damage, so focusing on shaking seems reasonable for assessing the costs 

and benefits of seismic designs to exceed I-Code requirements, and also for assessing federal grants.  

The USGS distributes the 2014 National Seismic Hazard Maps (Petersen 2014) in various formats. The most 

relevant one contains gridded seismic hazard curves for the 48 conterminous states, showing probability 

in 1 year of shaking exceeding each of 20 levels of spectral acceleration response from less than 0.01 g to 

more than 5.0 g in logarithmic increments. The hazard curves are calculated for site conditions with 

average shearwave velocity in the upper 30 meters of soil (Vs30) equal to 760 m/s, corresponding to the 

boundary between NEHRP site classes B and C. 

When the project team commenced the Report, the 2014 gridded hazard curves were not yet available for 

Alaska, Hawaii, and other portions of the United States outside the conterminous United States. The USGS 

had not yet published the gridded hazard data for any of the 2016 National Seismic Hazard Maps18, or for 

the portion of the United States outside the conterminous United States for the 2008 National Seismic 

Hazard Maps. The project team decided at the beginning of this project not to search for data that were 

not readily available, even if those data ought to exist. The project team therefore did not contact the 

USGS in search of either of these unpublished data sets. The project team acquired Vs30 for all U.S. 

Census tracts using the USGS’s OpenSHA site data app, the latest release version as of November 29, 

2016, and used the preferred data: generally, Wills and Clahan (2006) for California and Allen and Wald 

(2007) for other states.  

Both groups (Wills at California Geological Survey and Wald at USGS) produced later revisions to their 

maps of Vs30, but neither had been incorporated into OpenSHA as of the start of this work. The project 

team opted to use the slightly older maps for convenience and because any errors in the accuracy of Vs30 

for individual sites would tend to be cancelled out among the larger sample. 

Current standard practice requires addressing site amplification using NEHRP site classes rather than Vs30. 

The project team mapped from Vs30 to NEHRP site class using the same ranges of Vs30 that the 2015 

NEHRP Recommended Seismic Provisions (Federal Emergency Management Agency 2015d) do. The 

project team did so in two different ways: one using the standard set of NEHRP site classes (A, B, C, D, and 

E), as in Table 4-18 and another with boundary soil types (e.g., BC, CD, DE), according to Table 4-19. The 

former was used to calculate design parameters SMS and SM1, while the latter were used to calculate the 

hazard to which buildings are subjected, with slightly more refinement than the standard NEHRP site 

amplification allows. 

Table 4-18: NEHRP site classes and associated Vs30, used for estimating design requirements. 

Site class Vs30 (m/sec) 

A ≥ 1500  

B 760-1599 

                                                 
18 To learn more visit: https://earthquake.usgs.gov/hazards/hazmaps/conterminous/index.php#2016. 
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C 360-760 

D 180-360 

E < 180 

Table 4-19: NEHRP site classes and boundary classes with Vs30, used for estimating hazard. 

Site class Vs30 (m/sec) 

A ≥ 1780  

AB 1260 - 1779 

B 900 - 1259 

BC 630 - 899 

C 430 - 629 

CD 300 - 429 

D 210 - 299 

DE 150 - 209 

E < 150 

To estimate hazard at census-tract centroids, find the nearest four grid points in the gridded national 

seismic hazard maps, extract their hazard curves from the gridded seismic hazard data, spatially 

interpolate exceedance frequency at each of many levels of ground motion, and then adjust the 

interpolated hazard curve to account for its site conditions. The project team made the adjustment by 

factoring the ground motion on BC soil by the appropriate value of the site coefficient Fa or Fv from Table 

11.4-2 of the 2015 NEHRP Recommended Seismic Provisions (Federal Emergency Management Agency 

2015d). The project team added Fa and Fv values for the boundary site classes AB, BC, etc., averaging the 

relevant values, as shown in Table 4-20 and Table 4-21. (Site coefficients increase or decrease spectral 

acceleration response to account for amplification of ground motion on sites with other values of Vs30 

than 760 m/sec.) The result is the ground motion hazard curve to characterize site hazard.  

Table 4-20: Site coefficient Fa as a function of Sa(0.2 sec, 5%) on site class BC, denoted hs. 

Site class 
hs = Sa(0.2 sec, 5%), g(a) 

hs ≤ 0.25 0.50 0.75 1.00 1.25 hs ≥ 1.50 

A 0.80 0.80 0.80 0.80 0.80 0.80 

AB 0.85 0.85 0.85 0.85 0.85 0.85 

B 0.90 0.90 0.90 0.90 0.90 0.90 

BC 1.00 1.00 1.00 1.00 1.00 1.00 

C 1.30 1.30 1.20 1.20 1.20 1.20 

CD 1.45 1.35 1.20 1.15 1.10 1.10 
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D 1.60 1.40 1.20 1.10 1.00 1.00 

DE 2.00 1.55 1.25 1.13 1.00 1.00 

E 2.40 1.70 1.30 1.15 1.00 1.00 

(a) Federal Emergency Management Agency (2015) instructs the user to linearly interpolate between 

values of hs      

Table 4-21: Site coefficient Fv as a function of Sa(1.0 sec, 5%) on site class BC, denoted h1. 

Site class 
h1 = Sa(1.0 sec, 5%), g(a) 

h1 ≤ 0.10 0.20 0.30 0.40 0.50 h1 ≥ 0.60 

A 0.80 0.80 0.80 0.80 0.80 0.80 

AB 0.80 0.80 0.80 0.80 0.80 0.80 

B 0.80 0.80 0.80 0.80 0.80 0.80 

BC 1.00 1.00 1.00 1.00 1.00 1.00 

C 1.50 1.50 1.50 1.50 1.50 1.40 

CD 1.95 1.86 1.76 1.71 1.66 1.56 

D 2.40 2.21 2.01 1.91 1.81 1.71 

DE 3.30 2.76 2.41 2.16 2.01 1.86 

E 4.20 3.31 2.81 2.41 2.21 2.01 

(a) Federal Emergency Management Agency (2015) instructs the user to linearly interpolate between 

values of h1 

One can perform the spatial interpolation and site amplification of seismic hazard as follows. Let the 

longitude λ and latitude α of an arbitrary location within the boundaries of the NSHMP be denoted by the 

coordinate pair (λ,α). Let the NEHRP site class at that location be denoted by σ. Let the hazard curve for 

an arbitrary location be denoted by an N  2 array where N rows correspond to the N intensity measure 

levels of the NSHMP hazard curves. NSHMP presents seismic hazard in terms of N = 20 pairs (hi, pi), where 

hi denotes the ith intensity measure level and pi denotes the probability that the site will experience shaking 

of intensity measure level at least hi at least once in a given year. One can use Equation 4-22 to convert 

from 1-year exceedance probability pi to mean annual exceedance frequency Gi (in units of events per 

year). Equation 4-22 assumes Poisson arrivals of earthquakes during a 1-year period. The NSHMP provides 

hazard at 0.05-degree grid points on BC soil. Considering an arbitrary location within the boundaries of 

the NSHMP map, one finds the four closest grid points. The western and eastern longitudes of the four 

closest grid points will be denoted by λ0 and λ1 respectively, and the southern and northern latitudes of the 

four nearest grid point by α0 and α1 respectively. In order to map to a normalized coordinate system, the 

coordinates of the southwest, northwest, southeast, and northeast grid points will be denoted by the 

coordinates (0,0), (0,1), (1,0), and (1,1), respectively. Map the geographic coordinates of the location of 
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interest (λ,α) to a normalized coordinate pair (x*,y*) by Equation 4-23, and then interpolate hazard on BC 

soil at (x*,y*) using Equation 4-24.  

𝐺𝑖 = −𝑙𝑛(1 − 𝑝𝑖) 

Equation 4-22 

𝑥∗ =
𝜆−𝜆0

𝜆1−𝜆0
, 𝑦∗ =

𝛼−𝛼0

𝛼1−𝛼0
 

Equation 4-23 

𝐺𝑖(𝑥∗, 𝑦∗) = 𝑎 ⋅ 𝑥∗ + 𝑏 ⋅ 𝑦∗ + 𝑐 ⋅ 𝑥∗ ⋅ 𝑦∗ + 𝑑 

Equation 4-24 

Where, 

𝑎 = 𝐺𝑖(1,0) − 𝐺𝑖(0,0) 

𝑏 = 𝐺𝑖(0,1) − 𝐺𝑖(0,0) 

𝑐 = 𝐺𝑖(1,1) + 𝐺𝑖(0,0) − 𝐺𝑖(1,0) − 𝐺𝑖(0,1) 

𝑑 = 𝐺𝑖(0,0) 

To account for site amplification or deamplification, use NEHRP Recommended Provisions site coefficient Fa 

or Fv, as appropriate, using Equation 4-25 or Equation 4-26, as is standard accepted practice (Federal 

Emergency Management Agency 2015d). Equation 4-25 deals with short-period spectral acceleration 

response. In the equation, hi,S, Fa(hi,S, σ), and hi,MS respectively denote 5% damped elastic spectral 

acceleration response at 0.2-second period at level i on BC soil; the short-period amplification factor 

evaluated at hi,S for site class σ, and the 5% damped spectral acceleration response at 0.2-second period 

at level i on site class σ. Equation 4-26 deals with spectral acceleration response at a 1-second period. In 

the equation, hi,1, Fv(hi,1, σ), and hi,M1 respectively denote 5% damped elastic spectral acceleration response 

at 1.0-second period at level i on BC soil; the 1-second amplification factor evaluated at hi,1 for site class σ, 

and the 5% damped spectral acceleration response at 1.0-second period at level i on site class σ. When 

estimating hazard at intensity measure levels between any two levels i and i+1 of the NSHMP, treat the 

natural logarithm of the exceedance frequency as varying linearly with the intensity measure level, as is 

common.  

ℎ𝑖,𝑀𝑆 = 𝐹𝑎(ℎ𝑖,𝑆, 𝜎) ⋅ ℎ𝑖,𝑆 

Equation 4-25 

ℎ𝑖,𝑀1 = 𝐹𝑣(ℎ𝑖,1, 𝜎) ⋅ ℎ𝑖,1 

Equation 4-26 
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For example, consider seismic hazard in census tract 06001403100, the one shown in Figure 4-13 with a 

blue dot, e.g., California (06), Alameda County (001), Tract 403100. The tract’s geographic centroid is 

located at 37.8023N, -122.2755E. OpenSHA’s site data application version 1.3.2 shows that on the Wills and 

Clahan (2006) geologic map of California, the Vs30 at that location is 302 m/sec (Figure 4-18). As shown in 

Table 4-19, 302 m/sec corresponds to site class CD. 

 

Figure 4-18: Sample calculation of Vs30 using OpenSHA site data application. 

According to the NSHMP, the hazard in terms of 1-sec 5%-damped spectral acceleration response at four 

nearby locations (37.80N, -122.30E), (37.85N, -122.30E), (37.80N, -122.25E), and (38.85N, -122.25E) on a 

hypothetical site (x,y) with Vs30 = 760 m/sec as is shown in Figure 4-19A. (This example deals with the 

constant-velocity portion of the response spectrum, but it is only an example. Similar procedures apply to 

the constant-acceleration portion of the response spectrum.) The coordinates of the site in question 

(37.8023N, -122.2755E) can be mapped to the normalized coordinates (x*,y*) by Equation 4-23 as follows: 

𝑥∗ =
𝜆 − 𝜆0

𝜆1 − 𝜆0
=

−122.2755 + 122.30

−122.25 + 122.30
= 0.49 

𝑦∗ =
𝛼 − 𝛼0

𝛼1 − 𝛼0
=

37.8023 − 37.80

37.85 − 37.80
= 0.045 

NSHMP estimates the 1-year exceedance probability p of Sa(1.0 sec, 5%) = 0.0025g on site class BC as 

shown in the column labeled p in Table 4-22. Calculate exceedance frequency for each grid point using 

Equation 4-22, e.g., for the first row, 

𝐺𝑖 = −𝑙𝑛(1 − 𝑝𝑖) = −𝑙𝑛(1 − 0.54841) = 0.7950 
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Table 4-22: Sample calculation of G for Sa(1.0 sec, 5%, BC) = 0.0025g. 

Lat N Lon E Coords P G, yr-1 

37.80 -122.30 (0,0) 0.54841 0.7950 

37.85 -122.30 (0,1) 0.54614 0.7900 

37.80 -122.25 (1,0) 0.55668 0.8135 

37.85 -122.25 (1,1) 0.55337 0.8060 

Then calculate the exceedance frequency of Sa(1.0 sec, 5%, BC) = 0.0025g at (x*, y*) using Equation 4-27: 

𝑎 = 𝐺𝑖(1,0) − 𝐺𝑖(0,0) = 0.8135 − 0.7950 = 0.0185 

𝑏 = 𝐺𝑖(0,1) − 𝐺𝑖(0,0) = 0.7900 − 0.7950 = −0.0050 

𝑐 = 𝐺𝑖(1,1) + 𝐺𝑖(0,0) − 𝐺𝑖(1,0) − 𝐺𝑖(0,1) = 0.8060 + 0.7950 − 0.8135 − 0.7900 = −0.0025 

𝑑 = 𝐺𝑖(0,0) = 0.7950 

Equation 4-27 

 

𝐺𝑖(𝑥∗, 𝑦∗) = 𝑎 × 𝑥∗ + 𝑏 × 𝑦∗ + 𝑐 × 𝑥∗ × 𝑦∗ + 𝑑 

= 0.0185 × 0.49 − 0.0050 × 0.045 − 0.0025 × 0.49 × 0.045 + 0.7950 

= 0.8037 

Equation 4-28 

 

 

Repeating for all other values of h1 produces the hazard curve shown in Figure 4-19A for a site at location 

(x*,y*) and site class BC. 

Now consider site hazard accounting for site amplification. The site class of the site of interest is CD. Recall 

that here, h1 = 0.0025g (the first value in each hazard curve of the NSHMP gridded seismic hazard data for 

1-second spectral acceleration response). Referring to Table 4-21, the row labeled “CD” and the column 

labeled h1 ≤ 0.10g, Fv = 1.95. Thus, by Equation 4-29, 

ℎ𝑀1 = 𝐹𝑣(ℎ1, 𝜎) ⋅ ℎ1 = 1.95 × 0.0025𝑔 =  0.0049𝑔 

Equation 4-29 

One repeats for all other values of hM1, producing the hazard curve shown in Figure 4-19B. 
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Figure 4-19: (A) Spatial interpolation of site hazard followed by (B) factoring for site effects. 

The project team stratified hazard using FEMA P-154 (Federal Emergency Management Agency 2015e) 

seismicity regions, as defined in that document’s Table 2-2 (duplicated in Table 4-23), and mapped in its 

Figure A-1 (duplicated in Figure 4-20). The map assigns to a county the highest hazard anywhere in that 

county. However, the figure is only used to stratify the sample, not to quantify site-specific hazard for 

calculating BCR. The actual site-specific hazard is used in the calculation of each mitigation effort’s BCR. 

A B  
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Table 4-23: Definition of FEMA P-154 (Federal Emergency Management Agency 2015e) seismicity regions. 
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Figure 4-20: FEMA P-154 (Federal Emergency Management Agency 2015e) seismicity regions. 
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4.12.6. Estimating Fire Hazard 

Similar to earthquake, flood, and other hazards, fires at the WUI (WUI fires) have been the subject of 

considerable analysis and mapping by federal agencies, particularly the U.S. Forest Service (USFS), which 

used simulation to develop a national map of BPs (Finney et al. 2011; Short et al. 2016). Burn probability 

(BP) here means the number of times a location experiences wildland fire (either by initiation or extension) 

per year. This WUI fire hazard mapping appears to be the most detailed and extensive of its kind, unique 

at the national level. The Interim Study employs it, as do many insurers. BP estimates the occurrence 

probability of a fire, but does not indicate the intensity of the fire, which is a function of fuel and other 

factors. Fire intensity level (FIL), also termed fireline intensity (FLI), measures the rate of heat release per 

unit length of flaming fire front (kW/m), regardless of flame front depth (Byram 1959; Scott 2013). Similar to 

BPs, an FIL dataset is available for the conterminous United States (Short et al. 2016). The product of BP 

and FIL provides a probability of FIL and ignition.  

The project team assigned high, medium, and low WUI fire hazard strata based on USFS Wildfire Hazard 

Potential (WHP). Figure 4-21 presents maps of the conterminous United States for both BPs and WHPs. 

The project team mapped USFS WHP to hazard categories low, medium, and high hazard for sampling 

purposes as shown in Table 4-24. Under this stratification scheme, an approximately equal number of 

counties in the conterminous United States can be considered low, medium, and high hazard, as shown in 

Figure 4-22. The project team used the strata for purposes of stratified sampling of wildfire-related grants 

from HMGP, PA, etc. 

Table 4-24: Mapping 2014 USFS WHP to the 2017 Interim Report fire hazard strata for purposes of sample 

stratification. 

USFS WHP Number of counties Area of counties MSv2 fire hazard 

1 6% 1% Low 

2 9% 3% Low 

3 15% 9% Low 

4 33% 24% Moderate 

5 37% 63% High 
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Figure 4-21: (A) USFS BPs with four study counties indicated. (B) USFS 2014 wildfire hazard potential, plus 

water and non-burnable areas. 

 

Figure 4-22: Number of U.S. counties in the conterminous United States by 2017 Interim Report fire hazard 

stratum. 

A  

B  
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Equation 4-30 provides the calculation of EAL using the terminology of fire-protection engineers: 

𝐸𝐴𝐿 = ∑ 𝑉𝑖,𝑘𝐵𝑃𝑖 𝐹𝑃𝑖𝑆𝐸𝐵𝑃𝑖
∑ 𝐹𝐼𝐿𝑖,𝑗𝑅𝐹𝑗,𝑘

𝐹𝐼𝐿=1,6𝑖=𝑎𝑙𝑙 𝐶𝐵𝑠 

 

Equation 4-30 

Where, 

EAL = expected annualized loss 

Vi,k = value in grid cell i of exposure type k (only k=1 is used here) 

BPi = one-year burn probability in grid cell i 

FPi = fire penetration of WUI fire into the census block corresponding to grid cell i 

SEBPi = suppression effectiveness, a function of burn probability in grid cell i 

FILi,j = jth class of fireline intensity in grid cell i 

RFj,k = response function for exposure type k given FILj 

FPi,, the fire penetration of wildland-urban-interface fire into the census block corresponding to grid cell i, 

is taken as 700m based on Chen and McAneney (2004). Specifically, the project team approximated each 

census block as a square, and the fraction of the square’s area equal to length of a side multiplied by 

700m was taken as FPi. 

SEBPi,, the suppression effectiveness (a function of burn probability in grid cell i) accounts for active fire 

suppression. It is well known that two types of fire occur at the WUI: (1) fires that are small enough for fire 

departments or possibly homeowners to suppress and thereby protect buildings, and (2) fires that are so 

large that they overwhelm fire responders, and make it less likely that fire responders can protect 

buildings. Ideally, suppression effectiveness, SE, should be a function of fire size and available fire 

resources. It is modeled that way for fire following earthquake (Technical Council for Lifeline Earthquake 

Engineering 2005). It could be done that way in principle for fires at the WUI. It was impractical for United 

States to process a stochastic set of fires on a national scale within the constraints of the present project. 

Instead, the project team took burn probability BP as a proxy measure of SE. The size of fires at the WUI 

approximately follows a power law (Finney et al. 2011), the exponent of which for California was found to 

be -1.38. The project team used that value to develop the function SEBPi. 

4.13. ESTIMATING VULNERABILITY 

4.13.1. Estimating Vulnerability in General 

In this part of the Interim Study, the project team used vulnerability in the engineering sense, which means 

the relationship between a scalar measure of environmental excitation (e.g., momentum flux in the case of 

flooding in a velocity zone such as a stream or seashore) and a scalar degree of loss (e.g., repair cost as a 

fraction of replacement cost, new). A vulnerability function refers here to a curve in x-y space where x 
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measures environmental excitation, y measures the expected value of loss, and the curve represents the 

performance of a specified asset class, such as a woodframe single-family dwelling built after 2012. 

Elsewhere, the Interim Study uses the term vulnerability in its social-science context.  

The project team does not use the words vulnerability and fragility interchangeably. As used here, fragility 

refers to the relationship between environmental excitation and the occurrence probability of some 

undesirable outcome, such as the collapse of a building. A fragility function refers here to a curve in x-y 

space where x measures environmental excitation, y measures the occurrence probability of some 

undesirable outcome, and the curve represents the performance of a specified asset class.  

Terminology varies between perils. Some people use the phrases response function, damage function, 

vulnerability curve, damage curve, and possibly other terms to mean the same thing meant here by 

vulnerability function. Faced with a choice between using a consistent term across all perils and using 

numerous terms that may be more familiar to experts within each discipline (fire, flood, wind, etc.), the 

project team opted for the former choice for consistency. 

Some mitigation measures examined here have been well studied and their vulnerability functions 

developed elsewhere. For example, riverine flood vulnerability (more commonly referred to as depth-

damage relationships) is explained in detail in documentation of the Hazus flood module’s technical 

manual (Federal Emergency Management Agency 2011b). Where it is practical to do so, the present 

Interim Study relies on existing vulnerability relationships and simply refers the interested reader to the 

relevant documentation, without repeating it here.  

In other cases, especially to examine IBHS FORTIFIED Home Hurricane mitigation measures and adoption 

of the 2015 IWUIC, the project team used existing vulnerability functions as-is or with slight modification, 

but only after performing some mapping from the features of the mitigation measures to those existing 

vulnerability functions. In still others, especially designing to exceed I-Code requirements for earthquake 

loads, neither Hazus nor other resources offer existing vulnerability functions. Transparency requires 

providing a lot of detail for those cases. As a result of the differences between perils in the availability of 

vulnerability functions, some of the following sections are short and provide little detail, while some are 

long.  

4.13.2. Estimating Riverine Flood Vulnerability 

The project team used the flood vulnerability functions already encoded in Hazus to assess the 

relationship between flood depth and losses. For details, see the Hazus flood technical manual (Federal 

Emergency Management Agency 2011b). 

4.13.3. Estimating Coastal Flooding Vulnerability 

The project team estimated coastal flood vulnerability here using the FEMA BCA re-engineering 

vulnerability functions that are available within Hazus. The environmental excitation that the vulnerability 
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functions take as input is flooding depth. The vulnerability function estimates repair costs as output. The 

flooding depth of a building is taken as the height of stillwater depth with wave height minus the elevation 

of the first floor, denoted here by H, which is taken as various heights above BFE. See Equation 4-31. Recall 

that BFE is calculated using Equation 4-20. The project team did not analyze the cost effectiveness of 

building above coastal A-zones because these zones are not identified in the NFIP data. 

𝐷 = (𝑁𝑂𝐴𝐴 𝑀𝑂𝑀𝑠 𝑠𝑢𝑟𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑠𝑒𝑎 𝑙𝑒𝑣𝑒𝑙 𝑟𝑖𝑠𝑒) ∗ 1.55 − 𝐻 

Equation 4-31 

The suite of available vulnerability functions differs significantly by wave height because the damage 

capacity of a wave varies significantly with its size. The estimated height above the BFE is added to the 

additional height of the structure to determine the vulnerability function used in the equation. The 

foundation of a coastal home is assumed to be open in all analyses here. 

4.13.4. Estimating Hurricane Wind Vulnerability 

Hurricane wind vulnerability is estimated using the damage functions readily available within Hazus. The 

project team was interested in the cost effectiveness of constructing new buildings to satisfy the 

requirements of the IBHS FORTIFIED Home and Commercial Hurricane program, which specifies particular 

design requirements that in many cases exceed those of the 2015 I-Codes, so one needs to characterize 

the vulnerability of buildings that satisfy the requirements of IBHS FORTIFIED Home and Commercial. The 

project team mapped the required building options for each FORTIFIED Home and Commercial 

designation to the corresponding Hazus damage function parameter, adjusting where necessary. This 

section describes this process in detail. See Table 4-25 through Table 4-28 for a summary. Certain 

mitigation measures could not be modeled with existing Hazus damage functions, so damage functions 

were adjusted either using expert judgment or modified from hurricane mitigation studies. 

To calculate the performance improvement associated with each IBHS FORTIFIED Home Hurricane 

program level (Bronze, Silver or Gold designation), the project team constructed a base-case vulnerability 

function. The base case reflects a 2,000 sf, single-story, wood-framed single-family dwelling that complies 

with the 2015 IRC and adheres to all provisions required for hurricane wind resistance. The house has a hip 

roof and costs $105 per square foot to build (e.g., not including land). The cost is based on construction 

estimates provided by the National Association of Home Builders (2015).  

Note that in some locations, state and local requirements exceed those of the IRC, such as those adopted 

after Hurricane Andrew in Miami-Dade or Broward Counties. The project team did not consider these 

local differences from the IRC, and did not calculate the BCR of exceeding them.  

The base case typically remains constant throughout most of the wind speed bands described in Section 

4.12.3. Two exceptions: (1) locations where the 700-year wind speed lies between 130-140 mph and the site 

is within 1 mile of the coastline, and (2) locations where 700-year wind speed exceeds 140 mph. The 

project team also updated the base case in areas where wind-borne debris would be expected. For 
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regions with 700-year wind speed less than 130 mph, the base-case vulnerability function assumes the 

following details: roof nailing uses 8d nails at 6"/12"19, no secondary water resistance, toe-nail roof-to-wall 

connections, and openings are not protected. For those homes in regions where 700-year wind speeds 

exceed 130 mph, the base case assumes the following: roof nailing uses 8d nails at 4"/4", no secondary 

water resistance, a continuous load path is developed via installation of hurricane straps for roof to wall 

connections, and openings are protected (where required). 

The FORTIFIED Home High-Wind program is applicable for regions where design wind speeds are 

expected to be less than 115 mph. Because a FORTIFIED Silver dwelling assumes upgrades to gable end 

bracing and porch connections, this option was not appropriate (e.g., the base case assumes hip roofs and 

no porch present). Bronze-level upgrades protect the roof system by tightening the roof nailing schedule 

from 8d at 6"/12" to 8d at 6"/6" and replacing smooth shank nails with ring-shank nails. Secondary water 

resistance is addressed with both the installation of contouring seam tape and wind-driven water-resistant 

attic vents. Gold-level upgrades involve reinforcing garages with increased panel bracing plus more rollers 

with steel axels and wheels, and more brackets for tracks. A continuous load path is developed with the 

addition of hurricane straps in lieu of roof-wall toe-nail connection. See Table 4-25Table 4-25 for details 

and costs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
19 This identifies the nail spacing requirements around the edges and within the interior field. 
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Table 4-25: Hazus modeling of IBHS FORTIFIED Home Hurricane and 2015 IRC for basic wind speed < 115 

mph. 

  

Improvement 

category 

IBHS 

FORTIFIED  

Hazus 

equivalent 
IRC  

Hazus 

equivalent 

Est. cost 

increase for 

2,000 sf 

house  

IB
H

S
 F

O
R
T
IF

IE
D

 H
o
m

e
 D

e
si

g
n
at

io
n
 

B
ro

n
ze

 

Roof deck 

attachment 

8d ring-shank 

@ 6"/6" 
8d @ 6"/6" 

8d smooth-

shank @ 

6"/12" 

8d @ 6"/12" $100  

Secondary 

water 

resistance 

Yes; roof deck 

and attic 

ventilation 

Yes No No $800  

S
ilv

e
r 

Opening 

Protection 
Not required     

Gable end 

bracing 

Strap & block 

rat-runs 
N/A N/A N/A $500 each 

Porch 

connections  

Enhance 

resistance to 

uplift 

N/A N/A N/A $500 each 

G
o
ld

 

Garage door 

upgrade 

Pressure rated 

for 140 mph 

Exposure 

Category B 

Standard 
115 mph 

pressure rated 
Weak $500 each 

Continuous 

load path 

upgrade 

Prescriptive 

requirements 

avoid specific 

engineering 

Hurricane 

strap 

IRC 

prescriptive 

requirements 

Toe-nail 

1.5% of 

construction 

costs  

For regions with design wind speeds between 115 and 130 mph, the FORTIFIED Home Hurricane program 

is available. Bronze upgrades are essentially the same as those described above for basic wind speeds less 

than 115 mph. Silver upgrades protect openings with installation of wood structural panels. Gold upgrades 

are the same as those described for wind speeds less than 115 mph. A continuous load path is developed 

with the addition of hurricane straps in lieu of roof-wall toe-nail connection. See Table 4-26 for details and 

costs. 
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Table 4-26: Hazus modeling of IBHS FORTIFIED Home Hurricane and 2015 IRC for basic wind speeds of 

115-130 mph. 

  

Improvement 

category 

IBHS 

FORTIFIED  

Hazus 

equivalent 
IRC  

Hazus 

equivalent 

Est. cost 

increase for 

2,000 sf 

house  

IB
H

S
 F

O
R
T
IF

IE
D

 H
o
m

e
 D

e
si

g
n
at

io
n
 

B
ro

n
ze

 

Roof deck 

attachment 

8d ring-shank 

@ 6"/6" 
8d @ 6"/6" 

8d smooth-

shank @ 

6"/12" 

8d @ 6"/12" $175  

Secondary 

water 

resistance 

Yes; roof deck 

and attic 

ventilation 

Yes No No $800  

S
ilv

e
r 

Opening 

Protection 

Wood 

Structural 

panels 

Weak None None $3,000  

Gable end 

bracing 

Strap & block 

rat-runs 
N/A N/A N/A $500 each 

Porch 

connections  

Enhance 

resistance to 

uplift 

N/A 

Usually not 

well 

anchored 

against 

uplift 

N/A $500 each 

G
o
ld

 

Garage door 

upgrade 

Pressure rated 

for local 

design wind 

speed 

Standard 
Probably 

not rated 
Weak $500 each 

Continuous 

load path 

upgrade 

Prescriptive 

requirements 

or engineering 

design 

Hurricane 

strap 

Toe-nailed 

unless load 

over 200 

lbs 

Toe-nail 

1.5% of 

construction 

costs  

For regions with basic wind speeds greater than 130 mph and less than 140 mph and more than 1 mile 

from the coast, the FORTIFIED Home Hurricane program is available. Bronze upgrades add secondary 

water resistance with both the installation of contouring seam tape and wind-driven water-resistant attic 

vents. Silver upgrades protect openings with installation of wood structural panels. Gold upgrades are not 

available since all prescriptive requirements are already required by code. See Table 4-27 for details and 

costs. 
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Table 4-27: Hazus modeling of IBHS FORTIFIED Home Hurricane and 2015 IRC for basic wind speeds of 

130-140 mph and more than 1 mile from coast. 

  

Improvement 

category 

IBHS 

FORTIFIED  

Hazus 

equivalent 
IRC  

Hazus 

equivalent 

Est. cost 

increase for 

2,000 sf 

house  

IB
H

S
 F

O
R
T
IF

IE
D

 H
o
m

e
 D

e
si

g
n
at

io
n
 

B
ro

n
ze

 

Roof deck 

attachment 

8d ring-shank 

@ 6"/6" 
8d @ 6"/6" 

8d smooth-

shank @ 4"/4" 
8d @ 6"/6" None 

Secondary 

water resistance 

Yes; roof deck 

and attic 

ventilation 

Yes No No $800  

S
ilv

e
r 

Opening 

protection 

Wood 

structural 

panels 

Weak None None $3,000  

Gable end 

bracing 

Strap & block 

rat-runs 
N/A 

Strap & block 

rat-runs 
N/A None 

Porch 

connections  

Designed for 

local design 

wind speed 

N/A 

Designed for 

local design 

wind speed 

N/A None 

G
o
ld

 

Garage door 

upgrade 

Rated for local 

design wind 

speed 

Standard 

Rated for local 

design wind 

speed 

Standard None 

Continuous 

load path 

upgrade 

Prescriptive 

requirements 

avoid specific 

engineering 

Hurricane 

strap 

IRC 

prescriptive 

requirements 

Hurricane 

strap 
None  

For regions with design wind speeds greater than 130 mph and less than 1 mile from the coast or wind 

speeds are greater than 140 mph, the FORTIFIED Home Hurricane program is available. Bronze upgrades 

are essentially the same as those described above for wind speeds between 130 mph and 140 mph. Silver 

upgrades improve the opening protection by requiring ASTM/IRC approved impact-rated products. Gold 

upgrades are not available since all prescriptive requirements are already required by code. See Table 

4-28 for details and costs. 

The project team estimated costs for the improvements using RSMeans construction cost data and 

modified them with advice from industry professionals familiar with implemented costs of the IBHS 

FORTIFIED program. Improvements at the various FORTIFIED levels reflect the additional costs to build 

above current IRC requirements. Costs are considered modest for such improvements, e.g., replacing 

smooth shank nails with ring shank nails for roof sheathing attachments costs approximately $100. Taping 

seams for secondary water resistance costs approximately $800. 
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Table 4-28: Hazus modeling of IBHS FORTIFIED Home Hurricane and 2015 IRC for basic wind speed at 

least 130 mph and less than 1 mile from coast, or based wind speed at least 140 mph regardless of coastal 

distance. 

  

Improvement 

category 
IBHS FORTIFIED  

Hazus 

equivalent 
IRC  

Hazus 

equivalent 

Est. cost 

increase for 

2,000 sf house  

IB
H

S
 F

O
R
T
IF

IE
D

 H
o
m

e
 D

e
si

g
n
at

io
n
 

B
ro

n
ze

 

Roof deck 

attachment 

8d ring-shank @ 

6"/6" or tighter 

spacing 

8d @ 6"/6" 

8d or larger 

smooth-shank 

@ 4"/4" 

8d @ 6"/6" None 

Secondary water 

resistance 

Yes; roof deck 

and attic 

ventilation 

Yes No No $800  

S
ilv

e
r 

Opening 

protection 

ASTM/IRC 

approved 

impact-rated 

product 

Standard 

Code minimum 

is wood 

structural panels 

Weak $4,000  

Gable end 

bracing 

Strap & block 

rat-runs 
N/A 

Strap & block rat 

runs 
N/A None 

Porch 

connections  

Designed for 

local design wind 

speed 

N/A 

Designed for 

local design wind 

speed 

N/A None 

G
o
ld

 

Garage door 

upgrade 

Rated for local 

design wind 

speed 

Standard 

Rated for local 

design wind 

speed 

Standard None 

Continuous load 

path upgrade 

Prescriptive 

requirements 

avoid specific 

engineering 

Hurricane 

strap 

IRC prescriptive 

requirements 

Hurricane 

strap 
None  

Some vulnerability effects of IBHS FORTIFIED Home Hurricane requirements cannot be modeled with the 

existing Hazus, such as replacing smooth-shank with ring-shank nails for the roof diaphragm nailing. The 

project team estimated, with input from industry professionals, a 5% reduction in repair cost, based on the 

increased uplift resistance of the roof diaphragm. Nor can Hazus model installation of wood structural 

panels for opening protection, as in the FORTIFIED Silver program. A modified damage function was 

generated using the 2008 Florida Residential Wind Loss Mitigation Study by Applied Research Associates 

(2008), which provides relative loss values from no shutter to basic, plywood or oriented strand board 

(OSB) shutters. Protecting openings with wood structural panels reduces repair costs by approximately 

22% relative to the base case. 
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To estimate BCRs associated with improvements afforded by the IBHS FORTIFIED Commercial Hurricane 

Program, the project team adopted the approach used in the IBHS FORTIFIED Residential Program. To 

calculate the performance improvement associated with each program level (Bronze, Silver or Gold 

designation), the team constructed a base-case vulnerability function for each model building type (i.e., 

the base case refers to current code). The three models were: 1) a reinforced masonry, low-rise 

hotel/motel with a flat, EPDM roof with wood-framed roof trusses, 2) a reinforced masonry, low-rise strip 

mall with a flat, EPDM roof with wood-framed roof trusses, and 3) a reinforced masonry, low-rise strip mall 

with open web steel joists and a metal roof deck. The configuration and area opening information was 

taken directly from the HAZUS Hurricane technical manual. The project team chose the strip mall (OWSJ 

and wood-framed trusses) and hotel/motel (wood-framed trusses) for this analysis for several reasons: 1) 

these types represent a large portion of the building population that fall under the description of 

commercial construction (in terms of number) and 2) the options for modeling different construction 

conditions were highest within the context of using HAZUS as the basis of calculating building damage 

and loss. Although this provides a limited characterization of building structures in the commercial 

category, it does allow the team to capture all of the primary deficiencies that result in structural damage 

from extreme wind effects. The HAZUS mitigation options for each of the model building types include: 

 Hotel/motel: roof sheathing nailing schedule, roof cover “quality”, roof to wall connection, opening 

protection;  

 Strip mall wood truss: roof sheathing nailing schedule, roof to wall connection, opening protection;  

 Strip mall OWSJ: roof age, opening protection 

The remaining HAZUS model types for low-rise, commercial buildings include reinforced concrete 

engineered buildings, steel-framed engineered buildings and reinforced masonry engineered buildings. 

These were excluded from the analysis simply because of the limited number of modeling options 

available in HAZUS.  

As noted previously, in some locations, state and local building requirements exceed those of the IBC, e.g., 

Miami-Dade or Broward Counties, post Hurricane Andrew. The project team did not address how these 

local differences would compare with the IBC and did not calculate the BCR of exceeding them.  

The mitigation option chosen for both the base case (current code) and IBHS FORTIFIED Commercial for 

each model building type was established by satisfying the following qualifications: 

 Are the resistance values for each mitigation option greater than the design pressures calculated? For 

every mitigation option, the HAZUS Technical Manual identifies the resistance values assumed for the 

model. For example, if the model building type has wood trusses and a wood diaphragm, the project 

team identifies whether the 8d @ 6”/12” nailing schedule can satisfy the design pressures calculated at 

the 115 mph wind contour? If the answer is yes, the 8d @ 6”/12” nailing schedule is chosen. Can the 

resistance values satisfy the design pressures calculated at the 150 mph wind contour? If the answer is 

no, the resistance values of the next mitigation option (8d @ 6”/6” nailing schedule) is checked. This 
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process is repeated for all wind contours, and for all mitigation options that would be designed based 

on the roof pressures calculated. 

 The project team then checks to see if the mitigation option is allowable per current I-Codes. For 

example, a 6d @ 6”/12” roof nailing schedule may satisfy the capacity/design requirements for some 

of the lower wind bands, however, current code may require 8d minimum nailing, therefore the 8d 

nailing option is chosen. Additional prescriptive code requirements such as opening protection where 

the basic wind speed is either 1) greater than 130 mph and less than a mile from the coast or 2) greater 

than 140 mph, are also checked and reflected in the modeling. 

 Finally the project team identifies whether the HAZUS mitigation option selected is appropriate for the 

structure being modeled. For example, the option of “old” roof for the OWSJ strip mall is not be used 

for current or IBHS FORTIFIED Commercial construction. Although the resistance values of the “old” 

roof may satisfy the design requirements for newer construction in the lower wind bands, this option 

was never chosen. 

Due to the limitations of HAZUS (modeling and parameter selection), some mitigation requirements by 

IBHS could not be appropriately modeled. This was particularly true regarding the IBHS FORTIFIED 

Commercial Bronze program where higher design pressures for roof components and connections are 

required. In situations where a modeling option was not available in the HAZUS database, the fragility 

curve was “shifted” to reflect the respective design conditions of the structure being modeled. This was 

achieved by first establishing the fragility model for the current code baseline. This typically included the 

HAZUS mitigation options associated with the highest resistance values (although there were a few 

exceptions such as the roof nailing schedule). The same fragility function was then re-plotted, this time 

using the next lowest option (second highest resistance value). The percent decrease in each damage ratio 

for each wind speed (50, 55, 60,… 200mph) was recorded. Referring back to the HAZUS technical manual, 

this decrease was then associated with the decrease in the listed resistance values used to develop the 

model. Since IBHS requires a 1.67 minimum factor of safety for roof ASD design wind loads for the 

FORTIFIED Commercial Bronze program, an adjustment ratio (given the ratio of both HAZUS resistance 

values and ASCE 7-16/IBHS design pressures) was then applied to the existing damage curve to construct 

a modified damage curve for construction adhering to the IBHS requirements. 

Additionally, both the IBHS FORTIFIED Commercial Silver and Gold programs require backup power, via a 

transfer switch or docking station (silver) or on-site backup power (gold). Since HAZUS does not offer a 

mitigation option for accessible backup power, the project team addressed this issue by adopting 

expected downtime loss curves (days) available within HAZUS and assuming that any downtime would be 

minimized by having access to back-up power. Given that the estimated downtime is directly related to 

the expected building damage (as modeled within HAZUS), the calculated downtime for both the IBHS 

silver (enhanced roof design and envelope protection) and gold (enhanced roof design, envelop 

protection and continuous load paths) programs are less than the base case (current code). For IBHS 

FORTIFIED Commercial gold, the project team assumed all downtime is mitigated by the presence of the 

onsite backup generator. For IBHS FORTIFIED Commercial silver, the project team assumed a two day 
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window for a backup generator to be brought on site. The remaining days of downtime are assumed to 

be mitigated by the backup power. 

Replacement cost estimates were provided by IBHS, which are based on the RSMeans construction cost 

manual. The IBHS spreadsheet identifies estimated costs for current construction and costs for the various 

IBHS FORTIFIED mitigation options (increased roof resistance, opening protection via hurricane shutters, 

engineered structures via continuous load paths, etc.).  

Some limitations of this approach to estimating wind vulnerability: 

1. Special inspection requirements. Special inspection is now required in the following hurricane wind 

regions: (a) In wind Exposure Category B, where Vasd as determined in accordance with Section 

1609.3.1 is 120 miles per hour (52.8 m/sec) or greater. (b) In wind Exposure Category C or D, where 

Vasd as determined in accordance with Section 1609.3.1 is 110 mph (49 m/sec) or greater. 

2. Mechanical equipment. Increased wind design (horizontal and uplift loads) for rooftop mechanical 

equipment. 

3. Roof shingles and tiles. Increased performance of roof shingles/tiles connection in hurricane wind 

(ASTM standards classes G and H). 

4. Main wind force resisting system. Strengthened shear walls, frames, or both from higher design wind 

loads are not modeled with current Hazus vulnerability functions. 

5. General. The analysis of code compliance assumes construction is compliant with codes circa 1990. 

For some of the hurricane prone regions considered in the analysis, building codes may not have 

been adopted or completely enforced. As a result, a baseline of early 1990's construction may be 

optimistic, as actual construction may be reflective of older codes.  

6. Wind borne debris. Increased performance of wind protection requirements. 

7. General. Improvements to the full load path are not considered. This is perhaps the most significant 

limitation given the changes to the building code. 

4.13.5. Estimating Seismic Vulnerability 

The project team considered several options for estimating seismic vulnerability. (See Table 4-29.) In light 

of the advantages and disadvantages, the project team opted to use the modified Hazus vulnerability 

approach for repair cost, casualties, and downtime. The Hazus vulnerability approach addresses both 

structural and nonstructural vulnerability, and recognizes that increased stiffness can aggravate damage to 

acceleration-sensitive nonstructural components. Note that in many locations, particularly in the CEUS, 

wind design may govern the lateral strength of many buildings. Increases in seismic design requirements 

may not increase the design strength or the construction cost of the building, nor produce the benefits 

one estimates based on seismic design requirements alone. In these cases, the costs and benefits would 

not apply. The project team did not attempt to identify locations where wind design governs or remove 

the costs and benefits from the overall calculation. Since the states with the highest seismic risk, and 

therefore where seismic-responsive design is required, contribute the vast majority of the costs and 
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benefits of seismic design to exceed I-Code requirements, the project team felt the benefits and costs in 

this situation would be minimal. 

For an overview of the project’s approach for repair costs, casualties, and duration of loss of function, see 

Porter (2009a, b). For evidence about the cost to exceed 2015 I-Code requirements see Porter (2016a), 

which examines the cost from several different perspectives. See Appendix K of the Interim Study for the 

fine details of how the project team applied those three works to the problem of calculating the 

vulnerability of code-level and above-code buildings designed for site-specific seismic hazard, and how 

the project team applied those vulnerability functions to an estimated inventory of present-day buildings 

across the 48 contiguous United States. 

The project team considered various levels of detail for presenting BCR, including: by census block, tract, 

county, state, or national level; or by model building type and occupancy, model building type alone, 

occupancy alone, or at some aggregate level. It seemed practical and desirable to provide geographic 

detail, but providing detail both by geographic area and by some subgroup of buildings (either model 

building type, occupancy category, or both) would overwhelm readers. The project team opted to provide 

BCRs for the aggregate building stock of ordinary buildings (Risk Category II) at the county level, which 

readers could readily discern in printed maps. As a result, the averages produced here may overestimate 

BCR for some occupancies and building types, and underestimate them for others. 

The project team acknowledged the limitations of the selected approach, but it is practical and consistent 

with FEMA’s own preferred tools for BCA of earthquake risk mitigation: Hazus and the FEMA BCA Tool. 

The combination of FEMA P-58 and the GEM is impractical for present purposes. 

Table 4-29: Selection of method to estimate seismic vulnerability. 

Option Advantages Disadvantages 

Hazus high code (for Risk 

Category II) and special 

high code (Risk Category 

IV) (Porter 2009a, 2009b) 

Well documented, fairly 

authoritative, nearly 

exhaustive 

Inconsistent with ASCE 7-10 collapse fragility 

model. San Francisco CAPSS project (Porter 

2012) shows highly uncertain assumptions are 

required to map Hazus damage states to ATC-

20-1 (Applied Technology Council 2005) tag 

color. Hazus stiffness for special high code is 

equal to high code, whereas greater strength is 

probably accompanied by greater stiffness. 

Does not reflect site-specific seismic hazard. 

Modified Hazus: apply 

Hazus math but with Cs 

based on design for site-

specific hazard and R 

based on model building 

types of recent vintage. 

Leverages advantages of 

Hazus approach while better 

reflecting loss reduction 

resulting from greater 

strength and stiffness. Reflects 

site-specific hazard. Practical 

at national scale. 

Capacity spectrum method is old technology 

and can yield inaccurate results for the 

performance point, especially for low-rise 

construction.  
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Tabulate per Porter 

(2009a, 2009b) 

Commercial catastrophe 

risk models, e.g., RMS, AIR, 

Core Logic 

Accepted by insurance 

industry, substantial empirical 

basis for building categories 

that were present and insured 

in large numbers in California 

in 1989 and 1994. 

Proprietary; not peer reviewed; scant or no 

empirical basis for functions for U.S. buildings 

other than California construction present and 

insured in large numbers in 1989 and 1994; 

based on insured buildings and therefore 

possibly biased. No basis for designing to 

exceed I-Code requirements. Might not reflect 

site-specific seismic hazard. 

ASCE-7-based collapse, 

red-tag, and yellow-tag 

fragility functions (Porter 

2016) 

Uses collapse fragility model 

underlying ASCE 7-10; strong 

empirical basis for red- and 

yellow-tagging as multiples of 

collapses. Treats site-specific 

seismic hazard. 

No model of repair cost, casualties, or repair 

duration. 

PBEE-2 (FEMA P-58; 

Applied Technology 

Council 2012) 

State of the art for single 

buildings. 

Does not treat building classes. Impractical at 

national scale. See Box 4-2 for more 

discussion. 

Global Earthquake Model 

(GEM) analytical approach 

(Porter et al. 2015), using 

SP3 for efficiency 

General applicability for repair 

cost 

Time consuming; requires survey of relevant 

attributes in many geographic regions; 

requires constructing (at least simplified) FEMA 

P-58 models of 1, 3, or 7 samples of every 

building type in each geographic region. 

Never exercised for downtime or casualties. 

See Box 4-2. 

Despite the references to Porter (2009a, b, and 2016a), the project team also provided a brief summary of 

the Hazus vulnerability methodology. A building is idealized as a single-degree-of-freedom nonlinear 

harmonic oscillator with an elastic-softening-perfectly-plastic pushover curve. The capacity-spectrum 

method of structural analysis is used to estimate the acceleration and displacement of the building, as 

illustrated in Figure 4-23. In the figure, the capacity curve represents the relationship between 

displacement and acceleration of the building over a range of ground motions. The input spectrum 

idealizes the excitation that an earthquake of a given magnitude, distance, and region imposes on 

undamaged buildings. The demand spectrum idealizes the excitation that the earthquake imposes on 

damaged buildings. The performance point represents an estimate of the displacement and acceleration 

that the earthquake imposes on the particular building with the given capacity curve. 

The estimated structural response (the acceleration and displacement of the oscillator at the performance 

point) is input to a set of fragility functions that produce an estimate of probabilistic damage to three 

generalized building components: structural, non-structural drift-sensitive, and non-structural acceleration-

sensitive components. Then estimate loss, in each of several measures, especially (1) repair costs as a 
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function of the damage, (2) fatal and nonfatal injuries, and (3) loss-of-use duration. The estimate of repair 

costs depends on the probabilistic damage state of the three components and the cost to repair the 

damage from each possible damage state for each component. Repair costs also depend on the building 

occupancy, because the relative value of the three components varies between occupancy classes. The 

estimates of injuries and restoration time depend only on the structural damage. Appendix K provides 

details of the methodology. 

 

Figure 4-23: Capacity spectrum method of structural analysis. 
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Box 4-2. Using Hazus Rather than FEMA P-58 and GEM to Assess the Cost-Effectiveness 

of Designing to Exceed I-Code Requirements for Earthquake 

Some structural engineers strongly endorse FEMA P-58 (Federal Emergency Management Agency 

2012d) and criticize the capacity-spectrum method of structural analysis employed by Hazus. In the 

project team’s opinion, FEMA P-58 produces more-credible vulnerability functions for individual 

buildings than does a Hazus-based approach. Project team members helped to lead development 

of FEMA P-58 and its underlying theoretical basis and initial case studies (e.g., Porter, 2000, Porter, 

2003, Krawinkler et al., 2005). However, FEMA P-58 is building-specific. It does not produce 

vulnerability functions that apply to a building class.  

One can use the GEM analytical methodology (Porter et al., 2014) to design probabilistically 

representative specimens of a building class and analyze them with FEMA P-58 to construct 

vulnerability functions for a building class. The resulting vulnerability functions are probably more 

credible than those produced by a Hazus-based approach.  

However, practicality forbids the use of the GEM methodology as well. To create a single defensible 

FEMA P-58 vulnerability function can take hours, days, or more, depending on how much 

simplification one accepts in the structural modeling. To create a vulnerability function for a building 

type using the GEM analytical methodology requires between 1 and 7 vulnerability functions created 

using FEMA P-58. The proper selection of the engineering attributes of those 1 to 7 buildings 

(number of stories, degree of vertical irregularity, etc.) requires observation and statistical 

combination of hundreds of real buildings. Nobody has compiled those statistics for the U.S. building 

stock. Project team members have found by actual practice that compiling those statistics takes tens 

or hundreds of labor-hours per building type.  

Depending on how much detail one wants, the inventory of U.S. buildings includes at least dozens of 

combinations of building type and height category. Hazus for example categorizes the building stock 

in 1,008 combinations of model building type, height category, and occupancy class, each of which 

would require statistics on height and irregularities, and each of which would require 1 to 7 FEMA P-

58 models. Each such combination must be designed and analyzed for each of many levels of MCER 

motion and each of many levels of strength and stiffness (Ie)—on the order of 5 to 10 of each, 

meaning that a GEM approach, using FEMA P-58, would require design and analysis of between 

100,000 and 700,000 buildings.  

Thus, to create reasonably defensible vulnerability functions for perhaps 700,000 combinations of 

model building type, height category, occupancy class, SS or S1 level, and Ie, would take millions of 

labor hours, at least as the task is conceived here. No superior, less time-consuming approach 

appears to exist. By contrast, the Hazus-based approach can be entirely automated using existing 

math and parameter values. Furthermore, a Hazus-based approach is consistent with FEMA BCA. 

The Hazus approach has its disadvantages, such as its reliance on the capacity spectrum method 

(see Table 4-29), but it seems to be a practical, albeit imperfect, solution. FEMA P-58 and GEM by 

contrast may be excellent solutions, but are impractical for this problem.  
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4.13.6. Estimating Fire Vulnerability 

Understanding the vulnerability of buildings to fire has been the subject of much work. Researchers 

generally treat building ignition from external fires as resulting from one or more of several phenomena: 

heat radiation, convection, or conduction (the last cause being less significant). Real buildings ignite by 

heat build-up, which causes a temperature rise of exposed cladding, roofing, and contents. Buildings also 

ignite because flames impinge on the building and because of convection of hot gases from the external 

fire. Firebrands also cause ignitions: burning pieces of wood, carried aloft by hot gases, land on and ignite 

the roof, debris-filled gutters, or other parts of the building. Many researchers have studied firebrands in 

WUI fires (e.g., Koo et al., 2010; Manzello et al., 2005, 2006a, 2006b; Pagni and Woycheese, 2000), but still 

have difficulty quantifying their effects (Mell et al., 2009). 

One can employ principles of heat transfer and fire-protection engineering to assess how quickly and in 

what way a particular, well-specified building or its furnishings is likely to ignite under fire attack, and how 

quickly fire will spread (Cohen, 1995; Drysdale, 1999; Himoto and Tanaka, 2008; Quintiere, 1998). These 

approaches are difficult to impractical to apply to the present project, which deals with large numbers of 

buildings with widely varying designs and without building-specific information (Lee et al., 2008). 

The other alternative to estimate inter-building fire spread at the urban or WUI scale is to use empirical or 

expert-opinion models (Gollner et al. 2015; Hakes et al. 2017). The project team used that approach for 

practical reasons.  

The project team estimated two cases of the fire vulnerability of a prototype building: 1) not compliant with 

the 2015 IWUIC and 2) compliant. Both represent a single-family wood-framed dwelling. The non-

compliant building is assumed to be wood framed with combustible (e.g., wood) cladding and roofing; no 

automatic sprinklers; no underfloor enclosure; non-fire rated single-pane glazing and doors; unprotected 

eaves, soffits, and gutters; and unmanaged nearby fuels (trees, bushes, duff, accumulated dead natural 

fuels, firewood, and accumulated other combustible material and outbuildings) close to the building. 

Access may be problematic for fire vehicles and water supply may be inadequate for structural firefighting.  

The compliant building is like the non-compliant building, except that it meets the requirements of the 

2015 IWUIC. In summary, requirements of the 2015 IWUIC depend on the fire hazard severity and may 

include: non-combustible roofing material; fire-rated cladding; automatic sprinklers; underfloor and 

underdeck fire-rated enclosure; fire-rated glazing and exterior doors; non-combustible or protected 

gutters; non-combustible or protected eaves and soffits; and a defensible space created within a fuel 

modification distance from the structure, in which one must remove or manage trees, bushes, litter, duff, 

accumulated dead natural fuels, firewood, and accumulated other combustible material and outbuildings. 

Fire experts use the term “response function” to mean what in the Interim Study is termed a “vulnerability 

function.” Thompson et al. (2011) offer a number of response functions for various non-building assets and 

one class of building asset, which is labeled “cabin.” The Thompson response functions for WUI fire risk 

were created using expert opinion and relate loss to flame length. The project team applied expert 
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judgment and data on fire spread (Technical Council for Lifeline Earthquake Engineering 2005) to modify 

the response function for cabins. The modifications represent the non-compliant and compliant buildings. 

4.14. ESTIMATING PROPERTY REPAIR COST AND REPAIR 

DURATION 

Property repair for a building or other asset subjected to excitation x is calculated as shown in Equation 

4-32, where L(x) is the property repair cost, j is an index to categories of property at the asset location 

(generally building, contents, or business stock), Vj is the value of one category of property at the asset, 

and yj(x) is the mean vulnerability function of that category of property evaluated at excitation x. 

𝐿(𝑥) = 𝑉𝑗 ⋅ 𝑦𝑗(𝑥) 

Equation 4-32 

The vulnerability functions for buildings produce as an intermediate product the probability Pd(x) of various 

building damage states d occurring when the building is subjected to excitation x. Each damage state d is 

associated with a best estimate of the time required to repair the building from that damage state, 

denoted by td. The estimated repair duration is then calculated using the theorem of total probability, 

which states that the expected repair duration t(x) is the sum of the products of Pd(x) and td, summed over 

the number of possible damage states, denoted here by Nd. Equation 4-33 presents the calculation. 

 

Equation 4-33 

4.15. RESIDENTIAL DISPLACEMENT COST (ADDITIONAL 

LIVING EXPENSES) 

Residential displacement costs (which insurers call ALE) are a function of displacement time or the length 

of time a residential structure is uninhabitable due to damage and costs related to the displacement. 

Housing costs are $1,500 per month for the length of displacement. Average rent in the United States 

according to the USCB is $900; the analysis assumes $1,500 to account for higher costs as a result of 

housing market shifts or some households staying at hotels or other types of shelters, including short-term 

public sheltering or long-term provision of mobile homes post-disaster. Adding $500/month for furniture 

rental and $100 per month for increased commuting costs produces a total monthly displacement cost of 

$2,100 per household. One can convert $2,100 per month per family to a daily cost per person by taking 1 

month = 30.4 days (on average) and the average household size as 2.5 people. Thus, residential 

displacement can be estimated as ($2,100 per household per month) / (30.4 days per month) / (2.5 people 

per household) = $28 per person per day. Daily displacement cost for a household is ($2,100 per 

household per month) / (30.4 days per month) = $69 per household per day. 

( ) ( )
1

dN

d d

d

t x t P x
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4.16. ESTIMATING BUSINESS INTERRUPTION LOSS 

Consequences from natural or human-caused hazards, such as earthquakes, flooding, severe storms, 

droughts, terrorist attacks, industrial accidents, etc. include: damage (and direct disruptions) to physical 

and human capital (e.g., stock losses), and direct and indirect BIs, causing the loss of production and 

consumption (e.g., flow losses). Several studies have estimated total BI losses from disasters to be 

economically costlier than the direct losses, in cases such as 9/11 and Hurricane Katrina. 

This project applies IO modeling for estimating indirect BI losses in the aftermath of disasters. An IO model 

is based on a tabulation of all purchases and sales in a given year between sectors of an economy and an 

assumption of a proportional relationship between inputs and outputs (Rose and Miernyk 1989). One of 

the strengths of the IO model is that it is supported by detailed data collected and compiled by national 

census and statistical agencies. In the United States, for example, extensive IO data are published by the 

BEA to generate the technical coefficient matrix that represents the proportional relationship between 

inputs and outputs (Miller and Blair 2009). This methodology is coupled with BEA’s Regional Input-Output 

Multiplier System to provide a useful framework for evaluating economic interdependencies (U.S. 

Department of Commerce, 1997). These data are available from the BEA for the nation as a whole, each 

state, metropolitan regions (using the U.S. Census definitions), and counties. The availability of economic 

data enables the application of IO model and its hybrids for analysis of relatively small regions, e.g., 

infrastructure disruptions in Portland (Rose and Liao 2005). 

Within the domain of IO modeling, the concept of inoperability has been used in recent studies to 

determine the direct and indirect economic losses in the aftermath of losses. Haimes and Jiang (2001) 

revisited the Leontief model and expanded it to account for inoperability, or the inability for sectors to 

meet demand for their output. The inoperability measure is a dimensionless number between 0 (ideal 

state) and 1 (total failure); and, as such, it is interpreted as the proportional extent in which a system is not 

functioning relative to its ideal state. Examples of studies that implemented Inoperability IO Model (IIM) to 

estimate economic losses include terrorism (Santos and Haimes 2004), electric power blackouts (Anderson 

et al. 2007), disease pandemics (Orsi and Santos 2010), and hurricane scenarios (Resurreccion and Santos 

2013), among others. 

Three general categories of data requirements that enable the implementation of the IIM are: (1) 

regional/geographic scope of the disaster, (2) extent to which the region is affected (e.g., scale of 0-100%), 

and (3) recovery period. The parameter descriptions of the IIM, as well as additional discussion on the 

dynamic model extensions, follow. Details of model derivation and an extensive discussion of model 

components are found in Santos and Haimes (2004) and also in Santos et al. (2008). 

4.16.1. Model Parameters 

The IIM is structurally similar to the classical IO model. The mathematical formulation is as follows: 
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q = A*q + c* 

Equation 4-34 

Where, 

q = the inoperability vector (e.g., the element, qi, denotes the inoperability of sector i) 

A* = the interdependency matrix (e.g., the element A*
ij denotes the input requirement of sector j that 

comes sector i, normalized with respect to the total input requirements of sector j) 

c* = the demand perturbation vector (e.g., the element, c*
i, denotes the demand perturbation to 

sector i) 

4.16.2. Sector Inoperability 

Inoperability is conceptually related to the term unreliability, which expresses the ratio with which a sector’s 

production is degraded relative to some ideal or ‘as-planned’ production level. Sector inoperability (q) is 

an array comprised of multiple interdependent economic sectors. The inoperability of each sector 

represents the ratio of unrealized production (e.g., ideal production minus degraded production) relative 

to the ideal production level of the industry sectors. To understand the concept of inoperability, suppose 

that a given sector’s ideal production output is worth $100. Suppose also that a natural disaster causes this 

sector’s output to reduce to $90. The production loss is $10, which is 10% of the ideal production output. 

Hence, the inoperability of the sector is 0.10. Since a region is comprised of interacting sectors, the value of 

inoperability will further increase due to the subsequent ripple effects caused by sector interdependencies. 

4.16.3. Interdependency Matrix 

The interdependency matrix (A*) is a transformation of the Leontief technical coefficient matrix (A), which is 

published by BEA and publicly available (Bureau of Economic Analysis 2016). It is a square matrix with 

equal rows and columns, which correspond to the number of industry sectors. The elements in a particular 

row of the interdependency matrix can tell how much additional inoperability is contributed by a column 

industry sector to the row industry sector. When the interdependency matrix (A*) is multiplied with the 

sector inoperability (q), this will generate the intermediate inoperability due to endogenous sector 

transactions. Endogenous transactions in the context of the Interim Study pertain to the flow of 

intermediate commodities and services within the intermediate sectors. These endogenous commodities 

and services are further processed by the intermediate sectors (e.g., commodities and services that are not 

further transformed or those used immediately for final consumption are excluded from endogenous 

transactions). The BEA has detailed IO matrices that can be customized for desired geographic resolutions 

using regional multipliers, or location quotients based on sector-specific economic data. This process of 

regionalization is performed to generate region-specific interdependency matrices. 
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4.16.4. Demand Perturbation 

The demand perturbation (c*) is a vector comprising of final demand disruptions to each sector in the 

region. The demand perturbation, just like the inoperability variable in the IIM formulation, is normalized 

between 0 and 1. In this basic IIM formulation, supply disruptions are modeled as “forced” demand 

reductions. Consider a hypothetical disruption where the supply for a commodity or service decreases but 

demand remains virtually unaffected. In this case, the consumers will have to temporarily sacrifice their 

need for that commodity or service until it bounces back to its as planned supply level. The limitation of 

the basic IIM formulation is that it uses “forced” demand reduction as a surrogate to supply reduction. To 

address this shortcoming, the dynamic extension to the IIM was developed to enable a more explicit 

definition of perturbation parameters, in addition to the formulation of a sector-specific economic 

resilience matrix.20 

4.16.5. Economic Resilience 

A key motivation that led to the development of the dynamic IIM is the need for linking the concept of 

economic resilience with time-varying sector inoperability for a given recovery horizon. In general, 

resilience is defined as the ability or capability of a sector to absorb or cushion against damage or loss and 

rebound to the original state (Holling, 1973, Perrings, 2001). Rose and Liao (2005) suggest that static 

resilience can be enhanced through using existing resources as efficiently as possible, such as: 1) expedited 

restoration of the damaged capability; 2) using an existing back-up capability; 3) conservation of inputs to 

compensate for supply shortfalls; 4) substitution of inputs; or 5) shifting of production locations, among 

others; and that dynamic resilience is expedited through restoration of the damaged capability. Rose 

(2009) provides comprehensive definitions and categories of economic resilience including static, dynamic, 

inherent, and adaptive. 

The dynamic formulation of the IIM takes into account the economic resilience of each sector, which 

influences the pace of recovery of the interdependent sectors in the aftermath of a disaster. The 

formulation is as follows: 

q(t + 1) = q(t) + K[A*q(t) + c*(t) – q(t)] 

Equation 4-35 

The term K is a sector resilience coefficient matrix that represents the rates at which sectors recover to their 

nominal levels of production following a disruption (Lian and Haimes 2006). The model dictates that the 

inoperability level at the following time step, q(t + 1), is equal to the inoperability at the previous stage, q(t), 

plus the effects of the resilience of the sector. The values of K tend to be negative or zero, thereby 

detracting from the overall level of inoperability. As seen in the above equation, K is multiplied with the 

                                                 
20 Economic resilience can be defined in many ways, here it refers to the ability to recover from the negative impacts 

of external economic shocks resulting from natural hazards. 
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indirect inoperability resulting from other sectors, A*q(t), plus the degraded final demand, c*(t), minus the 

current level of inoperability, q(t). The resilience coefficient, K, is assumed to be an inherent characteristic of 

a particular sector, but multiplying it with the inoperability product term, A*q(t), will result in coupled 

resilience across directly related sectors. This is particularly relevant when analyzing a sector that heavily 

depends on another sector for achieving its as-planned productivity levels. Regardless of how inherently 

resilient a sector is, its productivity will be significantly compromised when another sector it heavily 

depends on becomes largely inoperable in the aftermath of a disaster. 

The dynamic extension answers one of the fundamental limitations of the basic IIM, which is the ability to 

capture time-varying recovery that adapts to some level of reasoning and current levels of inoperability 

within the perturbation and recovery period. For the dynamic extension to the IIM, Lian and Haimes (2006) 

provide the formulation to estimate the sector resilience coefficient of each sector. This resilience 

coefficient is a function of: 1) sector inoperability; 2) sector interdependencies; 3) recovery period; and 4) 

the desired level of inoperability reduction for the target recovery period. In this economic resilience 

formulation, economic resilience is inversely proportional to the recovery period. This is because resilience 

is a desired attribute of any system and, hence, a higher level of resilience is preferred. On the other hand, 

recovery period (e.g., the time it takes to reach full recovery) is desired to be at minimum to the extent 

possible. The higher the value of the sector resilience metric, the better equipped it is to protect and 

recover itself from external perturbations. Hence, increasing the economic resilience metric of a sector 

reduces its recovery period as well as the associated economic losses. The dynamic version of the IIM is 

capable of analyzing the extent to which sector resilience can decrease the magnitude of sector 

inoperabilities and economic losses, as well as shorten the recovery period. This formulation would create 

a time-dependent value to better account for the impact of different intensities and durations of a disaster, 

as longer ones would tend to further stress the sectors, adding to the BI losses and impacting their ability 

to recover. Lian et al. (2007), Santos (2006), Lian and Haimes (2006), and Haimes et al. (2005) applied the 

model to various regional disaster scenarios to analyze the recovery behaviors of critical economic sectors 

and infrastructure systems. 

4.16.6. Economic Loss 

Similar to sector inoperability, economic loss is an array comprised of multiple interdependent economic 

sectors. Each element in this array indicates the magnitude of economic (BI) loss of each sector, in 

monetary units (or particularly in U.S. dollars for the scenarios to be explored in the case studies). The 

economic loss of each sector is simply the product of the sector inoperability and the ideal production 

output. For example, an inoperability of 0.1 for a sector where production output is $100 will result in an 

economic (or production) loss of $10. Economic loss, in terms of decreased production or output, is 

treated as a separate disaster metric since it complements the inoperability metric. Both the inoperability 

and economic loss metrics are desired to be kept at minimum. It is also worth noting that when the sectors 

are ranked according to the magnitude of their inoperability and economic loss metrics, two distinct 

rankings will be generated. Suppose that a second sector has an inoperability of 0.2 and a production 

output of $40. The resulting economic loss will be 0.2  $40 = $8. Although the inoperability of the second 
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sector (0.2) has a higher rank compared to the first sector (0.1), the direction of priority will reverse when 

economic loss is considered as the sole basis for ranking. Thus, the second sector has an economic loss of 

$8, which has a lower rank in contrast to the first sector’s $10 economic loss.  

4.16.7. Relating Hazus Results with IO Assessment of Indirect Business 

Interruption 

The Interim Study uses the results from various Hazus scenarios as inputs to assess the indirect BI losses. 

Disasters are expected to cause damage to various Hazus building occupancy classes. Hazus uses 33 

building-occupancy classes categorized according to residential, commercial, industrial, religion/non-

profit, educational, and government (28 if one ignores the differences between classes 3 through 8). See 

Table 4-30 for the Hazus occupancy classes. 

Table 4-30: Hazus building occupancy classes (Federal Emergency Management Agency 2012). 

No. Label Occupancy class Description 

Residential 

1 RES1 Single-family dwelling Detached house 

2 RES2 Mobile home Mobile home 

3-8 RES3a-f Multi-family dwelling Apartment or condominium 

9 RES4 Temporary lodging Hotel/motel 

10 RES5 Institutional dormitory Group housing (military, college), jail 

11 RES6 Nursing home   

Commercial 

12 COM1 Retail trade Store 

13 COM2 Wholesale trade Warehouse 

14 COM3 Personal and repair services Service station/shop 

15 COM4 Professional, technical services Offices 

16 COM5 Banks and financial institutions   

17 COM6 Hospital   

18 COM7 Medical office or clinic Offices 

19 COM8 Entertainment & recreation Restaurants and bars 

20 COM9 Theaters Theaters 

21 COM10 Parking Garages 

Industrial 

22 IND1 Heavy industry Factory 

23 IND2 Light industry Factory 
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No. Label Occupancy class Description 

24 IND3 Food, drugs, chemicals Factory 

25 IND4 Metals, minerals processing Factory 

26 IND5 High technology Factory 

27 IND6 Construction Office 

Agriculture 

28 AGR1 Agriculture   

Religion/non-profit 

29 REL1 Church   

Government 

30 GOV1 General services Office 

31 GOV2 Emergency response Police or fire station 

Education 

32 EDU1 Schools   

33 EDU2 Colleges and universities Does not include group housing 

For a particular disaster scenario, Hazus estimates several categories of losses (e.g., structural building loss, 

non-structural building loss, content loss, inventory loss, relocation loss, income loss, rent loss, and wage 

loss) in each occupancy class, expressed in annualized dollar loss. Nonetheless, it is important to extract 

only the direct BI (or direct flow) losses as inputs to the IO model. In subsequent discussions, the term 

direct BI loss refers to applicable direct flow loss categories (e.g., income loss, rent loss, and wage loss), 

while indirect BI losses represents the additional losses after the IO model is implemented.  

From the perspective of IO modeling, the direct BI losses that can be extracted from Hazus will be 

interpreted as the direct flow loss to a particular building occupancy class, which further creates ripple 

effects to other business sectors due to their inherent interdependencies. Hence, in estimating the indirect 

BI losses, it is necessary to relate such occupancy classes with the equivalent economic sectors as used in 

the IO model. The first column of Table 4-31 contains the sector code created for the purpose of the 

Interim Study. The second column corresponds to the scope of the equivalent IO sectors as interpreted in 

a similar fashion as the annual IO accounts by the BEA. Finally, the last column of the table below contains 

the standard Hazus building occupancy class as described in previous sections of the Interim Study. 
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Table 4-31: Relating IO sectors with Hazus occupancy classes. 

Code Equivalent IO sector Hazus occupancy 

S1 Agriculture AGR1 

S2 Construction IND6 

S3 Other heavy industry IND1 

S4 Other light industry IND2 

S5 Food, drugs & chemicals IND3 

S6 Mining & metals/minerals processing & manufacturing IND4 

S7 High technology IND5 

S8 Wholesale trade COM2 

S9 Retail trade COM1 

S10 Banks & financial institutions COM5 

S11 Professional & technical services COM4 

S12 Education services EDU1, EDU2 

S13 Health services COM6, COM7, RES6 

S14 Entertainment & recreation COM8, COM9 

S15 Hotels RES4 

S16 Residential housing, other than hotels RES1, RES2, RES3 

S17 Other services COM3, COM10 

S18 Government & non-NAICS GOV1, GOV2, REL1 

After the direct effects of a disaster have been extracted from Hazus via the building occupancy class 

direct BI loss estimates, the indirect BI losses will be computed using the dynamic IO model. Recall that the 

dynamic IO formulation takes the form: q(t + 1) = q(t) + K[A*q(t) + c*(t) – q(t)]. 

 It is important to note that not all perils investigated in the Interim Study utilized the Hazus software. For 

such cases, the direct BI losses were estimated from other data sources (see Appendix K.8 for details), and 

compared with sector-specific value-added data published by BEA. For example, the supply-use tables 

(Bureau of Economic Analysis 2016) contain information on the applicable components of the value added 

(e.g., income and wage), which could be used to determine the magnitude of the direct BI loss relative to 

the output of each building occupancy class. 

The Interim Study investigates the extent to which the term K in the dynamic IO formulation can be related 

to the concept of economic resilience. In particular, the aim of the BI loss analysis is to integrate two 

general types of inoperability. In the original dynamic inoperability IO model (DIIM), one assesses the 

inoperability of the sectors assuming that they are allowed to recover with no new additional 
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perturbations. For tractability, a subscript ‘DIIM’ is introduced to the left-hand side of the equation to 

generate the following revised formulation: qDIIM(t + 1) = q(t) + K[A*q(t) + c*(t) – q(t)]. 

The subscript ‘NEW’ will be introduced to the left-hand side of the dynamic equation to represent a new 

level of perturbation (e.g., a resilience tactic can reduce the impact of a disaster on a sector’s inoperability). 

One can rewrite this new dynamic equation as follows: qNEW(t + 1) = q(t) + K[A*q(t) + c*(t) – q(t)]. It can be 

shown that the expected value of the inoperability at t + 1 can be formulated directly from the event tree 

as depicted in the figure on the right, which is a simplified representation of the event tree inoperability 

model. Sample representations of the sequential inoperability event trees for hypothetical baseline and 

mitigated scenarios are shown below. 

 

Figure 4-24: Event tree for inoperability decomposition. 

 

 

Figure 4-25: Inoperability event trees: A) sample baseline scenario, B) mitigated scenario. 

At time t = 0, the sector inoperability q(0) will be directly linked to direct BI loss for each building 

occupancy class from Hazus. The dynamic equation then computes for the progression of indirect BI 

losses over time due to sector interdependencies. The Interim Study investigates the extent to which 
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various resilience strategies can potentially decrease the magnitude of economic losses in each sector over 

time. For example, Rose (2009) has introduced the term static economic resilience as “the efficient use of 

remaining resources at a given point in time.” Furthermore, Rose defines dynamic economic resilience as 

“accelerating the pace of recovery.” In the Interim Study, the focus is on the following types of static 

economic resilience tactics: 1) production recapture; 2) inventories; 3) facility relocation; and 4) excess 

capacity. In subsequent discussions, the process for integrating the resilience tactics with the IO model is 

explained. 

Within the IO framework, there are various types of economic multipliers that can provide insights in 

measuring the extent to which a change in an economic activity (e.g., consumption or production) of a 

sector can cascade to other dependent sectors. For example, the output multipliers published by BEA 

measure the expected changes in the output of various sectors given a $1 change in the demand for a 

particular sector. Nonetheless, such multipliers often do not take into consideration the resilience attributes 

of the economic sectors. As a hypothetical example, suppose that the output multiplier for sector i is 2.30 

for every unit change in the demand for sector j. This implies that if the demand for sector j were to grow 

by an amount of $1, the indirect output in sector j would grow by an additional $1.30. Note that this logic 

does not symmetrically apply for the case of demand reduction because the economic sectors have their 

static resilience attributes, hence avoiding the scenario of incurring the maximum possible loss. 

Since IO multipliers are typically computed using annual data, the maximum possible loss is assumed to be 

distributed across a period of 1 year (although this baseline annual recovery horizon may be adjusted for 

disasters that require longer recovery). Without resilience, the loss is assumed to be at its greatest 

immediately after a disaster and exponentially dissipates over time, which as implied by the dynamic IO 

formulation, takes the form: q(t + 1) = q(t) + K[A*q(t) + c*(t) – q(t)]. 

In modeling the indirect BI loss using the IO framework, the approach is to assess the extent to which each 

static resilience tactic can avoid operating at the maximum possible loss. The four resilience tactics 

specifically considered in the Interim Study and their descriptions, directly adapted from Rose (2009), are 

summarized as follows: 

 Production recapture: refers to working overtime or extra shifts to recoup lost production 

 Inventory: include both emergency stockpiles and ordinary working supplies of production inputs  

 Relocation: changing the site of a business activity 

 Excess capacity: refers to using idle plant and equipment 

The key steps in performing the indirect BI loss methodology are enumerated below. 

Step 1. Obtain the direct BI loss estimates for each Hazus building occupancy class, and compute the 

corresponding direct losses to the IO sectors using the relationship mapping given in Table 4-31. To 

generalize the process, a $1 direct BI loss to each occupancy class can be arbitrarily assumed to 

determine the corresponding direct BI loss to the applicable IO sectors. 
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Step 2. Using standard IO multiplier analysis, estimate the maximum possible indirect BI losses that can 

be experienced by the dependent economic sectors given the direct BI loss obtained from Step 1. 

Then, allocate (or spread) the maximum possible loss over a recovery period of 1 year. As noted 

earlier, the assumed annual recovery period can be adjusted depending on the severity of the 

disaster. 

Step 3. Compute the avoided losses for each of the resilience tactics across the recovery period, 

relative to the maximum possible indirect BI losses obtained from Step 2. The difference between 

maximum and avoided losses will be considered as the indirect BI loss multiplier for each sector. The 

supporting data and assumptions on the efficacy of each resilience tactic in curbing the losses are 

shown in Table 4-32.  

Step 4. Using the building-sector relationship mapping, trace back the corresponding indirect BI loss 

multiplier for each Hazus occupancy class. 

There are 33 building occupancy classes in Hazus. Figure 4-26 shows the indirect BI loss generated for 

every $1worth of direct loss to each occupancy class, taking into account the avoided losses due to the 

four resilience tactics. It can be observed that the building occupancy classes have varying levels of 

resilience. For example, approximately 40 cents worth of indirect BI loss is generated for every $1worth of 

direct loss to the residential buildings. Metals processing, professional services, and banks appear to be 

highly resilient since they generate low indirect BI losses. In contrast, the entertainment sectors (e.g., movie 

theaters) appear to be relatively less resilient since they generate high indirect BI losses. Similar analysis can 

be performed for the remaining building occupancy classes. The values of the indirect BI loss multipliers 

for each building occupancy class are found in Section 4.13 and also Appendix K of the Interim Study. 
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Table 4-32: Data sources and assumptions for the four resilience tactics. 

Tactic Data sources Assumptions 

Production 

Recapture 

Chapter 15 of the Hazus manual 

(Federal Emergency Management 

Agency 2012) shows the recapture 

rates for various occupancy classes. 

In particular, the project team used 

the output recapture factors found 

in the last column of Table 15.14 in 

the Hazus manual. 

It was assumed that production recapture is highest 

during the first 90 days, and then decays by a 

factor of 25% in subsequent quarters as 

increasingly more customers cancel their orders 

and seek alternative suppliers. It was also assumed 

that production recapture reaches a value of 0 at 

the end of year 1 (e.g., production loss will not be 

recaptured at end of year 1 and thereafter). 

Inventories The U.S. Census Bureau publishes 

inventory-to-sales ratios (ISR) for 

various economic sectors. The 

following link gives up-to-date ISR 

data for various manufacturing and 

trade sectors.21 

Typically, ISR values are greater than 1. The ideal 

case is when ISR = 1, in which 100% of the 

production is sold within a given period. In contrast 

to just-in-time concepts, inventories may have an 

advantage in times of disasters. They can be used 

as buffers when production is disrupted in the 

aftermath of a disaster. The efficacy of inventories 

depend on the magnitude of the ISR and also the 

rate with which they get depleted as the disaster 

progresses over time. 

Relocation The possibility of relocating a 

particular building occupancy class 

can be implicitly derived from 

relevant data found in the Hazus 

manual. In particular, Table 15.10 of 

the Hazus Technical Manual gives 

the building recovery times for 

various damage scenarios. 

The building recovery times are provided for 

different structural damage scenarios (none, slight, 

moderate, extensive, and complete). Each building 

occupancy class has data on recovery time (in 

days). The tipping point on whether to relocate or 

not is based on the moderate damage scenario. 

Hence, losses associated with exceeding the 

recovery times for the moderate scenario are 

assumed to be avoidable via relocation.  

Excess 

Capacity 

Excess capacity is based on Table 

15.11 of the Hazus Technical Manual, 

which gives the building service 

interruption multipliers. 

The building service interruption multipliers are also 

given for each building occupancy class for various 

structural damage scenarios (none, slight, 

moderate, extensive, and complete). It is assumed 

that service interruption multipliers that are 

relatively lower are associated with buildings that 

have higher excess capacity.  

                                                 
21 See https://www.census.gov/mtis/index.html for more information. 

https://www.census.gov/mtis/index.html
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Figure 4-26: Indirect BI loss for every $1 of direct BI loss in each Hazus building occupancy class. 

4.16.8. Additional Considerations in Estimating Business Interruption Losses 

Disasters can cause severe damage to existing infrastructure, consequently affecting economic 

productivity. Temporary closure of factories and stores, loss of mobility (e.g., due to flooding and debris 

cleanup), and damage to infrastructure systems, among others, can drastically affect workforce and 

commodity flows for prolonged periods of time. Reduction in worker flow decreases productivity, and 

reduction in commodity flow results in cascading demand and supply impacts. Using detailed journey-to-

work data, commodity flow surveys, and social accounting matrices allows modeling of disruptions to 

regional productivity. Modeling efforts include the potential for cascading failure, accounting for spatial 

dependencies and various economic and social travel patterns. 

In the aftermath of a disaster, a region expects substantial disruptions to infrastructure capacity, workforce 

availability, and mobility. These direct disruptions in turn can trigger sector productivity degradations 

indirectly to all sectors of the economy. The project team collected and assembled economic data (such as 

input requirements, commodity outputs, and income statistics, among others) from different sources in 

order to quantify the impact of reduced sector productivity levels on the economy of the affected region. 

These data are key to calibrating the models used in the Interim Study and to simulating potential direct 
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and indirect BI losses from various perils with and without mitigation. The BI losses prevented are 

potentially a major source of benefits of mitigation. 

4.17. ESTIMATING TOTAL (DIRECT AND INDIRECT) BUSINESS 

INTERRUPTION LOSS 

In some cases, the project team used Hazus and FEMA’s BCA Tool to estimate BI losses. The Hazus flood 

module (release 3.2) was found to have a bug that underestimates direct BI loss by a factor of 100, so 

where that tool is used (in the analysis of the cost effectiveness of federally funded grants), one can 

compensate for the bug by multiplying direct BI losses by 100. In the case of designing to exceed the 2015 

I-Code requirements for earthquake, wind, and flood, Hazus and the BCA Tool do not apply, so the 

project team used the following procedures. 

Rental and BI costs vary widely. Hazus offers some very old (1994) rental and disruption costs and warns 

that costs vary widely geographically; Therefore, it is important to revisit these amounts. For residential 

occupancies RES1 through RES3 and RES5, it is assumed that monthly household furniture, higher 

commute costs, and miscellaneous other costs of $600/month/household, monthly house rental cost of 

$1500/month/household, and 2.5 people per household (Organisation for Economic Co-operation and 

Development 2016), suggesting $28/person/day or $70/household/day. For temporary lodging (RES4), 

assume lost revenue and wages equal to a typical average per-night hotel cost of $125 per day. For 

nursing homes (RES6), assume lost revenue and wages equal to the average daily cost of a private room 

in a nursing home, $248 per day (Mullin 2013). For nonresidential occupancies, the project team estimated 

output loss (direct BI loss) per day of downtime as the ratio of industry wages and earnings to number of 

employees, converted to dollars per day. Results are shown Table 4-33. 

For indirect BI, one can use IO analysis to estimate the per-dollar indirect BI loss Q resulting from $1.00 of 

direct BI in a given occupancy class. See Section 4.16 for details. One can calculate Q for each occupancy 

class by setting the output loss for that occupancy class to $1.00 and the output losses for all the other 

occupancy classes to 0. For example, to calculate Q for RES3 occupancy, set the output losses for RES1, 

RES2, RES4, and EDU2 to 0, and the output loss for RES3 to 1.0. The resulting indirect BI to the entire 

economy can then be assigned to Q for RES3. Thus, given the time t required to restore a facility to 

functionality, the total BI loss per occupant LBI (direct and indirect) can be calculated as shown in Equation 

4-36. 

 

Equation 4-36 

 

( )1BI BIL V Q t=  + 
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Table 4-33: Output loss per day of downtime VBI and per-dollar indirect BI loss Q. 

No. Occupancy Class Label VBI Q 

1 Single-family dwelling RES1 $  28.00 0.470 

2 Mobile home RES2 $  28.00 0.470 

3 Multi-family dwelling RES3a $  28.00 0.470 

4 Multi-family dwelling RES3b $  28.00 0.470 

5 Multi-family dwelling RES3c $  28.00 0.470 

6 Multi-family dwelling RES3d $  28.00 0.470 

7 Multi-family dwelling RES3e $  28.00 0.470 

8 Multi-family dwelling RES3f $  28.00 0.470 

9 Temporary lodging RES4 $125.00 0.372 

10 Institutional dormitory RES5 $  28.00 0.470 

11 Nursing home RES6 $248.00 0.500 

12 Retail trade COM1 $132.28 0.037 

13 Wholesale trade COM2 $295.21 0.033 

14 Personal and repair services COM3 $166.77 0.374 

15 Professional/technical services COM4 $414.93 0.016 

16 Banks/financial institutions COM5 $411.00 0.017 

17 Hospital COM6 $243.60 0.500 

18 Medical office/clinic COM7 $237.82 0.500 

19 Entertainment & recreation COM8 $118.94 0.637 

20 Theaters COM9 $118.94 0.637 

21 Parking COM10 $118.94 0.374 

22 Heavy industry IND1 $312.49 0.260 

23 Light industry IND2 $242.04 0.438 

24 Food, drugs, chemicals IND3 $203.04 0.064 

25 Metals and minerals processing IND4 $233.26 0.009 

26 High technology IND5 $465.98 0.041 

27 Construction IND6 $228.35 0.051 

28 Agriculture AGR1 $124.43 0.095 

29 Church REL1 $165.50 0.045 

30 General services GOV1 $230.28 0.045 

31 Emergency response GOV2 $230.28 0.045 
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No. Occupancy Class Label VBI Q 

32 Schools EDU1 $162.11 0.035 

33 Colleges and universities EDU2 $162.11 0.035 

4.18. INSURANCE BENEFITS 

Property damage and time-element losses may be covered by insurance, especially in the case of fire 

damage, less so for wind and flood damage, and even less for earthquake insurance. Natural hazard 

mitigation can be expected to reduce natural hazard insurance losses, and in many cases the insurer 

reduces premiums to account for the lower risk. The property owner or other insured benefits from lower 

risk because his or her premiums are reduced. However, in the presence of insurance, the property owner 

or other insured also recovers part of the premium paid in the form of insurance claims. Thus, the benefit 

to the insured is just part of the reduced amount of the insurance premium: the part that the insured pays 

in excess of the expected value of claims, loosely termed overhead for a nonprofit insurer or O&P for a 

for-profit insurer. A portion of the excess amount is roughly proportional to the expected value of claims. 

That portion drops as the expected value of claims drops. The reduction can be counted as a benefit.  

One can therefore estimate the benefit of reduced O&P using Equation 4-37 and Equation 4-38 . 

 

Equation 4-37 

 

Equation 4-38 

Where, 

B = annual dollar benefit of reduced insurance premiums to a particular insured 

P = premiums and other costs paid by insureds, excluding fixed costs 

C = expected value of annual claims paid to or on behalf of all insureds 

EAL = as-is expected annualized loss to the particular insured undertaking mitigation 

EAL’ = what-if expected annualized loss to the particular insured undertaking mitigation 

y = fraction of P in excess of C, e.g., the average variable portion of premiums contributing to 

insurer’s O&P costs 

In the case of the NFIP, FEMA provides times series for P and C.22 The time series for P exclude certain 

costs to the insureds: federal policy fees, reserve fund assessments, Homeowner Flood Insurance 

                                                 
22 To learn more, visit: https://www.fema.gov/statistics-calendar-year. 
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Affordability Act (HFIAA) surcharges, and probation surcharges. Of these, the reserve fund assessment 

scales with risk. In 2016, the reserve fund assessment totaled $0.495 billion, which amounts to 15% of 

$3.370 billion in net written premium (T. Hayes, FEMA Chief Actuary, written communication, 11 Apr 2017). 

Therefore 15% is added to each value of net written premium in the time series to estimate P. Figure 4-27 

plots accumulated values y from 1978 to present day. The final value of y, averaging over all 38 years of y 

data, is 0.17, a relatively low amount compared with commercial insurers, because the NFIP does not have 

to produce a profit and because it incurs no reinsurance costs, the reinsurer effectively being the U.S. 

Treasury. Bear in mind that the 0.17 figure excludes fees, assessments, and surcharges that do not scale 

with risk. See Box 4-3 for a restatement of insurance benefit.  

 

Box 4-3. Clarifying Insurance Benefits 

Insurance savings are only attributable to the reduction in the portion of insurance premiums 

associated with administrative costs. Consider: if one builds an insured house to a higher standard, 

building repair costs go down, but that savings can only be counted once. If the property is insured, 

the insurer pays the repair costs, but those costs are completely offset in the long run by a portion of 

the premiums that the property owner has paid. (That portion is called pure premium.) Otherwise, the 

property owner pays the repair costs. One way or another, the property owner pays for the repairs, 

either through pure premium, which passes through the insurer, or directly to contractors. But the 

property owner also pays for the insurer’s administrative costs (in the case of NFIP), or O&P (in the 

case of private insurance). In the case of NFIP, the administrative costs amount to a factor of about 0.17 

times the pure premium. Private insurance has a higher ratio of O&P to pure premium, about 0.42. 

That is, the property owner pays total NFIP premiums and fees of about 1.17 times the pure premium, 

or about 1.17 times what the property owner could expect to pay, on average, over the long term, to 

repair damage, or 1.42 for private insurance. 

Assume that in the long run, on an overall average, insurance is priced so that the average insured 

pays the same factor for administrative cost, regardless of whether the property is built to code or 

above code. That is, assume insurance is priced properly, in proportion to pure premium. The 

reduction in administrative costs or O&P scales with the reduction in building repair costs. Reduce 

repair costs by $100 and one reduces NFIP administrative costs by $17 or private insurance O&P by 

$42. Therefore, one can estimate the insurance benefit as a factor of property loss reduction.  
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Figure 4-27: Overhead factor y for NFIP flood insurance. 

Here are the implications of Equation 4-38: One expects B to fluctuate over short periods of time but to 

stabilize over the long run. One expects the policyholder's benefit to be highest in years when NFIP is 

profitable, e.g., when there are no big catastrophes, because NFIP's revenues in excess of losses come out 

of the policyholder's premiums and other fees, assessments, and surcharges. The space between the 

dotted and solid lines in Figure 4-27 is y, which is proportional to benefit. It is largest in years without a big 

catastrophe, as one would expect. One expects the policyholder's benefit to drop in years when a big 

catastrophe occurs, because NFIP's revenues in excess of losses are lower or negative in that year. That 

may seem counterintuitive, but remember that less NFIP excess revenue means less savings to the 

policyholder, again because NFIP excess revenue comes out of the policyholder's pocket. That is what 

Figure 4-27 shows: smaller or negative values of y appear around Hurricanes Katrina (2005) and Sandy 

(2012). 

4.19. DEATHS, NONFATAL INJURIES, AND POST-TRAUMATIC 

STRESS DISORDER 

4.19.1. Deaths and Nonfatal Injuries 

The 2005 Mitigation Saves study considered many ways to assign an economic value to human health. 

(See that work for several options and their advantages and disadvantages.) As in 2005, the 2017 project 

team valued human health as the DOT’s acceptable cost to avoid a statistical injury.23  By that approach, a 

2015 regulation that prevents injuries would be deemed cost effective if it cost less than $9.4 million per 

statistical fatality avoided, and lesser amounts for lesser injuries, in the proportions shown in Table 4-34. 

Table 4-35 expresses the acceptable costs to avoid statistical injuries, in terms of Hazus injury severity 

                                                 
23 To learn more, visit: https://www.transportation.gov/sites/dot.gov/files/docs/VSL2015_0.pdf. 

https://www.transportation.gov/sites/dot.gov/files/docs/VSL2015_0.pdf
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levels. The 2017 project team mapped from AIS to Hazus injury levels the same way as in the 2005 

Mitigation Saves study. Note that a statistical fatality refers to the death of an unknown person at some 

unknown time in the future, not the death of a particular person in peril at the present time or the death of 

a particular person in the past. 

Table 4-34: Acceptable cost to avoid a statistical injury, with injuries measured by AIS. 

AIS level(a) Severity Fraction of VSFA(b) 

AIS 1 Minor 0.0020 

AIS 2 Moderate 0.0155 

AIS 3 Serious 0.0575 

AIS 4 Severe 0.1875 

AIS 5 Critical 0.7625 

AIS 6 Fatal 1.0000 

(a) AIS refers to the abbreviated injury scale used by the Association for the Advancement of Automotive Medicine 

(2001) and (b) VSFA refers to the acceptable cost to avoid a statistical fatality ($9.5 million in the third quarter of 2016, 

using the GDP implicit price deflator from Federal Reserve Bank of St. Louis). 

Table 4-35: Acceptable cost to avoid a statistical injury, with injuries measured by Hazus injury severity. 

Severity Fraction of VSFA Cost (2016 $) Comment 

Hazus 1 0.0056 53,000 Geometric mean of AIS 1 and 2 

Hazus 2 0.0575 550,000 Same as AIS 3 

Hazus 3 0.3781 3,700,000 Geometric mean of AIS 4 and 5 

Hazus 4 1.0000 9,500,000 Same as AIS 6 

To apply these values in calculating EAL, the acceptable cost to avoid a statistical injury is calculated using 

Equation 4-39, in which N denotes the mean number of people in the asset at an arbitrary time of day, j is 

an index to injury severity, Vj denotes the acceptable cost to avoid a statistical injury of severity j, and yj(x) 

denotes the mean fraction of occupants who experience injury severity j when the asset experiences 

excitation x.  

𝐿(𝑥) = 𝑁 ⋅ ∑ 𝑉𝑗 ⋅ 𝑦𝑗(𝑥)

𝑗

 

Equation 4-39 

4.19.2. Post-Traumatic Stress Disorder (PTSD) 

Considering the time frame of this project, the best approach to include costs and benefits related to 

reducing PTSD is a simplified method based on Sutley et al. (2016a). Based on this work and others on 
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PTSD after disasters, the project team used AIS level 3 or Hazus injury severity 2 as a proxy for rates of 

PTSD in a community. That is, one takes the number of people who are estimated to experience PTSD as 

equal to the number who are estimated to experience Hazus injury severity 3. (See Table 4-32 for the 

relationship between AIS and Hazus injury severity.) 

The likelihood of a person experiencing PTSD is clearly impacted by the person’s socioeconomic status 

but, for practical reasons, this analysis does not adjust for socioeconomic status. As reflected in the work 

by Sutley et al. (2016a), rates of PTSD are higher among children, the elderly, racial and ethnic minorities, 

single parents, women, and the poor. By not modifying the proxy measure of PTSD by these factors, this 

method takes a conservative approach to including these costs and benefits. 

The project team considered the cost of mental health impacts similarly to costs related to injuries as a 

whole, that is, as an acceptable cost to avoid a future statistical injury, as opposed to the expense 

associated with a particular injury. The costs consider direct treatment costs where treatment is about 10% 

of the overall costs of the incidence, and the other costs include things like lost wages, lost household 

productivity, and pain and suffering. In 2008, as the result of a two-year study, RAND estimated the cost to 

treat PTSD in military personnel to be between $5,900 and $10,300. With co-morbidities such as 

depression, the cost can be significantly higher ($16,890) (Tanielian and Jaycox 2008). These costs would 

be higher still if the length of their study were longer, as those authors note. The Interim Study uses $9,000 

for direct treatment costs and $90,000 for the overall acceptable cost to avoid a statistical incidence of 

PTSD. As reported in the 2005 Mitigation Saves study, 10% of the costs of an injury are considered direct 

medical costs, with the remaining value other costs as highlighted above. The $90,000 is consistent with 

this documented approach. 

Because few BCAs even attempt to include these costs, the addition of acceptable costs to avoid a 

statistical instance of PTSD is a conservative but innovative addition to the 2017 Mitigation Saves study. The 

acceptable cost to avoid incidents of PTSD is estimated using Equation 4-39, where N denotes the 

number of people estimated to experience PTSD and VPTSD, the acceptable cost to avoid a single incident, 

is taken as $90,000. 

4.19.3. Discounting Human Life, Nonfatal Injuries, and PTSD 

As in the 2005 Mitigation Saves study, the Interim Study does not apply the time value of money to 

discount human deaths, nonfatal injuries, and PTSD. Instead, it values an injury avoided some years hence 

equal to an injury avoided 1 year hence, and recognizes avoided injuries over the useful life of a mitigation 

project or a building. The rationale, briefly, is that 1) there are actual financial instruments and measures of 

the time value of money, but no equivalent indices for human life, and 2) a reduction ad absurdum 

argument: if one applies a monetary discount rate to human life—any positive discount rate—one must 

accept that there is a duration of time where the cost of a cup of coffee today is somehow greater in value 

than a million human lives in the future. Since the conclusion appears morally untenable, one can reject 

the premise. Standard practices differ from agency to agency. For example, the value of a statistical fatality 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   304 
 

avoided (VSFA) differs between sources. Since this is an independent Interim Study, the project team 

applied its own judgment of what constitutes best practice, including whether and how to apply a discount 

rate to human safety. 

4.20. OTHER INTANGIBLES 

Other intangibles addressed in the 2005 study tended to contribute a relatively small amount to the 

benefits. (For additional details on this approach, consult Appendix J of the 2005 report.) The loss of 

intangibles such as historical buildings and environmental damage are valued with benefit-estimate-

transfer approaches. These vary by the type of benefit to be recognized: recreational water quality; 

drinking water; outdoor recreation trips; hazardous waste; wetlands; aesthetics; health and safety benefits 

from underground power lines; and cultural and historical resources. 

Disaster researchers have not yet produced a systematic method to quantify all losses that occur in a 

disaster. Some of these are illustrated in Figure 4-28. Disasters disconnect people from friends, schools, 

work and familiar places. They ruin family photos and heirlooms and alter relationships. Large disasters 

may cause permanent harm to culture and one’s way of life, and impact the most socially and financially 

marginal people. Disasters may have long-term consequences for health and collective wellbeing. These 

events also often hurt and kill pets and destroy natural ecosystems that are integral parts of communities. 

Disasters clearly disrupt life’s arc in ways that are hard to express, let alone assign monetary worth. Even 

the potential for future disasters affects people’s peace of mind. Mitigation saves more than is estimated in 

this report. 
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Figure 4-28: Some intangibles that are not quantified here: A) Continuity of life's arc. B) Heirlooms. C) 

Culture. D) Disproportionate impacts on vulnerable populations. E) Pets. F) Ecosystems. [Image credits: A, 

B, E and F: Public domain. C: Elisa Rolle, CC-BY-SA3.0. D: Matty1378, CC-BY-SA3.0.] 

4.21. ESTIMATING EXPECTED ANNUALIZED LOSSES 

The expected annualized loss (EAL) from any given loss category (property loss, BI, etc.) is calculated as 

shown in Equation 4-40. In the equation, G(x) denotes the mean annual rate of exceeding excitation x. 

A  B  

C  D  

E  F  
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𝐸𝐴𝐿 = ∫ 𝐿(𝑥) |
𝑑𝐺(𝑥)

𝑑𝑥
|

∞

𝑥=0

𝑑𝑥 

Equation 4-40 

For earthquake risk, L(x) is taken as piecewise linear with x and ln(G(x)) as piecewise linear with x, in which 

case one can perform the integration exactly, as shown in Appendix K.18, Equation A-64. For other perils, 

one can evaluate Equation 4-40 numerically, generally as shown in Equation 4-41. One generally knows 

the excitation x and its mean recurrence interval MRI at N increments. For example, the project team 

estimated the coastal wind hazard at N = 6 mean recurrence intervals of 10, 50, 100, 300, 700, and 1,700 

years. In the equation, G = 1/MRI. 

𝐸𝐴𝐿 ≈ (∑ 𝐿(𝑥𝑖) ´ (𝐺𝑖 − 𝐺𝑖+1)

𝑁−2

𝑖=0

) + 𝐿(𝑥𝑁−1) ´ 𝐺𝑁−1 

Equation 4-41 

4.22. ESTIMATING AND AGGREGATING BENEFITS AND COSTS 

TO THE NATIONAL LEVEL 

4.22.1. Aggregating Above-Code Design Results by Peril to the National 

Level 

Common approach. For each peril and location, the project team estimated an IEMax design level as 

discussed in Section 4.7. In cases where designing to exceed I-Code requirements is not cost effective, the 

project team took the IEMax level as current design practice. In all cases, “current design practice” means 

complying with the requirements of the 2015 I-Codes (IBC or IRC, as appropriate). In the case of fire at the 

WUI, “current design practice” means no requirement to comply with the 2015 IWUIC, except insofar as 

the IBC makes the same requirements. For each peril, nationwide BCR is calculated as follows: 

𝐵𝐴,𝑝 = ∑ 𝐼𝑜 (∑ (Δ𝐸𝐴𝐿𝑚,𝑟𝑒𝑠,𝑜 ´ 
(1 − 𝑒−𝑟𝑟𝑒𝑠 ´ 𝑡)

𝑟𝑟𝑒𝑠
+ Δ𝐸𝐴𝐿𝑚,𝑛𝑟𝑒𝑠,𝑜 ´ 

(1 − 𝑒−𝑟𝑛𝑟𝑒𝑠 ´ 𝑡)

𝑟𝑛𝑟𝑒𝑠
)

𝑚

+ ∑ Δ𝐸𝐴𝐿𝑖,𝑜 ´ 𝑡

𝑖

)

𝑜

 

Equation 4-42 

𝐶𝐴,𝑝 = ∑ 𝐼𝑜 ´ 𝐶𝑜

𝑜

 

Equation 4-43 
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𝐵𝐶𝑅𝐴,𝑝 =
𝐵𝐴,𝑝

𝐶𝐴,𝑝
 

Equation 4-44 

Where, 

BA,p = nationwide benefit of designing above (A) I-Code requirements for a given peril p (flood, 

wind, earthquake, or fire) 

BCRA,p = nationwide BCR of designing above (A) I-Code requirements for a given peril p  

CA,p = nationwide cost of designing above (A) I-Code requirements for a given peril p 

Co = additional cost to design and build all properties in location o to the IEMax level exceeding I-

Code requirements in that location (the subscripts A and p are omitted for brevity) 

ΔEALm,res,o = reduction in expected annualized loss for monetary benefit category m, all residential 

properties in location o, assuming all such properties are designed to the IEMax level of 

design to exceed I-Code requirements  

ΔEALm,nres,o = reduction in expected annualized loss for monetary benefit category m, all 

nonresidential properties in location o, assuming all such properties are designed to the 

IEMax level of design to exceed I-Code requirements  

ΔEALi,o = reduction in expected annualized loss associated with casualties and PTSD of category i 

in location o, assuming all properties are designed to the IEMax level of design to exceed 

I-Code requirements  

i = index to categories of human injuries and PTSD (e.g., Hazus injury severities 1, 2, 3, and 4, and 

PTSD) 

Io = an indicator function: 1 if designing to exceed I-Code requirements is cost effective at location 

o, 0 otherwise 

m = an index to monetary benefit categories: building and content repair costs, direct and indirect 

BI costs, environmental benefits, preservation of historical value 

o = index to locations, e.g., counties for earthquake, wind speed bands for wind, etc. 

p = peril: flood, wind, earthquake, or fire 

rres = discount rate for residential properties; see Appendix H for value 

rnres = discount rate for nonresidential properties; see Appendix H for value 
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t = duration over which the benefits are to be recognized; the present Interim Study uses t = 75 

years; see Appendix I for rationale. 

Earthquake. In the case of earthquake, locations are indexed by county. The IEMax design level is the 

highest value of Ie where the ratio of incremental benefit to incremental cost exceeds 1.0 in that county, as 

in Section 4.7. In cases where designing to exceed I-Code requirements is not cost effective, the IEMax 

level is Ie = 1.0, that is, code-level design. 

Wind. In the case of hurricane wind, locations are indexed by ASCE 7-16 wind bands, and by a distance to 

coast band of 1 mile to delineate IBHS FORTIFIED Home Hurricane requirements. The IEMax design level is 

the corresponding IBHS FORTIFIED Home program where the ratio of incremental benefit to incremental 

cost exceeds 1.0, as in Section 4.7. In cases where designing to exceed I-Code requirements is not cost 

effective, the IEMax level is baseline IRC requirements, that is, code-level design. 

Coastal surge. In the case of coastal surge, locations are indexed by ASCE 7-16 wind bands and by state. 

The IEMax design level is the corresponding incremental building elevation where the ratio of incremental 

benefit to incremental cost exceeds 1.0, as in Section 4.7. 

Riverine and coastal flood. The IEMax level is measured at a small geographic level with the highest value 

of floor elevation above BFE where the ratio of incremental benefit to incremental cost exceeds 1.0, as in 

Section 4.7. In cases where building above BFE + 1 foot is not cost effective, the IEMax level is BFE + 1 foot, 

that is, code-level design. 

Fire. For fire at the WUI, that IEMax level is measured at a smaller geographic level with the binary variable: 

is it cost effective to adopt the 2015 IWUIC, yes or no? 

4.22.2. Aggregating Federal Grant Results by Peril to the National Level 

Common Approach. For each peril, hazard stratum, and sample project, the project team calculated the 

reduced EAL by benefit category (generally building damage, content damage, direct BI, indirect BI, 

casualties, PTSD, environmental value, historical value). The project team estimated the project benefit bo 

using Equation 4-45 and the project-level BCR using Equation 4-46. 

𝑏𝑜 = (∑ (Δ𝐸𝐴𝐿𝑚 ´ 
(1 − 𝑒−𝑟 ´ 𝑡)

𝑟
) + ∑ Δ𝐸𝐴𝐿𝑖 ´ 𝑡

𝑖𝑚

) 

Equation 4-45 

𝑏𝑐𝑟𝑜 =
𝑏𝑜

𝑐𝑜
 

Equation 4-46 

Where, 
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bo = benefit of mitigation investment for project o 

co = mitigation cost of project o 

bcro = BCR for project o 

Two indices h and p to bcro indicate the hazard level h (low, medium, or high) and the peril p that the 

grant mitigates. One can aggregate benefits from all U.S. government-funded mitigation grants for the 

given peril to the national level using Equation 4-47, the nationwide total cost of all projects for the given 

peril using Equation 4-48, and the overall nationwide BCR for the given peril using Equation 4-49. 

𝐵𝐺,𝑝 ≈ ∑ (𝐶6𝐴,ℎ,𝑝 ´ (
1

𝑛6,ℎ,𝑝
∑ 𝑏𝑐𝑟𝑜,ℎ,𝑝

𝑜ℎ,𝑝

))

ℎ

 

Equation 4-47 

𝐶𝐺,𝑝 = ∑ 𝐶𝐺,ℎ,𝑝

ℎ

 

Equation 4-48 

𝐵𝐶𝑅𝐺,𝑝 =
𝐵𝐺,𝑝

𝐶𝐺,𝑝
 

Equation 4-49 

Where, 

BG,p = nationwide benefit of all government-funded mitigation grants (G) for the given peril p, 

whether sampled or not 

BCRG,p = nationwide BCR for all government-funded mitigation grants (G) for the given peril p 

bcro,h,p = BCR for sample o within hazard level h in the given peril p (Equation 3-36) 

CG,p = cost of all government-funded mitigation grants (G) for the given peril p 

CG,h,p = cost of all grant-funded projects in peril p, hazard stratum h, whether sampled or not 

h = index to hazard levels (low, medium, high) 

nG,h,p = number of grant-funded (G) sample projects in hazard level h for the given peril p 

p = peril: flood, wind, earthquake, or fire 
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4.22.3. Aggregating Results Across Perils to a Nationwide Level 

One can aggregate all benefits, costs, and the BCR for all designs above (A) I-Code requirements using 

Equation 4-50 through Equation 4-52. 

𝐵𝐴 = ∑ 𝐵𝐴,𝑝

𝑝

 

Equation 4-50 

𝐶𝐴 = ∑ 𝐶𝐴,𝑝

𝑝

 

Equation 4-51 

𝐵𝐶𝑅𝐴 =
𝐵𝐴

𝐶𝐴
 

Equation 4-52 

Where, 

BA = benefit of all designs above (A) I-Code requirements and compliance with 2015 IWUIC where 

cost effective 

C2A = cost of all designs above (A) I-Code requirements and compliance with 2015 IWUIC where 

cost effective 

BCRA = BCR of all designs above (A) I-Code requirements and compliance with 2015 IWUIC where 

cost effective 

One can aggregate all benefits, costs, and the BCR for all federal mitigation grants using Equation 4-53 

Equation 4-55. 

𝐵𝐺 = ∑ 𝐵𝐺,𝑝

𝑝

 

Equation 4-53 

𝐶𝐺 = ∑ 𝐶𝐺,𝑝

𝑝

 

Equation 4-54 
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𝐵𝐶𝑅𝐺 =
𝐵𝐺

𝐶𝐺
 

Equation 4-55 

Where, 

BG = benefit of all grant (G) funded mitigation 

C6A = cost of all grant (G) funded mitigation 

BCR6A = BCR of all grant (G) funded mitigation 

4.23. ALLOCATING NET BENEFITS TO STAKEHOLDER GROUPS 

Different stakeholders bear different costs and enjoy different benefits of designing new buildings to 

exceed code provisions. Here is an estimate of how costs and benefits are distributed among five 

stakeholder groups: 

1. Developers: Corporations that invest in and build new buildings, and usually sell the new buildings 

once they are completed, owning them only for months or a few years. 

2. Title holders: People or corporations who own existing buildings, generally buying them from 

developers or from prior owners.  

3. Lenders: People or corporations that lend title holders the money to buy the building. Loans are 

typically secured by the property, meaning that if the title holder defaults on loan payments, the 

lender can take ownership. 

4. Tenants: People or corporations who occupy the building, whether they own it or not. This work uses 

the term “tenant” somewhat loosely, and includes visitors. 

5. Community: People, corporations, local government, emergency service providers, and everyone else 

near the building or who does business with the tenants. 

The project team attempted to allocate costs and benefits to various stakeholders. Developers initially bear 

any higher up-front construction costs, with such costs transferred entirely to subsequent building owners. 

While the developer would have to make a larger investment to build a more-expensive building, the 

developer would pass the cost on to the subsequent buyer, carrying the cost only during his or her 

ownership period. The added construction cost is assigned to later owners (the title holders), who transfer 

an estimated fraction of it to the tenants. 

Building owners (the title holders) enjoy most of the benefits of reduced building repair costs, and tenants 

enjoy most of the reduction in content loss. The project team also examined the allocation of reduced 

building repair costs. If a natural disaster seriously damages a building, the title-holder might be unable to 

pay for the repairs and default on the mortgage, leaving the bank or other lender with a property where 

the resale value is less than the lender’s pre-disaster equity. The project team did not know what fraction 
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of the reduction in property repair costs accrues to lenders; likely it is a relatively small amount, perhaps on 

the order of 10%. Therefore, 10% of building repairs were assigned to lenders. Since the developer will be 

the title holder for approximately 3 years out of the 75-year assumed life of the building, the project team 

assigned 3/75  90%, or 3.6% of the benefit of reduced building repair cost to the developer, 86.4% to the 

title holder, and 10% to the lender. Where building and content loss are calculated under one heading of 

property loss, the loss is approximated as two-thirds building repairs and one-third content loss. 

Note, a hidden attribute of the reduction in property losses when it comes to earthquakes. Making 

buildings stiffer generally increases content damage rather than decreasing it. However, the increase in 

content damage is generally much smaller than the decrease in other aspects of property loss.  

Tenants generally enjoy the benefits of reduced ALE and direct BI. The people and corporations who buy 

from or sell to tenants enjoy the benefits of reduced indirect BI; these people and corporations are part of 

the broader community. 

In the case of common property insurance, such as fire or flood insurance, the title holder enjoys any 

reduction in insurance O&P costs (in the case of wind or fire), or reduction in administrative costs and fees 

(in the case of the NFIP). Since only a small fraction of properties are insured for earthquake, earthquake 

insurance is ignored here. 

Tenants and visitors enjoy the benefits of enhanced life safety, and, to some extent, so do casualty insurers, 

although emergency medical care and workers’ compensation insurance account for a relatively modest 

fraction of the acceptable statistical cost to avoid deaths and injuries. For example, the average American 

has far less life insurance than the U.S. government assigns to the acceptable cost to avoid a statistical 

fatality ($9.5 million). Only 44% of people have life insurance (LIMRA 2016). Life insurance coverage in the 

United States totals approximately $19.2 trillion (Life Insurance Selling Magazine 2013). Divide that by the 

U.S. population (321 million people in 2015) to see that the average amount of life insurance per person 

(including the uninsured) is just under $60,000, or about 0.6% of the $9.5 million figure. Even if the fraction 

is somewhat larger for non-fatal injuries, insurers probably enjoy a relatively small fraction of the life-safety 

benefit, on the order of 1%. 

Local communities enjoy the benefits of reduced cost of urban search and rescue. The local community 

here are the taxpayers who support the fire department and emergency medical services. 

How can the stakeholder benefits be quantified mathematically? This is represented with a matrix 

equation, as in Equation 4-56: 

S = AB 

Equation 4-56 
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Where, 

A = m x n benefit-transfer matrix, where m = number of stakeholder categories, n = number of 

cost and benefit categories, and entry Aij is the fraction of cost or benefit category in column j that 

the stakeholder in row i bears or enjoys. Table 4-36 presents the benefit-transfer matrix derived 

here. 

B = n x 1 vector of benefit, where entry Bi denotes the cost or benefit in category i. A quantity in 

parentheses means the benefit is negative. “Negative benefit” means either an immediate cost (as 

in the case of construction cost) or a future cost (as in the case of future content repair cost, which 

generally increases rather than decreases when one builds new buildings to be stiffer).  

S = m x 1 vector of stakeholder net benefit by stakeholder group, where entry Si is net benefit to 

stakeholder group i 

Table 4-36 contains benefit-transfer matrix A, with rows and columns labeled for clarity. 

Table 4-36: Benefit-transfer matrix A. 

 Construction 

Cost 

Property  

 

ALE and 

Direct BI 

Indirect BI Insurance Death, Injury, 

PTSD 

Developer  2%   4%  

Title holder 50% 58%   86%  

Lender  7%   10%  

Tenant 50% 33% 100%   99% 

Community    100%  1% 

The net benefit (the contents of vector S) means the benefit each stakeholder group experiences minus 

the costs they bear from designing new buildings to exceed 2015 I-Code design requirements (in the case 

of flood, wind, or earthquake) or to comply with the 2015 IWUIC (in the case of fire at the WUI). Some 

critics might object to the notion of net benefit to some stakeholder groups—especially developers—

because of the implication that a positive net benefit means that a stakeholder group would or should 

value designing to exceed I-Code requirements. Box 4-4 addresses that question. 

Policymakers regularly express interest in how any given policy option would affect employment. Although 

the Interim Study, like the 2005 Mitigation Saves study, excludes job creation per se from both the benefit 

and the cost side of the BCR, the quantity may nonetheless interest some readers. How can job creation 

be quantified? The study of job creation is restricted to designing to exceed I-Code requirements for flood, 

wind, and earthquake, and compliance with the 2015 IWUIC for fire. 
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Box 4-4. Is There Really Value in Building Better?  

Critics might object to the notion that owners value better buildings, based on the following observations: owners are 

not already constructing buildings to be stiffer or stronger; renters have not expressed a willingness to pay more for 

better buildings; and insurers have not recognized improved resilience in setting rates for earthquake insurance. All three 

statements are demonstrably false.  

Would owners value better buildings? After conversations with the Building Owners and Managers Association (BOMA) 

of Greater Los Angeles, Lucy Jones reported (L. Jones, written communication, November 20, 2015),  

“At my meeting with the board of the Building Owners and Managers Association of Greater Los Angeles, attendees said 

they would accept an unspecified greater construction cost to achieve better seismic performance, if it was mandated. 

They also said they would like to see it mandated because they don't want to have their building be a financial loss after 

the earthquake, and having the building cost more to build would just be the cost of business in Los Angeles much like 

higher labor costs in some areas. But even though they want the higher performance, they can't afford to pay that extra 

cost if they are the only ones - they don't believe that tenants will pay higher rents for seismic performance.”  

Owners would value, and even prefer, better buildings, as long as the investment does not disadvantage them relative to 

competitors. Some owners have already decided to pay more for better buildings, despite not being required to do so. 

Just two examples: for 30 years, Cal-Tech built its new buildings 50% stronger than local code required, because it 

valued the better likely performance (CalTech Design and Construction 2014). A private client of Porter independently 

decided several years ago to design all its new dry-goods distribution centers to Ie = 1.25, exceeding the minimum 

strength requirement by 25% because its executives wanted better performance than the code requires. Another private 

client decided to build certain of its critical facilities to the same Ie factor.  

What about renters’ willingness to pay more for better buildings? As Davis and Porter (2016) show, a scholarly survey of 

400 Californians and 400 adults from the Saint Louis, MO, and Memphis, TN, metropolitan areas shows the people 

generally expect and are willing to pay for better seismic performance from new buildings. The survey shows no strong 

effect either of household income or educational attainment.  

As for insurers valuing better resilience through insurance premiums, the California Earthquake Authority (CEA) offers 

earthquake premium reductions for certain retrofit measures. The California State Automobile Association offered such 

discounts years before the formation of the CEA. Seismic vulnerability is a rating factor that affects insurance premiums, 

meaning that insurers support and encourage better resilience, and have done so for decades.  

In any case, FEMA and the Interim Study use a broader definition of value than renters’ willingness to pay. The Interim 

Study is concerned with value as the federal government views value, including reduced future property repair costs, 

future deaths and injuries, and future direct and indirect BI. Value means more than just the money that the owner saves 

or the tenant is willing to pay. Their value is only a portion of the value of greater resilience to society. The combination 

of greater strength and stiffness undeniably reduces future losses. By FEMA's own definitions, the present value of those 

reduced future losses is called benefit. Benefit is a value. By FEMA's definitions and procedures, building better has value. 
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4.24. JOB CREATION 

Most of the marginal cost for designing to exceed I-Code requirements (at least for earthquake) comes 

from additional structural material: more concrete, steel, wood, and connectors. Higher open foundations 

for flood resistance mostly involves more material, as opposed to labor costs. Other flood measures and 

wind measures involve relatively more labor. However, an important focus is on jobs created by requiring 

more construction materials. Structural materials represent about 10% of construction cost, so an 

increment D in construction cost involves contractors buying about D/0.10 more structural material. Thus, 

a D = 0.1% increase in construction cost nationwide would involve purchasing about 10% more structural 

materials nationwide. It is important to relate the incremental increase in construction cost to the number 

of added jobs in industries that provide structural materials by supposing that the number of U.S. jobs in 

industries that supply structural materials scales with the quantity of domestically produced structural 

material.  

For example, if changes in construction practice led to the United States consuming 1% more construction 

sand and gravel nationwide on a regular, ongoing basis, and if virtually all of U.S. consumption was 

satisfied by sand and gravel produced in the United States, then U.S. employment in the production of 

construction sand and gravel would rise by 1%, or a lesser fraction in proportion to the fraction of U.S. 

consumption supplied by U.S. production. If the United States employs approximately 27,000 people in the 

production of construction sand and gravel, and if virtually all construction sand and gravel consumed in 

the United States were produced domestically, then the 1% increase in demand would result in around 

270 new, long-term jobs in that industry. 

Some groups may contend that job creation to retrofit existing buildings (as in federal mitigation grants) 

would be largely short-term if it added jobs at all. The project team identified two responses: first, with new 

construction, consider only jobs created under above-code measures. Second, even if one were to 

consider a retrofit, many construction firms specialize, including firms that specialize in retrofit. A long-term 

increase in retrofit efforts would tend to produce new employment among retrofit contractors.  

Job creation for designing to exceed I-Code requirements (for earthquake, at any rate) is estimated as 

follows: 

Step 1. List North American Industry Classification System (NAICS) classifications associated with 

manufacture and sale of structural materials. (See Table 4-37) 

Step 2. Get recent U.S. employment data, e.g., from Bureau of Labor Statistics N = U.S. employees in 

manufacture and sale of structural materials.  

Step 3. Estimate f = (U.S. consumption)/(U.S. production) = [(Value of Product Shipments) - (Total 

Export Value of Goods) - (General Import Value of Goods)] / [(Value of Product Shipments) - (General 

Import Value of Goods)]. (U.S. Census Bureau 2012)   
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Step 4. Estimate g, increase in domestic consumption of structural materials from above-code 

measures. As noted above, g = 10  D. 

Step 5. If estimating job creation at the state level, estimate h = (state construction 

employment)/(national construction employment), e.g., from Bureau of Labor Statistics (2017a and 

2017b). 

Step 6. Estimate added jobs by NAICS classification, J ≈ N  f  g = 10N  f  D, and sum over 

classifications. Using values of N and f in Table 4-37, one can estimate nationwide job creation using 

Equation 4-57, and at a state level, using Equation 4-58. 

J = 8,650,000  D 

Equation 4-57 

J = 8,650,000  D  h 

Equation 4-58 

Table 4-37: U.S. job-creation data for designing to exceed I-Code requirements for earthquake. 

NAICS classification N (1,000) f 

Construction Sand and Gravel Mining: 212321 27.0 1.0(c) 

Sawmills: 3211 90.7 0.78 

Veneer, Plywood, and Engineered Wood Product Manufacturing: 3212 78.5 0.78 

Cut Stock, Resawing Lumber, and Planing: 321912 50.1 0.78 

Ready-Mix Concrete Manufacturing: 327320 95.4 1.0 

Concrete Block and Brick Manufacturing: 327331 32.5(a) 0.99 

Other Concrete Product Manufacturing: 327390 32.5(a) 0.97 

Iron and Steel Mills and Ferroalloy Manufacturing: 331110 83.5 0.73 

Rolled Steel Shape Manufacturing: 331221 55.7 0.98 

Plate Work and Fabricated Structural Products 33231 159.5 0.91 

Other Fabricated Wire Product Manufacturing: 332618 34.4bc) 0.57 

Lumber, Plywood, Millwork, & Wood Panel Merchant Whsl: 423310 105.3 1.0(d) 

Metal Service Centers and Other Metal Merchant Wholesalers: 423510 121.8 1.0(d) 

    (a) One-third of employment in a sector where data for N includes 2 others 

    (b) Half of employment in a sector where data for N includes 1 other 

    (c) Bolen, W. (2001) 

    (d) Assumed 
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5. Project Data, Sampling, and Other Analytical 

Details 

This chapter summarizes the data the project team acquired from federal grant programs. It also presents 

details of additional data acquired and of additional assumptions and procedures to deal with 

idiosyncrasies of project data and peril- or program-specific analysis. 

5.1. FEDERAL MITIGATION PROGRAM DATA 

FEMA provides public-assistance funding for cost-effective hazard mitigation for eligible facilities damaged 

by natural disasters under Stafford Act Section 406.24 FEMA also provides hazard mitigation funding under 

its HMA programs. FEMA’s Federal Insurance and Mitigation Administration (FIMA) administers the HMA 

programs, with expenditures authorized under Stafford Act Sections 203 and 404, and the National Flood 

Insurance Act of 1968.25 HMA programs include the Hazard Mitigation Grant Program (HMGP), Flood 

Mitigation Assistance (FMA), and PDM programs, as illustrated in Figure 5-1. 

 

Figure 5-1: FEMA hazard mitigation programs (Federal Emergency Management Agency 2017a). 

In December 2016, four federal agencies, including FEMA, provided the project team with grant data 

related to natural hazard mitigation for flood, wind, earthquake, and fire at the WUI. Table 5-1 lists the 

                                                 
24 See https://www.fema.gov/media-library/assets/documents/15271. 
25 See https://www.fema.gov/media-library/assets/documents/7277. 

https://www.fema.gov/media-library/assets/documents/15271
https://www.fema.gov/media-library/assets/documents/7277
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federal agency programs that provided grant data. Agencies tend to keep the relevant data in their own 

agency-specific formats; the project team merged their data into a single database with fields listed in 

Table 5-2. The data contained many gaps for fields that agencies do not compile or could not provide for 

fear of releasing personally identifiable information. Table 5-3 summarizes quantities of mitigation grants 

examined here. Not all of the data could be used. Some records lacked sufficiently fine geolocation 

information. In some cases, the project team could not determine that the record actually dealt with 

natural hazard mitigation. Some projects took place outside of the 48 contiguous states. 

The data offer grant project amounts in grant-year dollars. The project team adjusted the totals to account 

for inflation using a deflator calculated as the ratio of grant-year per-capita U.S. GDP PPP, provided by the 

World Bank. Total project costs are shown in Table 5-4. The table reflects removing grants that could not 

be used or did not appear to address natural hazard mitigation, and accounts for inflation using the GDP 

PPP deflator. Table 5-5 presents median and mean project amounts by peril in grant-year dollars. Figure 

2-1 shows the distribution of flood project amounts. Figure 5-3 shows the distribution of wind projects, 

Figure 5-4 earthquake projects, and Figure 5-5 fire projects. 

Table 5-1: Agencies and programs providing grant data. 

Agency Program 

EDA Disaster Mitigation Recovery 

Hurricane Floyd disaster 2001 

Other disasters using Floyd emergency fund 2001 

Norton Sound, Alaska 2001 

2008 Disaster Supplemental I, including Midwest Floods 

2008 Disaster Supplemental II, including Midwest Floods 

2010 Gulf Oil Spill Disaster Supplemental 

2010 Disaster Supplemental 

Federally declared disaster area 

Hurricane Katrina Disaster 2005 

Gulf Coast Disaster 2010 

Alaska Fisheries Disaster 

2012 Disaster Supplemental 

2010 Gulf Oil Spill Disaster Supplemental 

2008 Disaster Supplemental I 

2010 Disaster Supplemental 

2008 Disaster Supplemental II 

Global Climate Change Mitigation Incentive Fund 
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Agency Program 

DOT  

FEMA Flood Mitigation Assistance (FMA) Grant Program  

Hazard Mitigation Grant Program (HMGP) 

Public Assistance (PA) Program  

Pre-Disaster Mitigation (PDM) Grant Program  

HUD Community Development Block Grant Program (CDBG) 

 

Table 5-2: Integrated project database format. 

Field Meaning Example 

ID 2017 Mitigation Saves study unique 

integer ID 

11123 

DB Program: FMA, HMGP, PDM, PA, HUD, or 

EDA. SBA data had no info on natural 

hazard mitigation. DOT had too few 

building projects. 

HMGP 

DBID 2017 Mitigation Saves study integer ID 

within DB 

15104 

Region FEMA region  

StateName State name or state postal abbreviation California 

DisasterNumber Disaster number  

DeclarationDate Declaration date  

IncidentType Incident type  

Peril Peril for purposes of 2017 Mitigation Saves 

study   

Earthquake 

DisasterTitle Disaster title  

ProjectNumber Project number DR-1008-3034-R 

ProjectType Project type 205.4: Non-

Structural 

Retrofitting/Rehabili

tating Public 

Structures – Seismic 

ProjectTitle Project title Seismic Retrofit 

(Replacement) of 

Electrical Stations 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   320 
 

Field Meaning Example 

ProjectDescription Project description   

ProjectCounties Project counties Los Angeles 

Status Grant status Closed 

Subgrantee FEMA subgrantee   

SubgranteeFIPSCode Subgrantee FIPS code   

ProjectAmount Project amount $ 126524100 

CostSharePercentage Cost share percentage 58 

CountyFIPS5 County FIPS5 06037 

PerilOK Peril is within Mitigation Saves Volume 2 

scope 

TRUE 

HazOK County has hazard info available TRUE 

StatusOK Project status suggests the project was 

actually undertaken 

TRUE 

WindHaz Wind hazard level H M or L L 

WUIFireHaz WUI fire hazard level H M or L M 

FloodHaz Flood hazard level H M or L L 

EqkHaz Earthquake hazard level H M or L H 

StructureType Structure type  

FoundationType Foundation type  

PropertyPartOfProject Property is part of project Yes 

StructureLocatedInFloodway Structure is located in floodway  

FloodZone Flood zone  

FloodSource Flood source  

PostMitigationPropertyUse Post-mitigation property use  

Latitude Latitude decimal degrees N (truncated to 

3 decimal places) 

34.180 

Longitude Longitude decimal degrees E (truncated 

to 3 decimal places) 

-118.445 

FirstFloorElevation First floor elevation ft    

YearBuilt Year built    

StreetName Street name  AETNA STREET 

City City name VAN NUYS 

ZIP ZIP code 91401 
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Table 5-3: Summary of grant data, in grant-year dollars.  

Agency Program Project dates Peril Projects Properties Amount ($M) 

EDA Various 2000-2016 Flood 159  $       800 

   Wind 67  $       200 

FEMA FMA 1993-2016 Flood 1,063 2,873 $       789 

 HMGP 1993-2016 Earthquake 558 3,986 $    2,470 

   Fire 23 108 $         22 

   Flood 4,355 30,288 $    7,022 

   Wind 3,816 20,446 $    3,061 

   HMGP subtotal  54,828 $  12,575 

 PA 2001-2016 Earthquake 457  $        29 

   Fire 83  $          3 

   Flood 9,672  $       168 

   Wind 13,613  $    5,534 

   PA subtotal 23,825  $    5,734 

 PDM 1993-2016 Earthquake 87 424 $      286 

   Fire 13 392 $        15 

   Flood 239 1,345 $      441 

   Wind 175 205 $       171 

   PDM subtotal  2,366 $      913 

   FEMA total  60,067 $  20,011 

HUD CDBG 2001-2015 Flood 99  $        92 

 

Table 5-4: Total project costs in billions. 

Peril Cost (billions) 

Riverine flood $      11.50 

Wind $      13.60 

Earthquake $        2.20 

Fire at WUI $        0.06 

Subtotal, grants $      27.4 
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Table 5-5: Median and mean project amounts in project-year dollars. 

Peril Median Mean 

Flood $    33,000 $    640,000 

Wind $    23,000 $    990,000 

Earthquake $  168,000 $ 1,700,000 

Fire $    39,000 $    380,000 

 

 

Figure 5-2: Flood project amounts in thousands of grant-year dollars. 
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Figure 5-3: Wind project amounts in thousands of grant-year dollars. 

 

Figure 5-4: Earthquake project amounts in thousands of grant-year dollars. 
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Figure 5-5: Fire project amounts in thousands of grant-year dollars. 

5.2. ADOPTING I-CODE REQUIREMENTS FOR RIVERINE 

FLOOD 

This section addresses the calculation of the cost effectiveness for incorporating the freeboard 

requirements in the 2018 I-Codes. Rather than using a Hazus-based approach, the project team 

determined the cost effectiveness using a modified version of FEMA’s BCA software and applying a 

building inventory of both commercial and single-family residential buildings to a variety of floodplain 

cross sections. The benefits, costs, and overall BCRs for the various floodplain cross sections were then 

adjusted using a weighted average approach to represent to approximate percentage of each of the 

floodplain cross sections throughout the United States. The results were further adjusted to address the 

potential number of structures of each type to be constructed within a year in areas that currently do not 

utilize freeboard through either adoption of the I-Codes or through a floodplain management ordinance. 

5.2.1. Building Inventory for Below-Code Design for Riverine Flood 

As discussed in Section 4.4.2, the building types consisted of four commercial building types with three 

different building sizes and six different construction methods. The variation in building size and 

construction approach impacted factors such as the length of building perimeter and cost variations in 

mitigation measures such as dry floodproofing to increase the sample size and provide a larger overall 

data set from which to understand the cost effectiveness of freeboard. Residential buildings were similar in 
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using both one-story and two-story homes of two different sizes with four different construction method 

in order to add variation in the building perimeter and cost of construction. 

To develop building replacement costs for the below-code designs, RSMeans CostWorks 2018 data was 

applied to each of the building sizes and types. Since the analysis did not represent any one specific 

location, the national average values were used for all calculations. The value of contents in the buildings 

were applied based upon the designation from the DDF associated with the building type. Most of the 

Hazus DDFs use 100% of the building value. The percentage values in the contents DDFs were adjusted in 

order to allow the 100% value to be used in order to ease the calculation development. Loss of use or 

displacement values are the other primary value used in the initial calculations. While building damages 

and contents damages for multi-story office buildings were only applied to the first floor, the loss of use 

values were applied to the entire square footage. The project team studied the average square footage 

per person for multiple office buildings and used 312 square feet per worker for office buildings. Workers’ 

lost wages were used on a per person basis. A salary of $35,000 per worker per year was used to calculate 

the value of loss of use. For retail space an annual revenue of $200 per square foot was used to determine 

the value of loss of use. Finally, warehouse spaces used a value of $7.50 or approximately 3.75% of the 

annual revenue of retail spaces. This value was determined using comparisons of the value of warehouse 

space as compared to retail space. Single-family residential buildings used a simplified approach of 2.5 

occupants per buildings, where each day of displacement from the home would allow for $77 per house 

for a hotel room and $46 per person per day for meals. This methodology is consistent with the current 

FEMA BCA approach. 

5.2.2. Cost to Comply with 2018 I-Codes for Riverine Flood 

The project team determined the costs to comply with the one-foot freeboard requirements of the I-

Codes based on the mitigation measure using RSMeans CostWorks 2018 data. These costs were 

developed for each mitigation approach for compliance and calculated for multiple square footages of 

buildings with associated perimeters (per the RSMeans square foot models) in order to allow for multiple 

building footprints to be evaluated in an automated approach. 

The cost to elevate a building to comply the 2018 I-Codes includes construction of the foundation walls 

one foot higher, and associated extensions to electrical, water, and wastewater risers. In building with 

stemwall foundations, the cost also includes placing compacted fill within the stemwall. The project team 

evaluated residential crawlspaces for the addition of one foot of reinforced masonry walls. The cost also 

included adding one foot to the columns on the interior of the footprint. The number of such columns 

were estimated based on the size of the building footprint, using common framing practices. 

The project team evaluated dry floodproofing costs by using the construction type for each commercial 

building type, the construction approach, average number and size of openings, and number of feet of 

perimeter wall in order to calculate a square footage of area that must be designed to be waterproofed 

and resist flood loads, as well as consideration of costs for shields to protect openings such as doors and 
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windows. Additional costs were developed to address an interior drainage system and backflow 

prevention valves, which are necessary in the design of any comprehensive dry floodproofing measure. 

The costs to dry floodproof were developed using RSMeans CostWorks 2018 and feedback from vendors 

that provide dry floodproofing products. Only commercial buildings were evaluated with dry 

floodproofing since it is not an allowable protection measure for residential buildings. An annual 

maintenance value of approximately 1% of the total value of construction was applied to any dry 

floodproofing costs over the life of the building in order to make sure that mitigation effectiveness could 

be maintained. Annual maintenance costs were assumed to be nominal for elevated buildings since the 

study is only evaluating the cost of freeboard for buildings already located in the SFHA. 

5.2.3. Benefits of Complying with 2018 I-Codes for Riverine Flood 

The calculation of benefits required development of hypothetical flood conditions, calculation of potential 

damages for below code building, calculation of damages for buildings meeting the I-Codes, and then 

comparison of damages and calculated costs of construction. This section will provide background on the 

approach used to calculate each of these values and how the benefits and costs were adjusted so they 

would represent the potential national exposure for flooding in communities that have not adopted the I-

Codes. 

In order to calculate the benefits associated with adoption of the I-Codes it was necessary to evaluate the 

cost effectiveness of constructing buildings to one-foot of freeboard in a variety of conditions. In order to 

develop a variety of floodplains a series of hypothetical floodplain cross sections were developed using the 

data from the PELV500 (Water Depth Probability Curve) formulas used to designate Numbered A Zones 

(A01-A30). The PELV 500 formulas are used as a step in the Actuarial Methods and Assumptions for the 

flood insurance rating component of the NFIP. The PELV 500 formulas indicate the Average Depth 

Exceedance Difference between the 1% and the 10% flood events. This depth difference in feet can be 

used to create an idealized floodplain cross section. Correlating the elevation (normal) to the recurrence 

interval (natural log) the elevations for the 2% and 0.2% floods can be calculated. Table 5-6 provides a 

summary for each numbered A-zone, the difference in elevation between the 1% and 10% annual chance 

flood, an approximate percentage of each zone, and they hypothetical elevation for four flood events. 

They hypothetical elevations do not represent any specific location but are used to provide differences in 

elevation between each flood event, so damages can be calculated on the building inventory. While this 

approach assumes that the slope of the floodplain is constant, it does allow an analysis of a variety of 

floodplains to be conducted without needing flood data for every floodplain throughout the United States. 

The associated weighting factors were used in order to represent the rounded percentage of buildings 

within the floodplain. Once a BCA was conducted for all the building types in each of the floodplains then 

the weighting factors were applied to the BCRs. These weighting factors allow the benefits to be applied 

based on the approximate percentage of each of these idealized floodplain cross sections across the 

country. 
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Table 5-6: Table of hypothetical elevations for idealized floodplains. 

Numbered 

A zones 

Difference 

between 10-

year and 100-

year 

Weighting 

factor for 

analysis 

Hypothetical elevations for annual percent chance 

of flooding 

10% 2% 1% 0.2% 

A01 0.5 1% 29.5 29.85 30 30.35 

A02 1 1% 29 29.7 30 30.7 

A03 1.5 1% 28.5 29.55 30 31.05 

A04 2 3% 28 29.4 30 31.4 

A05 2.5 6% 27.5 29.25 30 31.75 

A06 3 8% 27 29.1 30 32.1 

A07 3.5 10% 26.5 28.95 30 32.45 

A08 4 11% 26 28.8 30 32.8 

A09 4.5 11% 25.5 28.65 30 33.15 

A10 5 11% 25 28.49 30 33.49 

A11 5.5 10% 24.5 28.34 30 33.84 

A12 6 9% 24 28.19 30 34.19 

A13 6.5 7% 23.5 28.04 30 34.54 

A14 7 6% 23 27.89 30 34.89 

A15 7.5 4% 22.5 27.74 30 35.24 

A16 8 3% 22 27.59 30 35.59 

A17 8.5 2% 21.5 27.44 30 35.94 

A18 9 1% 21 27.29 30 36.29 

As discussed in Sections 5.2.1 and 5.2.2, the input data was created using an approach that used the 

selected building inventory and flood data to create input values for the BCA. This used an automated 

analysis to calculate costs for building replacement values, mitigation values, and other inputs for each of 

the flood scenarios to be evaluated. Additional freeboard amounts were also considered in order to make 

sure that common trends with the cost effectiveness of freeboard were being maintained and this 

provided another check of the model for the analyst and the reviewer. During this step additional factors 

such as the daily loss of use were added for each building type based on the use and size of the building. 

DDFs for each building type were selected and compared based upon an evaluation of all the applicable 

Hazus DDFs, FEMA BCA Software DDFs, and those developed for the USACE’s North Atlantic Coast 

Comprehensive Study: Resilient Adaptation to Increasing Risk—Physical Depth Damage Function Summary 

Report (January 2015). Following this analysis, it was determined that the standard DDFs used in Hazus for 

each commercial building type were appropriate and neither represented the upper or lower-bound, but 
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a midrange of expected damages. Note: for office buildings, the same DDF was selected. The damages for 

the 3-story office building were attributed to only the first floor of the building for both the 

building/structural damages and the damage to building contents. For the displacement or loss of use the 

entire 3-story building occupancy was considered. During the analysis flooding below the lowest floor was 

not considered since the NFIP requires that all materials below the lowest floor be flood damage resistant 

materials. Since this is required with the incorporation of freeboard, this approach was maintained in the 

code compliant analysis. 

 

Figure 5-6: Commercial building depth-damage functions used for analysis. 

The analysis of DDFs for single-family residential buildings were conducted using the same approach to 

the commercial buildings. Figure 5-7 and Figure 5-8 show the compilation of some of the DDFs reviewed 

for the one-story and two-story single-family buildings. Many of these existing DDFs represent existing 

construction that have elements below the lowest floor that have not been constructed of flood damage 

resistant materials. This results in DDFs that represent buildings constructed on crawlspaces to 

overestimate damages since elements such as insulation, ductwork, wiring, and other building elements 

would be damaged by floodwater before it reaches the lowest floor on existing buildings, but the NFIP 

requirements would largely eliminate this factor. It was therefore decided that the USACE – New Orleans: 
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one-story slab foundation curves for freshwater short duration flooding would best represent one-story 

buildings and the USACE – New Orleans: two-story slab foundation curves for freshwater short duration 

flooding would best represent two-story buildings. The BCA software was further adjusted to eliminate any 

damage below the lowest floor to avoid interpolation between -1 foot below the lowest floor and 0 or the 

lowest floor elevation. Curves for loss of contents and displacement were applied in the same fashion, but 

without any further adjustment. 

 

Figure 5-7: One-story single-family building depth damage function compilation example. 
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Figure 5-8: Two-story single-family building depth damage function compilation example. 

The data were input into a model matching the approach of the FEMA BCA Software 5.3 Flood Module to 

calculate damages to the buildings in a below-code and I-Code compliant condition. Since flood data 

typically does not exceed the 0.2 percent annual chance flood event, the highest recurrence interval flood 

event considered for damages was the 0.2 percent annual chance event. Although it is possible for flood 

events to exceed this level, it is not normally considered. Doing so would require recreating this study 

using the FEMA BCA software. Flood data for Numbered A Zones A01-A30 were calculated but sorted to 

only Zones A01-A18, since these are the more common floodplains where buildings are constructed. 

Calculated damages for both conditions as well as input data were output to a summary file to apply the 

weighting factor outlined in Table 5-7. In the table, FMI refers to FMI Corporation, an engineering 

consulting company. For each of the buildings outline in the building inventory, a revised BCA as well as 

costs and benefits were compiled. This data was output into data analytics software (QlikView) to a 

expedite evaluation of the results. QlikView allowed the average benefits, cost, and BCR to be calculated 

for each building type and further sorting based on construction type and mitigation approach. 
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This procedure provides a national average (unitless) BCR for newly constructed buildings within the 

floodplain. Additional calculations were required to calculate the total dollar values of costs and benefits 

for new buildings constructed within the SFHA in communities that do not recognize freeboard. A 

determination of approximate construction starts for each building type will provide an overall value of 

construction. A national assessment of construction indicated that approximately 13% of buildings in the 

United States are constructed in floodplains. In order to approximate the percent of those buildings that 

are constructed in communities that do not currently require freeboard a 2015 study from ASFPM was 

used, which indicated that 38% of the U.S. population live in areas that do not have a freeboard 

requirement for buildings constructed in the SFHA. These reductions allowed the calculation of the 

approximate dollar value of buildings constructed in the floodplain not subject to freeboard requirements. 

For each building type the percent increase in construction cost was applied to the total cost of 

construction. This value allowed for calculation of the cost of freeboard per building type. The cost of 

construction was multiplied by the BCR per building type in order to calculate the benefits for each 

building type. The costs and benefits for each building type were summed in order to derive a nationwide 

cost and benefit for incorporating freeboard into the remaining communities that do not require 

freeboard. The benefits were divided by the costs to calculate an aggregated BCR for the represented 

building types. Table 5-8 illustrates the values associated with each of these steps. 

Table 5-7: Value of 1 year of new construction in the floodplain. 

Building types FMI (2017) US Markets Construction Overview Value in 

floodplain 

Value in areas 

without Freeboard 

Starts Value 

($ million) 

Total estimated value 

for 2017 

($ billion) 

13% of US 

buildings in SFHA 

($ billion) 

38% of 

communities have 

no freeboard 

Offices 72,329 1.0 $72.3 $9.6 $1.3  

Commercial 76,974 1.0 $77.0    

Retail* 57%  $43.9 $5.8 $0.8  

Warehouse* 43%  $33.1 $4.4 $0.6  

       

Single family 263,868 1.0 $263.9    

1 Story* 58%  $153.0 $20.4 $2.7  

2 Story* 42%  $110.8 $14.7 $2.0  

*Assumed percentages based on square footage for each building type within an FMI category 
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Table 5-8: Benefit from 1 year of nationwide incorporation of freeboard through adoption of the I-Codes. 

Building type 

Value in areas without 

freeboard (38%) ($ 

billion) 

Increase 
Cost 

($ million) 
BCR (2.2%) 

Benefit 

($ million) 

Offices 1.3 0.85% 10.9 5.1 55.5 

Retail 0.78 1.80% 14.0 3.8 53.1 

Warehouse 0.59 1.30% 7.6 4.1 31.1 

Single family      

1 story 2.7 1.40% 37.9 6.2 236.5 

2 story 2.0 1.20% 23.5 5.8 135.7 

Total (2.2% discount rate) 93.9 5.4 511.9 

While the Interim Study focused on the cost effectiveness of incorporating freeboard when the modeled 

flood conditions are static and known, there are likely more benefits for freeboard in actual floodplains. 

The BCA and Hazus approaches assume that flood conditions are constant over the life of the building 

and that the recurrence interval for each flood event is well defined. When either changes in conditions or 

improvements in modeling indicate that higher flood elevations occur more frequently, then freeboard 

becomes even more effective. Adjustments to the discount rate to either 3% or 7% result in overall BCRs 

of 5.0 and 3.6 respectively, indicating that even with more conservative discount rates freeboard is still cost 

effective. The benefits of incorporating freeboard should be even higher if other building types within 

communities such as schools and critical facilities were incorporated, since those buildings would be 

subject to the requirements of ASCE 24 and with respect to critical and essential facilities required to 

incorporate additional freeboard to address community resilience. 

5.3. DESIGNING TO EXCEED I-CODE REQUIREMENTS FOR 

RIVERINE FLOOD 

5.3.1. Building Inventory for Above-Code Design for Riverine Flood 

Hazus Release 3.2 represents building exposure in both aggregate and site-specific form. The aggregated 

building inventory, referred to as GBS, is reported at the level of 2010 census blocks while the UDFs are 

reported as points. One improvement in Hazus pertains to the way that it represents buildings in the GBS. 

A fundamental assumption of the GBS is that all buildings are evenly distributed within a given census 

block. In the version of Hazus available at the time of the 2005 Mitigation Saves study, census blocks were 
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clipped to remove water bodies. However, they still often overlapped areas where buildings were unlikely 

to be constructed such as locations that were predominantly forested or vacant. 

The current release of the Hazus flood model applies a dasymetric adjustment methodology that has 

been used to refine census block boundaries by removing these areas. Figure 5-9 illustrates an area that 

has been overlain with dasymetrically modified 2010 census block boundaries. Note that large portions of 

this image contain forested land with no structures. While these boundaries do not necessarily reflect a 

precise depiction of where structures do and do not exist in every community, they generally provide a 

more realistic representation of building locations within a community than did the boundaries used in 

earlier Hazus flood model releases, including the one used in the 2005 Mitigation Saves study. 

 

Figure 5-9: Example of dasymetrically adjusted census block polygons. 

UDF inventory is developed from user-supplied information that describes the structural design and 

occupancy characteristics of individual buildings. It is not intended to provide a detailed assessment of 

mitigation impacts on a single structure, but when viewed as a portfolio of building points—as is the case 

with the Interim Study—it offers a much more refined assessment of the impact of mitigation than is 

otherwise possible. UDF-based outputs include estimates for building damage percent and dollar loss; 

content damage percent and dollar loss; and inventory dollar loss. All structure categories that are 

represented in the GBS can also be modeled as part of the UDF inventory. Ideally, UDF structures are 

located at the centroid or even the lowest adjacent grade of a structure. However, that type of inventory 

can only be created if suitable data resources are available. 

In the analysis of above-code design requirements pertaining to riverine floods, the project team used a 

combination of the Hazus UDF inventory and the Hazus GBS Inventory. The tools developed to generate 

the UDF inventory placed the locations at the centroid of parcels. Figure 5-10 provides a hypothetical 

example of UDF inventory. 
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Figure 5-10: Example of UDF inventory. 

5.3.2. Cost of Designing to Exceed I-Code Requirements for Riverine Flood 

The project team calculated the cost to build new single-family dwellings at multiple elevations at and 

above I-Code requirement using the CostWorks U.S. national averages reported in RSMeans construction 

cost estimates as of February 2017. The project team estimated costs accounting for the following: 

 Different types of foundation were addressed: concrete masonry unit walls and piers, poured concrete 

walls and piers, concrete masonry unit piers, stemwall, and fill. 

 Cost calculation took into account material cost, equipment, and labor required for the construction of 

a one-foot addition to a foundation during the construction process consisting of concrete masonry 

units (186 SF). 

 Costs were calculated for four types of building sizes (1,500 and 3,000 square feet with foundation size 

30 feet by 50 feet, also 2,400 and 4,800 square feet with foundation size 40 feet by 60 feet). Pier spacing 

was calculated using common lumber framing sizes and joist lengths. 

 The project team included the cost of compliance with the ADA: ramps with a 1:12 slope and 

appropriate allowances for landings. 

 Final cost estimates were summarized by closed and open foundation calculations as well as building 

types (8 types of estimates are provided). These were added to the building replacement value to 

estimate the total cost of constructing a new structure with X foundation height. 

 Cost estimates were multiplied by a locational factor to account for regional difference. 

Table 5-9 lists the cost estimates used for the 8 variations of building size and foundation types that were 

generated using the above listed information. The figures include compliance with additional features 

required by the ADA. These costs may seem low. However, that it is usually far less expensive to build 

better initially than to retrofit existing buildings to the same level of resistance. 
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Table 5-9: Estimated costs to build new buildings higher to reduce risk from riverine flood. 

 Estimated national cost to build to higher elevation, per house Adjustment factor 

Code BFE + 1 BFE + 2 BFE + 3 BFE + 4 BFE + 5 Georgia Indiana 

A $    883 $ 1,766 $ 2,688 $ 3,571 $  4,493 0.81 0.93 

B $ 1,636 $ 3,271 $ 4,907 $ 6,542 $  8,332 0.81 0.93 

C $    883 $ 2,159 $ 2,727 $ 3,610 $  4,532 0.81 0.93 

D $ 1,636 $ 3,271 $ 4,907 $ 6,542 $  8,332 0.81 0.93 

E $ 1,203 $ 2,405 $ 3,663 $ 4,866 $  6,124 0.81 0.93 

F $ 2,168 $ 4,336 $ 6,505 $ 8,673 $11,048 0.81 0.93 

G $ 1,203 $ 2,461 $ 3,719 $ 4,921 $  6,179 0.81 0.93 

H $ 2,168 $ 4,336 $ 6,505 $ 8,673 $11,048 0.81 0.93  

5.3.3. Life-Safety and Additional Living Expense Benefits of Designing to 

Exceed I-Code Requirements for Riverine Flood 

To estimate benefits of designing to exceed I-Code requirements in terms of reduced deaths, injuries, 

PTSD, and ALE, the project team took the reduction in loss as proportional to the reduction in building 

and content losses for single-family dwellings (RES1). See Section 5.4.3 for some additional analytical 

details common to above-code design and mitigation grants. 

5.4. GRANTS FOR RIVERINE FLOOD MITIGATION 

5.4.1. Building Inventory for Flood Mitigation Grants 

For the analysis of public-sector grants, the Interim Study applied two types of Hazus inventory for the 

analysis: UDF and GBS. The following guidelines were applied to develop a Hazus-compliant GBS and UDF 

building inventory from information contained in the grant database. 

Occupancy. The StructureType field in the grants database contained information on structure use. Hazus 

occupancy classes are mapped as shown in Table 5-10. 

Table 5-10: Mapping from grants database to Hazus occupancy classes for riverine flood. 

Structure type Hazus occupancy 

2-4 family RES3A (duplex). Note that Hazus breaks 2-4 units into two classifications, RES3A and 

RES3B. It was not possible to differentiate which is correct from the data in the 

database, therefore RES3A is used. 

Manufactured 

home 

RES2 (manufactured housing) 
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Single family RES1 (single-family dwelling) 

Blank RES1 (single-family dwelling), the most common type in the database 

Location. The project team used both the GBS and the UDF inventories in the completion of public-sector 

grant analysis. Thus, each inventory type had to be modified based on the information provided in the 

grant record to reflect the location as well as associated attributes for each acquired building. 

The grant database contained multiple records and coordinates for a single grant. The project team 

assumed that each record represented a single building in the grant. Locations of UDFs, which were used 

in the calculation of building and content losses for acquired structures, were located at the coordinates 

specified in the grant database where possible. However, in a few instances it was necessary to move one 

or more of these building points. In such instances, the new location was made to be as close to the 

original location as possible.  

The final building location for each acquired building was based on three criteria. First, it had to be within 

the 100-year depth grid inundation area generated by Hazus, since it was assumed that the structure may 

not have been acquired due to flooding at lesser return periods. Second, it had to be located within one 

of the dasymetric census block boundaries. This was necessary to allow for the calculation of losses that 

had to be derived from the GBS inventory, which only applied to these boundaries. Finally, it had to be in a 

location where the depth of water to which the structure was exposed exceeded the building first floor 

elevation for the 100-year return period. 

Cost. The Indiana State Hazard Mitigation Officer told the project team that for the 31 FEMA grants for 

demolition and acquisition of Indiana buildings between 2007 and 2017, communities spent $21 million of 

$32 million (67.8%) awarded. When reviewed individually, this percentage was consistent across most of 

the individual projects. Only two small outliers had higher percentages. The project team was torn about 

whether to apply this fraction across the board, just to Indiana grants, or not at all. The project team lacked 

the resources to check with other state hazard mitigation officers. FEMA staff had assured the project team 

that the project amounts in the database were their best estimates of actual project costs. To assume that 

all other grants were similarly less costly than the grant database indicated would tend to reduce costs and 

increase BCRs. To apply the fraction to just the Indiana grants would add a degree of inconsistency and 

would also increase the BCR. The project team selected the most conservative of the three options and 

used the grant amount in the FEMA database to estimate BCRs. 

Building count. The grant database provided a count of buildings that were categorized as Hazus 

occupancies RES1, RES2, or RES3A. Using this information, the project team created a UDF inventory 

representing acquired structures. The project team also updated the GBS building counts for each census 

block in which an acquisition occurred.  

Square footage. The grant database did not contain building square footage, but Hazus requires this value 

for the calculation of selected types of losses. The project team used the Hazus occupancy classes and 

applied the average building areas assumed by Hazus Release 3.2, as shown in Table 5-11. 
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Using the calculated buildings areas, the project team updated both the UDF inventory and the GBS. 

Values applied to UDF were building-specific, based on the criteria above. Values applied to the GBS were 

cumulative based on the quantity of each type of structure. For example, if a grant included 2 RES1 

buildings in the same census block, the project team adjusted the building square footage for that census 

block in the pre-mitigation analysis to add 3,600 square feet to the RES1 square footage table (e.g., 2 x 

1,800 square feet). 

Building replacement cost. Hazus requires a building replacement cost to calculate flood losses. However, 

project amounts in the grant database were based on pre-damaged appraised value. They do not reflect 

the replacement cost of buildings acquired. For this reason, the project team applied a methodology 

similar to that used to develop the default Hazus inventory. In that methodology, default replacement 

costs are based on building square footage multiplied by RSMeans construction values and then further 

adjusted to reflect regional variations. Table 5-12 shows how the project team estimated building 

replacement costs. The project team assumed uniform replacement costs within an occupancy class. For 

example, if total RES1 building replacement cost was estimated to be $1 million for 10 single-family 

dwellings (RES1), each was taken to have a replacement cost of $100,000. Table 5-13 shows the Hazus 

assumed square-foot costs. 

Table 5-11: Hazus estimates of average building area. 

Occupancy Square footage 

RES1 1,800 

RES2 1,475 

RES3A 2,200 

RES3B 4,400 

RES3C 8,000 

RES3D 15,000 

RES3E 40,000 

RES3F 80,000 

RES4 135,000 

RES5 25,000 

RES6 25,000 

COM1 110,000 

COM2 30,000 

COM3 10,000 

COM4 80,000 

COM5 4,100 

COM6 55,000 
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Occupancy Square footage 

COM7 7,000 

COM8 5,000 

COM9 12,000 

COM10 145,000 

IND1 30,000 

IND2 30,00 

IND3 45,000 

IND4 45,000 

IND5 45,000 

IND6 30,000 

AGR1 30,000 

REL1 17,000 

GOV1 11,000 

GOV2 11,000 

EDU1 130,000 

EDU2 50,000 

Table 5-12: Calculating building replacement cost for public-sector riverine flood mitigation. 

Structure type Method 

2-4 Family 

(RES3A) 

1. Multiply the total square footage in the acquisition by $113.39.  

2. Multiple the value in Step 1 by the Hazus regional adjustment factor for the 

county  

Manufactured 

home (RES2) 

1. Multiply the total square footage in the acquisition by $41.97.  

2. Multiply the value in Step 1 by the Hazus regional adjustment factor for the 

county  

Single family 

(RES1) 

1. Multiply the total square footage in the acquisition by $115.20 (Average 1 story   

average base cost).  

2. If the value in the FoundationType field of the grant database is ‘Basement’ 

multiply the total square footage by $30.80 (Finished Basement cost). Add this 

sum to the total from Step 1. 

3. Multiply the value in Step 2 by the Hazus regional adjustment factor for the 

county in which the acquisition occurs. 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   339 
 

Structure type Method 

Note: The grant database does not specify the condition, number of stories, or 

basements, so it was assumed that RES1 structures were in average condition and that 

that they were 1 story with finished basements. 

Content replacement cost. Content losses matter. However, the grant database does not include content 

values. The project team estimated the content replacement cost of RES1, RES2, and RES3A buildings as 

half the building replacement cost, consistent with the Hazus methodology for estimating content values. 

Content replacement costs were allocated equally among buildings of the same occupancy class. 

Foundation type, first-floor elevation, and NFIP date of entry. The project team applied default values from 

Hazus Release 3.2 for general-building-stock foundation type, first-floor elevation, and NFIP date of entry 

for the following reasons: 

 Foundation type was not populated for many of the grants. 

 The grant database did not include information on the date that communities in which acquired 

structures were located achieved NFIP compliance. 

 The field for first floor elevation was sparsely populated in the grant database. In many cases it was 

reported relative to sea level, not the above-ground height. In addition, there was no way to populate 

structure specific first floor elevation values in the Hazus GBS inventory. 

Table 5-13: Hazus square-foot replacement costs. 

Occupancy Hazus Definition Occupancy Example RSMeans 

Cost 

RES1  Single-Family Dwelling Refer to hzRES1ReplCost  

RES2  Manufactured Housing Manufactured Housing 41.97 

RES3A Multi-Family Dwelling – small Duplex 113.69 

RES3B Multi-Family Dwelling – small Triplex/Quads 99.95 

RES3C Multi-Family Dwelling – medium 5-9 units 179.48 

RES3D Multi-Family Dwelling – medium 10-19 units 168.80 

RES3E Multi-Family Dwelling – large 20-49 units 184.58 

RES3F Multi-Family Dwelling – large 50+ units 173.83 

RES4 Temporary Lodging Hotel, medium 189.42 

RES5 Institutional Dormitory Dorm, medium 203.86 

RES6 Nursing Home Nursing home 207.02 

COM1 Retail Trade Dept Store, 1 st 109.60 

COM2 Wholesale Trade Warehouse, medium 106.43 

COM3 Personal and Repair Services Garage, Repair 129.25 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   340 
 

Occupancy Hazus Definition Occupancy Example RSMeans 

Cost 

COM4 Professional/Technical/Business Service Office, medium 175.24 

COM5 Banks Bank 253.94 

COM6  Hospital Hospital, medium 335.67 

COM7  Medical Office/Clinic Med. Office, medium 241.31 

COM8  Entertainment & Recreation  Restaurant 223.98 

COM9 Theaters Movie Theatre 167.98 

COM10 Parking Parking garage 76.21 

IND1  Heavy Factory, small 130.37 

IND2 Light Warehouse, medium 106.43 

IND3 Food/Drugs/Chemicals College Laboratory 206.74 

IND4  Metals/Minerals Processing College Laboratory 206.74 

IND5  High Technology College Laboratory 206.74 

IND6 Construction Warehouse, medium 106.43 

REL1 Church Church 179.35 

AGR1 Agriculture Warehouse, medium 106.43 

GOV1 General Services Town Hall, small 137.50 

GOV2 Emergency Response Police Station 233.80 

EDU1 Schools/Libraries High School 173.88 

EDU2 Colleges/Universities College Classroom 193.62 

Other details of UDF parameters. A few additional assumptions were required to employ a user-defined-

facility inventory: 

 A separate UDF database containing individual records for each building was developed for each grant. 

 Building-specific occupancy type, replacement cost, square footage, and content cost for each UDF 

point were derived from the procedures described above.  

 The grant database did not report Hazus building type—the material from which structures are 

constructed. This value must be reported in the UDF inventory. Therefore, RES1, RES2 and RES3A 

structures were assumed to be constructed with wood. 

 The grant database did not report the number of stories for acquired structures. Therefore, RES1, RES2 

and RES3A structures were all assumed to be 1 story. 

 Missing first floor elevations in the grant database, or first floor elevations reported with respect to sea 

level as opposed to number of feet above grade, were populated with the pre-FIRM Hazus default for 

the foundation type specified in the grant database. In other words, it was assumed that these structures 
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had not been elevated as a mitigation measure prior to acquisition. For example, a RES1 building with 

a foundation type of crawl space received a first-floor elevation value of 3 feet. 

 If year built was not provided in the grant database, it was assumed to be 1900. Note that this value is 

not used to determine losses for UDF.  

 In a few instances, the latitude and longitude coordinates in the grant database were missing or 

incomplete (such as instances in which no decimal places were provided). In these situations, the project 

team estimated location based on street address, if populated. If no street address was available, the 

point for the building was placed in close proximity to the majority of the other structures acquired 

under the grant. 

5.4.2. Riverine Flood Grant Sample 

Grants were selected for inclusion in the Interim Study based on the following criteria: 

 Must be either a demolition or acquisition project 

 Must specify coordinate values for structures acquired by the grant 

 Must specify the project amount 

 Must only include demolition or acquisition of single family, manufactured home, or 2-4 family 

structures 

Grants from only two programs (HMPG and PDM) met these criteria. These programs represent the 

majority of flood project dollar amounts. Figure 5-11 shows the location of the counties in the sample. 

Table 5-14 presents the number of single-family dwellings (Hazus RES1 occupancy), manufactured homes 

(RES2) and 2-4-family homes (RES3A) acquired by each sampled grant. 
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Figure 5-11: Locations of grants selected for the analysis of the effectiveness of flood-prone structure 

acquisitions. 

 

Table 5-14: Distribution of occupancies within sampled flood grants. 

Program County Single-family dwellings Manufactured homes 2-4-family homes 

HMPG Morgan, IN 30 0 0 

HMPG Wagoner, OK 13 0 0 

HMPG Decatur, GA 2 0 0 

PDM DeKalb, GA 8 0 0 

HMPG Polk, WI 1 8 0 

5.4.3. BCA of Riverine Flood Grants 

Building and content losses. The project team calculated post-mitigation building and content losses using 

the default Hazus GBS for each of five MRIs: 10 (10% annual chance), 25 (4% annual chance), 50 (2% 

annual chance), 100 (1% annual chance), and 500 (0.2% annual chance) years. For each Hazus occupancy 

type represented in the grant, the project team summed building and content losses over the relevant 

census blocks. The team limited the census blocks for which values were recorded to those in which 

acquired structures were located prior to the acquisition. 
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To calculate pre-mitigation conditions, the Interim Study applied a combination of Hazus GBS inventory 

and Hazus UDF inventory. The UDF inventory was updated to represent the pre-mitigation location and 

conditions of the structures acquired by each grant. For each grant, the Hazus study region for the first 

scenario was duplicated to ensure that the same hazard was applied for pre- and post-mitigation. The 

UDF inventory representing the buildings acquired through the grant was then imported into the 

duplicated region and the GBS inventory was modified to reflect the mitigated buildings addressed by the 

grant. Tables specifically modified included those reporting square footage, building count, dollar 

exposure, and content exposure. 

Direct BI losses. Hazus analysis was performed for the default GBS in order to estimate post-mitigation 

conditions for BI losses. The project team calculated and reported BI across all Hazus occupancy types. 

Hazus calculated BI components included income loss, rental income loss, wage loss, and direct loss. 

These were summed by full replacement value for the census blocks included in the Interim Study and 

recorded for calculating the BCR. Census blocks for which values were recorded included only those in 

which acquired structures were located prior to the acquisition. This step was repeated for each MRI: 10 

(10% annual chance), 25 (4% annual chance), 50 (2% annual chance), 100 (1% annual chance), and 500 

(0.2% annual chance) years. 

To estimate direct and indirect BI loss, the same methodology for post-mitigation analysis was applied to 

pre-mitigation analysis. This means that the losses were drawn exclusively from the Hazus GBS analysis for 

both pre- and post-mitigation assessment. To address an error in the calculation of direct economic loss 

discovered in recent testing of Hazus Release 3.2, the project team multiplied the Hazus income loss, 

rental income loss, wage loss, and direct loss values by 100. 

Deaths, injuries, PTSD, and sheltering. To calculate post-mitigation cost of injuries, deaths, and relocation, 

the project team mapped the Hazus GBS by building count for each occupancy class in the grant. Next, 

for each census block with an acquired building, the project team visually estimated the percentage of the 

block that was inundated by the 1% annual chance flood. The project team multiplied that percentage by 

the total number of buildings for each specific occupancy. For example, if there were 10 single-family 

dwellings (RES1) in the census block and an estimated 70% of the census block was inundated by the 1% 

annual chance flood, then 7 RES1 buildings were assumed to be inundated. The project team based this 

approach on the Hazus assumption that buildings are evenly distributed within a census block. The Interim 

Study used the dasymetrically adjusted census blocks in Hazus Release 3.2, which have been modified to 

remove unpopulated areas such as vacant land, forests, water bodies, etc. The resulting census-block 

boundaries generally cover only populated areas. Thus, the assumption of even distribution of buildings, 

while not representative of every community, is relatively reasonable. 

To calculate instance of death, nonfatal injury, and PTSD, the project team estimated the number of 

occupants and the number of impacted households as shown in Table 5-15. The project team estimated 

instances of injuries and PTSD as shown in Equation 5-1 through Equation 5-4. In the equations, H denotes 

number of inundated households, P the total population that experiences at least some flooding, and N1, 
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N2, N4, and NPTSD denote the number of instances of Hazus level-1 injury, Hazus level-2 injury, death, and 

PTSD, respectively. The project team estimated that essentially no Hazus level-3 injuries result from 

flooding. 

To calculate ALE, the project team assumed each household that experiences flooding is out of its home 

for 360 days. The project team calculated these losses only for flooding with MRIs in excess of 25 years. To 

determine the pre-mitigation costs related to injuries, deaths, PTSD, and ALE, the project team assumed 

that all of the acquired structures were in the inundation area and added the number of acquired 

structures to the number of structures assumed to contribute to social loss in post-mitigation analysis. 

Acceptable costs to avoid future statistical injuries, deaths, and instances of PTSD are the same as used 

elsewhere in the Interim Study. Likewise, the costs per day of ALE used here are the same as elsewhere in 

the Interim Study. 

Table 5-15: Estimated number of occupants per building for use in estimating benefits of grants to mitigate 

riverine flooding. 

Occupancy Description Occupants Households 

RES1 Single-family dwelling Building count x 2.5 Building count 

RES2 Manufactured housing Building count x 2.5 Building count 

RES3A Duplex Building count x 5 Building count  2 

 

 

Equation 5-1 

 

Equation 5-2 

 

Equation 5-3 

 

Equation 5-4 
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5.5. ANALYSIS OF FLOOD RETROFIT MEASURES 

5.5.1. Analytical Details of Flood Retrofits for Single-Family Dwellings 

Prior to analyzing any of the buildings, baseline data was developed for each building.  These data 

consisted of replacement costs for each house type; content value; additional living expenses for 

occupants displaced from their home; flood insurance premiums; and flood hazard data.  Similar datasets 

were applied across all of the flood mitigation measures. This analysis used sample one- and two-story 

houses that matched the previous analysis: 

 One-story house (1,500 square feet and 3,000 square feet): (a) wood siding - wood frame, (b) brick 

veneer - wood frame, (c) stucco on wood frame, (d) solid masonry 

 Two-story house (2,400 square feet and 4,800 square feet): (a) wood siding - wood frame, (b) brick 

veneer - wood frame, (c) stucco on wood frame, (d) solid masonry 

Data from the National Association of Realtors were compared with other data sources. The project team 

determined that a split of house types of 58% one-story houses and 42% two-story houses reasonably 

represent costs and benefits for the mitigation project BCRs. 

The building replacement value (BRV), also called replacement cost new (RCN), was calculated for all the 

one- and two-story construction options using RSMeans Costworks 2018.  This value is applied to building 

damages for both the acquisition and retrofit elevation project types. Since the analysis did not represent 

any one specific location, the national average values were used for all calculations. The value of contents 

in the houses was applied based on the designation from the depth damage function (DDF) associated 

with the building type (one-story and two-story). Contents values initially were assumed to be 100% of the 

building replacement cost, since some Hazus DDFs assume this. If the chosen DDF included a specific 

contents-to-structure value ratio, this ratio was applied to the contents value prior to calculation. Loss of 

use or displacement values are the other primary value used in the initial calculations. Single-family 

residential buildings used a simplified approach of 2.5 occupants per building, where each day of 

displacement from the house would allow for $77 per house for a hotel room and $46 per person per day 

for meals. This methodology is consistent with the current FEMA BCA approach. 

To characterize the wide variety of floodplain conditions, the project team developed a series of 

hypothetical floodplain cross sections using the data from the PELV500 (water depth probability curve) 

formulas used to designate numbered A zones (A1-A30; see https://www.fema.gov/flood-zones for 

definitions). The PELV 500 formulas have been used as a step in the actuarial methods and assumptions 

for the flood insurance rating component of the NFIP. The PELV 500 formulas indicate the average 

difference in depth between floods with 1% and 10% exceedance probability in one year. This depth 

difference in feet can be used to create an idealized floodplain cross section, assuming a linear relationship 

between flood depth and the natural logarithm of mean recurrence interval in years. The project team 

calculated flood hazard for numbered A zones A1-A30, but only used zones A1-A18, since these are the 

more common floodplains where buildings are constructed. Table 5-16 provides a summary for each 

https://www.fema.gov/flood-zones
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numbered A-zone and the difference in flood elevation in feet between the 1% and 10% annual 

exceedance probability (the so-called 100-year and 10-year flood, respectively). The table also shows an 

estimate of the fraction of all housing in the floodplain that stands within this numbered A zone. The table 

also shows, for each zone, the hypothetical flood elevation for each of four annual exceedance 

probabilities: 10%, 2%, 1%, and 0.2%, for a location in an idealized V-shaped valley whose 100-year flood 

reaches an elevation of 70 ft. 

These hypothetical elevations do not represent any specific location, but are used to provide differences in 

elevation between each flood event relative to the 100-year flood, so damages can be calculated on the 

building inventory. While this approach assumes that the cross-valley slope of the floodplain is constant, it 

allows an analysis of a variety of floodplains to be conducted without needing flood data for every 

floodplain throughout the United States. The associated weighting factors were used to represent the 

rounded percentage of buildings within A-zones nationwide.  As discussed in the following project specific 

subsections, the minimum lowest floor elevation was analyzed at the ground elevation for the numbered 

A zone 10-year flood elevation.  Numbered A zone A1 was eliminated from the analysis because the 10-

year flood elevation is only 0.5 feet below the 100-year flood elevation.  Even homes with a slab on grade 

in this type of floodplain would be at or above the BFE, so it seemed reasonable to ignore this zone. 

Table 5-16: Table of hypothetical elevations for idealized floodplains. 

Numbered 

A Zones 

Difference 

between 10-year 

and 100-year (ft) 

Fraction of 

houses 

Hypothetical Elevations for Annual Percent 

Chance of Flooding 

10% 2% 1% 0.2% 

A1 0.5 1% 69.5 69.85 70 70.35 

A2 1.0 1% 69.0 69.70 70 70.70 

A3 1.5 1% 68.5 69.55 70 71.05 

A4 2.0 3% 68.0 69.40 70 71.40 

A5 2.5 6% 67.5 69.25 70 71.75 

A6 3.0 8% 67.0 69.10 70 72.10 

A7 3.5 10% 66.5 68.95 70 72.45 

A8 4.0 11% 66.0 68.80 70 72.80 

A9 4.5 11% 65.5 68.65 70 73.15 

A10 5.0 11% 65.0 68.49 70 73.49 

A11 5.5 10% 64.5 68.34 70 73.84 

A12 6.0 9% 64.0 68.19 70 74.19 

A13 6.5 7% 63.5 68.04 70 74.54 

A14 7.0 6% 63.0 67.89 70 74.89 
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Numbered 

A Zones 

Difference 

between 10-year 

and 100-year (ft) 

Fraction of 

houses 

Hypothetical Elevations for Annual Percent 

Chance of Flooding 

10% 2% 1% 0.2% 

A15 7.5 4% 62.5 67.74 70 75.24 

A16 8.0 3% 62.0 67.59 70 75.59 

A17 8.5 2% 61.5 67.44 70 75.94 

A18 9.0 1% 61.0 67.29 70 76.29 

The analyses were conducted using a benefit-cost analysis tool similar to FEMA’s BCA Toolkit, which 

calculates annualized losses associated with building damage, content damage, and displacement (also 

referred to as additional living expenses). These three benefit categories were to the acquisition and 

retrofit elevation mitigation options. Wet floodproofing and utility retrofit options only considered the 

equipment (building) damage. Losses were calculated for an existing building condition and then again for 

a post-mitigation condition. The difference represents the mitigation benefit. The present value of 

annualized benefits were then calculated as elsewhere in this study, considering the discount rate and the 

project useful life. These were then compared with the mitigation cost and when applicable any annual 

maintenance costs also were brought to present value for inclusion in the mitigation cost.   

Once a BCA was conducted for all house types in each of the floodplains, the weighting factors shown in 

Table 5-16 were applied to the BCRs for each building in every flood zone to obtain a national average 

BCR.  Not all of the lowest floor levels below BFE could be considered for every floodplain.  In some 

instances, this might put the lowest floor below the elevation of even the annual stream elevation.  To 

address this, the study assumed that no construction would occur below the 10-year flood elevation.  

While there is awareness that houses often are constructed at or below the 10-year flood elevation, the 

lack of location-specific flood data makes it difficult to assume flood data below the 10-year flood.  

Sections 5.5.2 and 5.5.3 provide tables of the minimum lowest floor elevation data for each numbered A 

zone and, in some instances, how this criterion also controls the foundation type assumed for the analysis.  

These weighting factors and lowest floor assumptions address the distribution of floodplains and the 

distribution or likelihood that houses at various elevations below the BFE would be candidates for 

mitigation.   

The project team lacked empirical data about the lowest floor elevation for houses constructed below the 

BFE.  Elevation certificates often are used by communities to document compliance with their floodplain 

management policies. These certificates are a primary tool in calculating flood insurance premiums.  

Insured houses constructed prior to determination of the flood hazard are rated as “pre-FIRM,” not based 

on lowest floor elevation. Consequently, the elevation data for older homes do not exist.  As a 

workaround, the project team assigned the following elevation distribution based on whether houses 

could be constructed in each floodplain and assumed houses evenly would be distributed across the 

floodplain. 
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 BFE-1 = 30% 

 BFE-2 = 27% 

 BFE-3 = 23% 

 BFE-4 = 20% 

The foregoing breakdown was applied as an initial assumption for all of the mitigation types other than 

acquisition, where the variation in elevation ranged from BFE-1 to BFE-8. This weighting was applied in 

conjunction with the weighting outlined in Table 5-16 for each floodplain, A1-A18. When improved 

weighting values for numbered A zones become available, the benefits and associated BCRs in the study 

can be updated. 

To estimate the reduction in the overhead and profit portion of the flood insurance premium, it was 

necessary to calculate the premium before and after retrofit. National flood insurance premiums were 

calculated for each property as a pre-FIRM (non-elevation rated premium) and a post-FIRM elevation rate.  

The premium benefit only applies to two of the mitigation approaches examined here: acquisition and 

elevation. For acquisition projects, the project team assumed property owners currently would have a 

flood insurance policy, move to a location outside of the SFHA, and therefore no longer need flood 

insurance.  With the retrofit elevation, property owners would move from a pre-FIRM policy to a post-

FIRM policy that accounts for the elevation.  For wet floodproofing and utility retrofit projects, it was 

assumed that since the property owners currently have a lowest floor below the BFE that they would 

maintain a Pre-FIRM policy and therefore no change would be applied to these retrofits.  While it is 

possible to do these retrofits on buildings that may be constructed with a lowest floor at or above the BFE, 

the present study focused on houses below BFE.  Flood insurance premium savings were applied for the 

project useful life, but benefits are limited to the 17% of reduced premiums associated with overhead and 

profit, since the remaining 83% would double-count the property losses. 

5.5.2. Analytical Details of Acquisition of Single-Family Dwellings 

The analysis examines acquisitions of houses with a lowest floor located at BFE-1, BFE-2, etc., through BFE-

8, a range that represents the largest variation in possible lowest floor elevations throughout the present 

study. The wide range was practical because buyouts do not require the analyst to consider post-

mitigation construction challenges.  Retrofitting houses to higher elevations, by contrast, presents 

structural design requirements that complicate the cost estimation.  

The acquisition costs were based on data provided by the Federal Housing Finance Agency (FHFA, 2018, 

2019). The approximate mortgage cost per house was divided by the average area of a year-round 

owner-occupied home--approximately 1,800 sf (U.S. Census Bureau 2017)—to estimate a replacement 

value of $127 per square foot.  This value was adjusted slightly downward to reflect larger area houses.  

This value may appear low for some areas, but it is intended to represent a national average. The square-

foot replacement cost was further adjusted (reduced) to reflect the house being located in a floodplain, 

and then adjusted back up to the original value to reflect the cost to restore the property to open space. 
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When the project team estimated losses for the benefit-cost analysis, it calculated losses for the pre-

mitigation building, and took post-mitigation losses to be zero, since there would no longer be a building 

there to get damaged. The project useful life was taken to be 100 years, based on the assumption that the 

land’s use as open space would outlast an ordinary building, but conceivably might revert a century later. 

Table 5-17 provides an overview of the types of foundations evaluated for the property acquisition benefit-

cost analysis.  As with other mitigation project types, the foundation type is dictated by whether one can 

construct it without putting the lowest floor of the building at or above the BFE.  A raised first floor 

foundation (that is, foundation with crawlspace, labeled CS in the table) was excluded where the sum of 

framing depth (assumed to be 1 foot) plus the height of short (1-foot) piers would result in the lowest floor 

being at BFE or above, that is, compliant with NFIP requirements.  Where less than two feet existed 

between the lowest floor elevation (BFE-1, BFE-2, etc.) and the 10-year flood elevation, then a slab-on-

grade foundation was applied (labeled slab in the table). Where the amount of fill necessary to put the top 

of a slab-on-grade foundation up to the analyzed lowest floor elevation (BFE-1, BFE-2, etc.) was three feet 

or greater, the foundation was assumed to be a crawlspace.  Where one can build either slab on grade or 

a crawlspace (labeled both in the table), the total areas of each were taken to be equal. This approach 

may not necessarily reflect the true distribution of foundations in pre-FIRM houses, but lacking better 

information, a uniform distribution seemed reasonable. 

Table 5-17: Table of foundation types assigned to each Numbered A Zone per lowest floor elevation 

designation 

A Zone  
A2-A18 A4-A18 A6-A18 A8-A18 

A10-

A18 
A12-A18 A14-A18 A16-A18 

BFE-1 BFE-2 BFE-3 BFE-4 BFE-5 BFE-6 BFE-7 BFE-8 

A2 Slab               

A3 Slab               

A4 Slab Slab             

A5 Slab Slab             

A6 Both Slab Slab           

A7 Both Slab Slab           

A8 CS Both Slab Slab         

A9 CS Both Slab Slab         

A10 CS CS Both Slab Slab       

A11 CS CS Both Slab Slab       

A12 CS CS CS Both Slab Slab     

A13 CS CS CS Both Slab Slab     

A14 CS CS CS CS Both Slab Slab   
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A Zone  
A2-A18 A4-A18 A6-A18 A8-A18 

A10-

A18 
A12-A18 A14-A18 A16-A18 

BFE-1 BFE-2 BFE-3 BFE-4 BFE-5 BFE-6 BFE-7 BFE-8 

A15 CS CS CS CS Both Slab Slab   

A16 CS CS CS CS CS Both Slab Slab 

A17 CS CS CS CS CS Both Slab Slab 

A18 CS CS CS CS CS CS Both Slab 

Depth-damage functions were selected to be consistent with other modules of this study, and generally 

reflect Hazus default selections. The project team modeled single-story houses with slab foundation using 

the depth-damage functions labeled USACE – New Orleans: one-story slab foundation for freshwater 

short duration flooding.  Similarly, for single-story houses with crawlspaces, the project team used the 

analogous depth-damage functions for pier foundations. See Figure 5-12. 

Depth-damage functions for two-story single-family houses (Figure 5-13) were represented with the 

USACE – New Orleans: two-story slab foundation curves for freshwater short duration flooding and the 

USACE – New Orleans: two-story pier foundation curves for freshwater short duration flooding. These 

curves are labeled “New Orleans” because they were developed by the New Orleans District of the 

USACE, not because they solely represent houses in New Orleans. The New Orleans District curves were 

selected because the available curves represented both pier and slab foundations, long and short-

duration flooding, and freshwater and saltwater options. Because the present study focused on riverine 

flooding, the freshwater flooding curves were used rather than saltwater. Short duration was selected to 

err on the side of lower rather than higher losses, and therefore lower rather than higher benefits. 
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Figure 5-12: Depth-damage functions for one-story houses. 
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Figure 5-13: Depth-damage functions for two-story houses. 

An initial benefit-cost analysis was conducted for all the houses and combinations of foundation type, 

lowest floor elevation, and numbered A zone.  The avoided costs and benefits for each combination losses 

were weighted as shown in Table 5-16.  The average value for building repair cost, contents loss, 

additional living expenses, and retrofit costs then were averaged for each building type based on floor 

area, lowest floor elevation, and relative quantities of one-story and two-story houses. Indirect business 

interruption was taken as 47% of additional living expenses as elsewhere in this study, and losses 

associated with PTSD were added, using the expedient of 3.5% of the value of building damages, which is 

equivalent to the analysis based on the number of displaced households as calculated in an earlier part of 

the study. 

Acquisitions are the only flood retrofit considered here to include reduction of deaths.  A large percentage 

of flood deaths occur from people traveling through floodwaters either on foot or in a car.  It was 

therefore assumed that once a property is acquired, the occupants (2.5 people per household) no longer 

need to travel through the floodwater to or from their house.  This used the FEMA value of human life 

using the FAA value of a statistical fatality avoided (2015) = $9.6 million adjusted to reflect to chance of 

someone dying as the yearly average nationwide flood deaths (86 people) divided by the US population.   
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Environmental benefits also were included in the acquisition benefits. U.S. Census data indicated that the 

average lot size for a single-family house is approximately 0.25 acres. This value was then applied using 

FEMA’s green space value of $7,853 per acre of green space and applied on a per-property basis. 

Based solely on the foregoing considerations, acquisitions provide a benefit-cost ratio of approximately 2.0 

using a 2.2% discount rate and 0.7 using a 7% discount rate. This result was inconsistent with historic 

studies of acquisition grants conducted by FEMA and other agencies. The primary reason is that people 

do not do acquisition projects unless they are cost effective. That is, the foregoing does not screen out 

projects that have a benefit-cost ratio below 1.0. 

Two factors impact whether a property has sufficient vulnerability to have avoided damages for it to be 

cost effective.  Although these two factors generally are tied together, they could be considered 

independently.  First, the lowest floor elevation must be sufficiently low. A house at BFE-2 is more likely to 

have sufficient vulnerability than one constructed to BFE-1. Additionally, the house must be located in a 

floodplain, where the damage will accumulate sufficiently to raise the annualized damage high enough 

that it is cost effective.  A house with a lowest floor elevation of BFE-1 in numbered A zone A2 will have a 

higher probability of floodwaters reaching the first floor than a house that has a lowest floor of BFE-1 in 

zone A18.  These combined factors mean that the same properties will become less and less cost effective 

as you move into higher numbered A zones from A2 toward A18.   

Communities with properties with a variety of lowest floor elevations would sort the non-cost-effective 

properties out before requesting a grant FEMA does allow the use of aggregation where cost-effective 

and non-cost-effective property benefits can be combined to allow a group of homes in an area to be 

acquired as long as the overall BCR is above 1.0. Since the study was hypothetical in nature, it was hard to 

sort properties in such a way to result in an overall BCR of 1.0. The assumption for the study was to 

evaluate acquisitions on a per-property, cost-effectiveness basis rather than aggregate all possible houses 

in the floodplain. Federal agencies make up a large portion of property acquisition grants and use the 7% 

discount rate per OMB Circulars A-4 and A-94. It was therefore decided to sort the properties based on 

their being cost effective at a 7% discount rate. The resultant BCR would be more representative of the 

effectiveness of acquisition mitigation grants and more consistent with past studies. No other sorting 

adjustments were made. The resultant BCRs are recapped in Table 5-18.   

Table 5-18: Summary of acquisition BCRs by discount rate. 

Discount rate BCR 

2.2% 6.2 

3.0% 4.8 

7.0% 2.2 
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5.5.3. Analytical Details of Retrofit Elevation of Single-Family Dwellings 

Retrofit elevation represents one of the most common flood retrofits and is the most effective mitigation 

measure that still leaves the building in its original location within the SFHA.  This analysis evaluates the 

cost effectiveness of elevating single-family houses to a post-retrofit lowest floor elevation of BFE+1.  This 

approach is consistent with requirements in many municipalities and government agencies that provide 

grants and require compliance with ASCE 24. Elevations often are conducted with money associated with 

grants, but also are done using private money. The present study evaluated undamaged, pre-FIRM 

houses between BFE-1 and BFE-4, as discussed in Section 4.6.1.4. 

As described in Section 4.6.1.4, there are two different methods to elevate houses that depend on 

foundation type. Table 5-19 outlines the assumptions made for the foundation types for each numbered A 

zone and existing lowest floor elevation. 

Table 5-19: Foundation types evaluated for retrofit elevation analysis. Slab = Slab-on-grade and CS = 

Crawlspace. 

Zone 
A2-A18 A4-A18 A6-A18 A8-A18 

BFE-1 BFE-2 BFE-3 BFE-4 

A2 Slab N/A N/A N/A 

A3 Slab N/A N/A N/A 

A4 Slab Slab N/A N/A 

A5 Slab Slab N/A N/A 

A6 Both Slab Slab N/A 

A7 Both Slab Slab N/A 

A8 CS Both Slab Slab 

A9 CS Both Slab Slab 

A10 CS CS Both Slab 

A11 CS CS Both Slab 

A12 CS CS CS Both 

A13 CS CS CS Both 

A14 CS CS CS CS 

A15 CS CS CS CS 

A16 CS CS CS CS 

A17 CS CS CS CS 

A18 CS CS CS CS 
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The project team estimated retrofit cost using RSMeans Costworks 2018 based on the building footprint, 

height of the foundation above ground before and after retrofit, number of required flood openings, and 

whether the existing building had a brick veneer. Project costs averaged approximately $65-75 per square 

foot for crawlspace foundations and approximately $101 per square foot for slab-on-grade foundations.   

The costs to elevate a slab-on-grade house were similar, regardless of whether one separates the walls 

and roof from the slab and builds a new floor system, or lifts the slabs still attached to the wall systems. 

Because the two costs were similar, it was unnecessary to judge the relative frequency of the two 

conditions, which was fortunate because the project team was unaware of any empirical information on 

which to base the relative frequency. As previously discussed, the costs only were calculated for buildings 

from BFE-1 through BFE-4 to a final elevation of BFE+1. Readers should assume that costs for elevation will 

increase as additional elevation is considered. Important variables that could increase the retrofit cost 

include increased requirements for size or amount of reinforcing, footing sizes, or wall and pier thickness. 

Retrofit elevation differs from acquisition in that after the mitigation is completed, there still is residual flood 

vulnerability. That is, the retrofitted house could still experience flooding. In areas where the floodplain is 

better represented by a numbered A zone closer to A2, elevating a structure to BFE+1 could put the 

lowest floor elevation at the elevation of the 1,000-year flood. However, in areas where the floodplain is 

better represented by a numbered A zone closer to A18, then BFE+1 equates to a 129-year flood when the 

flood elevation would reach the top of the lowest floor. Residual damages are minimal closer to a 

numbered A zone A2, and the flood vulnerability after retrofit elevation increases as floodplain conditions 

reach something similar to an A18. This is based on the probability of floodwaters reaching the lowest floor 

elevation being much more likely as conditions move closer to an A18.    

The project team used the same depth-damage functions for elevations as it did for acquisitions. 

Damages post retrofit elevation were calculated using no further adjustments to slab-on-grade 

foundations. A sensitivity analysis was done for the crawlspace foundation to eliminate any damages less 

than one foot below the floor system or the bottom of the floor joists. Most depth-damage functions 

begin at two feet below the lowest floor, but this change did not result in any significant changes to the 

estimated losses. This is likely because the percent damage is so low for this portion of the depth-damage 

function and because of the low flood probability in the post-retrofit condition. 

The elevation retrofit does not avoid fatalities or provide environmental benefits in the form of open 

space, so no such benefits were calculated here.  Occupants still live within the floodplain so they are still 

likely to consider traveling through floodwaters, which is the main cause of flooding deaths, as opposed to 

drowning within one’s home. Insurance benefits were calculated as described in Section 5.5.1. 

Similar to the sorting approach applied to acquisition projects, a comparison was conducted between the 

raw elevation data and sorting based on projects being cost effective using a discount rate. Before filtering 

for non-cost-effective properties, the average BCR was approximately 1.4 using a 2.2% discount rate, but 

0.8 with a 7% discount rate, which as before was inconsistent with historic studies of elevation grants 

conducted by FEMA and other agencies. Again, people do not undertake retrofit elevation projects unless 
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they are cost effective. The same factors outlined in Section 5.5.2 also apply to retrofit elevation. Retrofit 

elevation does however differ from acquisition in that elevation projects are a mixture of grant-funded 

elevations and owner-financed elevations. Since there is a mixture of both funding sources, the project 

team decided that the 7% discount rate would artificially inflate the BCR since it would remove several 

houses from consideration that private owners might decide to retrofit since their financial decisions can 

be made with discount rates other than the 7% rate. The project team decided that using the 3% discount 

rate would be a more appropriate sorting rate. When using the 3% discount rate, there were very few 

BFE-1 existing lowest floor conditions that were cost effective and the team decided this was an unlikely 

condition for retrofit elevation. Adjustments were made to the benefits and costs to only consider BFE-2 

through BFE-4.  Existing houses at BFE-2 are more likely to be owner-financed projects, while houses at 

BFE-3, BFE-4 or lower are more likely candidates for grants. The following breakdown was used for the 

retrofit elevation analysis: 

 BFE-2: 10% 

 BFE-3: 40% 

 BFE-4: 50% 

These adjustments to the values resulted in the BCRs shown in Table 5-20. Higher BCRs could be achieved 

if further adjustments were made to the percent breakdown of houses and more weight was placed on 

BFE-4 houses. While the cost of elevation is lower than that of acquisition, there is residual risk following a 

retrofit elevation. Additionally, two benefit categories for casualty and open space were not considered 

and flood insurance premiums were reduced, but not eliminated. The final adjustment that results in the 

difference in BCRs between retrofit elevation and acquisition is the project useful life used for evaluation. 

The analysis assumed that elevations only are performed on pre-FIRM buildings. This means that houses 

would have been constructed in large part 35 years ago or more. This study broadly assumes that 

residential buildings will have an expected lifespan of approximately 75 years. Evaluating this constraint, 

the project team chose to use a 30-year project useful life, which often is used for evaluating elevation 

projects. Moving this value up to a 40-year project useful life results in a BCR of 2.3 at a 2.2% discount 

rate. 

Table 5-20: BCRs for flood elevation retrofit for each of three discount rates. 

Discount Rate BCR 

2.2% 1.9 

3.0% 1.7 

7.0% 1.1 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   357 
 

5.5.4. Analytical Details of Wet Floodproofing Basements of Single-Family 

Dwellings 

This project and the utility retrofits described in Section 5.5.5 could be combined into one project to 

provide more comprehensive mitigation below the lowest floor elevation. The mitigation options were 

divided into multiple analyses to allow the largest number of readers to consider the options since 

groupings may have eliminated consideration if all the criteria do not apply to a specific situation. 

The project team used RSMeans Costworks 2018 to estimate the cost of wet floodproofing. One must 

replace common wall coverings with more flood resistant materials, add flood openings, and eliminate or 

elevate basement-level electrical systems. The estimated cost to wet floodproof an 8-foot high basement 

area was $15.49 per square foot of basement footprint. These costs generally agree with FEMA P-259, 

Engineering Principles and Practices of Retrofitting Flood Prone Residential Structures (3rd Edition) (Federal 

Emergency Management Agency 2012e) inflated to 2018.  

The project team used RSMeans Costworks 2018 to estimate building replacement costs for basement 

areas.  These costs were developed to isolate the damage associated with a basement area, since the 

intent of this analysis was to look only at the value of wet floodproofing a basement. A new depth-

damage function was created for this purpose. All damages are in reference to the lowest floor elevation.  

The assumption was that water would start to enter through a basement window at approximately 3 feet 

below the lowest floor elevation (lowest floor elevation minus 1 foot for floor framing and a 2-foot high 

window) and then increase to the lowest floor elevation.  The following depth-damage function refers to 

flood depth relative to the finished floor elevation (FFE), meaning the top of the lowest floor FFE-3 = 75% 

damage, i.e., repair costs 75% of the replacement cost of the basement. 

 FFE-2 = 88% damage 

 FFE-1 = 100% damage 

 FFE = 100% damage 

Cleaning a flooded basement that has been wet floodproofed should be minimal and primarily cosmetic, 

not requiring costly replacement of any items in the basement. The primary effort will be removal of any 

water, but this issue would be similar whether the basement was wet floodproofed or not. The analysis 

primarily focused on avoiding physical damage to the basement area. Readers may decide that additional 

benefits could be accounted for by wet floodproofing a basement area, and this modification would 

increase the cost effectiveness of such measures. 

Assumptions regarding the number of buildings at each lowest floor elevation were maintained at the 

baseline values for both the wet floodproofing and utility mitigation retrofit measures. This is because 

there was insufficient data to indicate a change was appropriate. The following breakdown was used 

based on the initial assumptions of the possible houses at each lowest floor elevation: 

 BFE-1 = 30%, i.e., 30% of wet floodproofed houses have lowest floor elevation at BFE-1 
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 BFE-2 = 27% 

 BFE-3 = 23% 

 BFE-4 = 20% 

The project useful life for this mitigation option was taken to be 20 years to reflect the fact that many 

basement areas periodically are renovated by homeowners because of the moisture and dampness 

inherent in basement areas and particularly in floodplains.  Even without floodwaters reaching the 

basement area, the material lifespan is shorter.  Since the majority of these retrofits would be financed by 

homeowners rather than grants, it was decided to evaluate the cost effectiveness using the 2.2% discount 

rate.  The resultant BCRs are shown in Table 5-21. A longer project useful life would produce higher BCRs. 

There is sufficient room in the BCR that even a 30% increase in the cost results in a BCR of 1.9 at a 2.2% 

discount rate, a BCR of 1.8 at 3% discount rate, and a BCR of 1.3 at a 7% discount rate.        

Table 5-21: BCR for wet floodproofing existing houses, by discount rate. 

Discount rate BCR 

2.2% 2.4 

3.0% 2.2 

7.0% 1.6 

5.5.5. Analytical Details of Utility Retrofits of Single-Family Dwellings 

For simplicity, the study combined the analysis of retrofitting air conditioning units or heat pumps with 

ductwork.  Ductwork would be mitigated by placing it in the attic area of a single-floor house. On a two-

story house, one would add furring around the duct trunk line on the soffit of the second floor. The air 

handler could be placed in a first-story closet, as described in FEMA P-348, Protecting Building Utility 

Systems from Flood Damage (Federal Emergency Management Agency 2017d) Section 4.1.2.2.  Air 

conditioning units and heat pumps often can be elevated on platforms or in some instances on 

cantilevered platforms.  Furnaces and water heaters often can be relocated to attic areas. Tankless water 

heaters present another option for relocating water heaters above the first floor, but this option has a 

higher initial cost and more uncertain maintenance costs. The present analysis considers the pre- and 

post-retrofitted house to have a standard tank water heater. Homeowners should work with professional 

heating and plumbing contractors to understand all the necessary requirements and potential costs when 

evaluating a project. 

The project team estimated the cost to relocate ductwork from basement or crawlspace areas and to 

elevate an air conditioning unit or heat pump to be approximately $5.03 per square foot, most of which 

(approximately 80%) pays to relocate ductwork. It costs approximately $6.42 per square foot to retrofit a 

furnace above the lowest floor elevation. To relocate a water heater costs about $6,000, which includes 

relocating the unit to an attic and perform all the plumbing and flue system adjustments that would not 

have been part of the original house construction.  
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The project team used RSMeans Costworks 2018 to estimate equipment replacement values and 

compared them with other readily available heating and plumbing construction information. These costs 

were developed to isolate the damage associated with just the equipment being evaluated and does not 

consider other damages to the house. A new set of depth-damage functions were created for the analysis 

to represent the flood risk to this type of equipment located in a basement area or crawlspace. All 

damages are in reference to the finished floor elevation (FFE), also called lowest floor elevation. The 

analysis assumes that once floodwaters touch the equipment, it completely would be damaged and would 

need to be replaced.  For the ductwork and air conditioning unit or heat pump, it was assumed this 

equipment would be approximately two feet below the FFE. This assumes a floor system depth of 

approximately one foot and an additional foot for the height of the ductwork. The analysis assumed that a 

furnace or water heater would be approximately three feet below the FFE in a crawlspace, and would 

require replacement if touched by floodwater. As with the analysis of wet floodproofing, it was assumed 

that water would enter the basement at three feet below the FFE. 

The project useful life generally would be at least as long, possibly longer, than the normal life of a water 

heater (about 10 years), because replacements would be placed in the same location as the elevated 

equipment. The project team assumed the following useful lives: 

 Air conditioning unit or heat pump: 15 years 

 Ductwork: 30 years 

 Furnace: 30 years 

 Water heater: 30 years 

Similar to the wet floodproofing analysis, it was assumed that since these projects would not make the 

houses compliant with current floodplain management ordinances that these would be homeowner-

financed retrofits. It was therefore determined to use a 2.2% discount rate. BCRs are shown in Table 5-22 

for elevating an air conditioner or heat pump and the associated relocation of ductwork. Table 5-23 

presents BCRs for relocating a furnace or water heater. 

Table 5-22: BCRs to relocate air conditioners or heat pumps and their associated ductwork, by discount 

rate. 

Air conditioning unit/heat pump elevation and ductwork 

relocation 

Discount rate BCR 

2.2% 1.53 

3.0% 1.41 

7.0% 1.00 
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Table 5-23: BCRs to relocate furnaces and water heaters, by discount rate. 

Furnace and water heater relocation 

Discount rate BCR 

2.2% 2.21 

3.0% 2.00 

7.0% 1.30 

5.5.6. Analytical Details of Summarizing the Overall Single-Family Dwellings 

The foregoing sections detail the benefit-cost analyses of five flood retrofit measures, with per-house costs 

and BCRs. To estimate benefits, costs, and BCR at a societal level requires an estimate of the number of 

houses receiving each kind of retrofit. The project team estimated the fraction of houses that would 

receive each kind of retrofit based on an evaluation of grants for the state of Ohio, and considering how 

likely the project team thought people likely were to seek a grant versus personally financing the retrofit. 

The final adjustments were made to address the desire to remove as many existing properties below the 

BFE as possible from the floodplain. Although this analysis includes several benefit categories, it is 

recognized that additional unquantified benefits exist for homeowners who are removed from the 

floodplain (peace of mind, heirlooms, pets, etc.). The project team estimated total societal benefits and 

costs based on the following distribution of mitigation efforts, assuming that most retrofit efforts would use 

only one strategy: 

 Acquisition: 60% 

 Retrofit elevation: 20% 

 Wet floodproofing of basements: 10% 

 Air conditioning/heat pump and ductwork: 5% 

 Furnace and water heater: 5% 

Weighting the foregoing costs and benefits by this distribution results in the total nationwide benefit-cost 

ratios shown in Table 5-24. 

Table 5-24: Estimated nationwide BCR of flood retrofits, by discount rate. 

Discount Rate BCR 

2.2% 5.3 

3.0% 4.2 

7.0% 2.0 

But how many houses in total might be retrofitted? An initial study was conducted to determine whether it 

was possible to calculate the total number of single-family homes in the SFHA constructed prior to flood 

maps being available for their location. FEMA’s policy data were evaluated for the 50 states and District of 

Columbia to determine an approximate number of NFIP insurance policies. This number resulted in 
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approximately 4,935,425 policies. Using this number, two alternatives were explored to see if the resultant 

number appeared to be reasonable for calculating the number of houses that could be exposed based on 

this study’s parameters.    

Alternative 1 found a Wharton Business School Report that indicated 95% of flood insurance policies are 

residential (Kousky 2017).  This paper also stated that approximately 68% of those policies were for single-

family homes, suggesting 3,188,285 single-family dwellings are covered by an NFIP policy.  A 

Congressional Budget Office Report indicated that 44% of NFIP policies were zone A policies 

(Congressional Budget Office 2017), which would further reduce the number to 1,402,845. While this 

number would include houses subject to coastal flooding, there was no clear way to sort out the different 

zone A flood risk.   

How many of these single-family dwellings were built prior to adoption of flood maps, say before about 

1985? U.S. Census Bureau data suggests that 60.5% of existing homes were built before 1985 (U.S. Census 

Bureau 2013).  This further reduced the number to 848,721 properties. The Wharton report (Kousky 2017) 

suggests that only 50% of people eligible for flood insurance carry it, which doubles the candidate 

population to 1,694,637 houses. 

Alternative 2 used the same baseline number of NFIP policies of 4,935,425.  A Congressional Budget 

Office Report indicated that out of flood insurance policies, 16% are zone A with subsidized rates 

(Congressional Budget Office 2017). This adjusts the value to 789,668 buildings. The Wharton report 

(Kousky 2017) says that 95% are residential and 68% of those are for single-family dwellings. This results in 

an estimated 510,126 single family dwellings with pre-FIRM zone-A policies. Again, assuming 50% market 

penetration suggests 1,020,251 candidates for the retrofits considered here. 

The project team believed that the total number of single-family homes constructed in locations prior to 

flood mapping being available is likely higher than one million houses. FEMA’s hazard mitigation 

assistance statistics indicate that for 30 years, approximately $15 million has been spent on mitigation.  

Since the present analysis indicates that flood mitigation is cost effective, the figure of $15 million suggests 

that relatively few houses out of all those that could be cost-effectively retrofitted have actually been 

retrofitted. One could say that a substantial investment gap exists between what has been spent and what 

cost effectively has been spent.  

The estimated range of 1.0 million to 1.6 million pre-FIRM houses does provide some insight into how 

many single-family houses may be at risk within the floodplain. Recall, however, the elevation-related 

boundary conditions identified during the scoping of the study that indicate that these numbers do not 

represent all the buildings within the SFHA that were constructed prior to the adoption of flood maps.  

The study team did, however, feel that understanding the total number of single-family houses that met 

this condition might better inform the total number of buildings used to calculate the overall BCR.  

Until someone can more definitively estimate the number of candidate houses that could be cost-

effectively retrofitted, it seems reasonable to pursue a third option: Use a round number that if anything 
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underestimates the total number, but allows easy factoring when the number of structures can be 

determined.  For simplicity then, a value of 1 million single-family dwellings was used for the study. That is 

not to say that there actually are 1 million pre-FIRM single-family dwellings that could cost-effectively be 

retrofitted, although that figure essentially is within the bounds estimated here, albeit at the low end.  

The only further adjustment identified in the analysis was likely that the average single-family house used 

for the study may be larger than the average single-family house constructed below the BFE.  The average 

single-family home evaluated in the study is 2,817 square feet as compared with 1,800 square feet.  This is 

156% of the size of the average home, based on data from the U.S. Census Bureau (2017).   

Since most of the benefits and costs calculated here were based on square-foot values, this difference 

does not change the overall calculated BCR.  However, it might influence the total dollars of avoided 

damage for flood retrofits if better data become available on the total number of single-family houses in 

the SFHA with lowest floor elevations below BFE.  As indicated previously, though the number of houses 

used for the study is a lower-bound estimate, it is likely that even factoring this number by 156% would still 

be below the number of houses at risk. 

5.6. DESIGNING TO EXCEED I-CODE REQUIREMENTS FOR 

HURRICANE SURGE 

A common approach to increase the elevation of a coastal dwelling is to raise the building on wooden 

piles. The project team used construction cost estimates that appear in Appendix E of FEMA P-550 

(Federal Emergency Management Agency 2009d). Costs were developed in 2006 for the first edition of 

FEMA 550 and provide rough order-of-magnitude estimates for both labor and material for three 

scenarios: elevated 0 to 5 feet above grade, elevated 6 to 10 feet above grade, and elevated 11 to 15 feet 

above grade. These costs were updated to 2017 prices using the Consumer Price Index (CPI) Inflation 

Calculator and returned estimates of approximately $1,150 per foot of elevation. Wooden stairs add 

approximately $300 per foot of elevation (RSMeans C2010 110 1150), for a total of approximately $1450 per 

foot of elevation. Some houses have wheelchair ramps. How many, and at what cost? Examination of 682 

sample houses in 5 coastal cities listed in vrbo.com suggests that approximately 5% are wheelchair 

accessible. (Miami, Florida: 6 of 101 are wheelchair accessible = 6%; Biloxi, Mississippi: 6 of 26 = 23%; 

Galveston, Texas: 18 of 459 = 4%; Charleston, South Carolina: 1 of 54 = 2%; Tampa, Florida 5 of 42 = 12%; 

total 36 of 682 = 5%). 

These data imply that on the order of 5% of new homes with greater elevation would also have wheelchair 

ramps. The 5% figure coincidentally agrees with HUD requirements that 5% of federally funded new 

homes in developments must comply with requirements of the ADA, and must therefore have wheelchair 

ramps. Realistically, the figure could rise in coming decades as the American population ages. An informal 

survey of online estimates of the cost of permanent wheelchair ramps suggests costs range widely, from 

$1,000 to $3,000 per foot of elevation. (Sources: North Carolina State University College of Design, Center 

for Universal Design 2004, Networx 2011, ProMatcher 2017, Angie’s List 2013). The project team adds 0.05 
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× $2000 = $100 per foot of elevation for wheelchair ramps, accounting for the fact that only some new 

houses will be built with wheelchair ramps. With nominal additional costs for utility risers and additional 

exterior closure material for ground-level storage space, the total cost is therefore approximately $1,550 

per foot of elevation. 

5.7. GRANTS FOR WIND MITIGATION 

Stratified sampling of mitigation projects by hazard level yielded a total of 48 projects: 19 low-hazard, 14 

medium-hazard, and 15 high-hazard. The project team could not use several of the records selected at 

random for sampling, typically for the following reasons: 

1. Insufficient data. The database did not contain enough information to determine exactly what 

mitigation had taken place, and the project team could not find sufficient supplementary information 

from the internet or the state hazard mitigation officer. 

2. Not actually mitigation. Many grants that appeared at first glance to be about mitigation turned out 

in fact to reflect mostly or entirely post-event rebuilding. 

3. Not about mitigating buildings. The mitigation was part of a distributed utility or transportation lifelines 

such as electrical power or roads. A separate part of the present project focuses on utilities and 

transportation lifelines.  

4. Public services. The mitigated properties were essential facilities, such as hospitals or fire stations, 

where quantifying life savings outside of the mitigated facility was beyond the scope of this project. 

To select 15 valid samples by hazard level required several iterations of sampling. After the initial sampling, 

several projects appeared to have very high or very low BCRs. The mitigation of two vulnerable buildings 

that house high-value equipment resulted in BCRs exceeding 50. Two community restrooms in recreation 

areas that were also intended to serve as tornado shelters did not appear well suited for use solely as 

tornado shelters. Perhaps they had been hardened because visitors would have no other viable alternative 

in the event of a tornado. Their BCRs approached zero. But this is speculation. The project team could not 

determine details of these projects sufficiently to be confident of the estimated BCR, so the project team 

excluded these results. Ultimately the project team analyzed fewer than its intended 15 projects per hazard 

level. Of the mitigation efforts selected, 14 addressed hurricane hazards and 34 dealt with tornadoes. 

There were few building mitigation projects in medium- and low-hazard regions. The low- and medium-

hazard projects primarily protected life safety with tornado safe rooms and shelters. There were no 

hurricane projects selected in low-hazard locations. 

5.8. ADOPTING I-CODE REQUIREMENTS FOR HURRICANE 

5.8.1. Building Inventory for Below-Code Design for Wind 

To estimate the costs and benefits of adopting modern code requirements, the project team evaluated 

annualized losses and present value of losses as if the building stock built in 2019 were built two different 
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ways: to comply with 2018 I-Codes and to comply with construction prior to Hurricane Andrew, using 1992 

as a baseline year. The buildings for each decade are assumed to be designed to conform to the 

performance based and prescriptive requirements of the time. This includes the increased roof loading 

and building envelope protection requirements stated in each version of the code. The quantity of 

buildings built in 2019 is estimated as 1% of the current inventory, using the rule of thumb that the United 

States adds about 1% to its building stock annually. 

5.8.2. Cost of Complying with 2018 I-Codes for Wind 

To characterize the additional construction costs attributable to increased code requirements between 

pre-Hurricane Andrew and current (2018) I-Codes, the project team estimated a baseline pre-Hurricane 

Andrew construction cost as well as the cost to satisfy the equivalent of a current IBHS FORTIFIED 

Commercial Bronze designation. The project used scaling factors derived from current 2018 I-Code and 

Commercial Bronze, incorporating the difference in design wind pressures described in Section 3.3.1. 

These factors were applied to the 2018 I-Code to establish an estimate of pre-Hurricane Andrew 

construction by design wind pressure. The costs reflect stricter requirements for protecting the building 

envelope and higher roof loading. IBHS provided estimates of the costs to comply with the IBHS 

FORTIFIED Commercial Bronze, Silver, and Gold designations. 

5.9. PRIVATE-SECTOR HURRICANE WIND RETROFIT 

MEASURES 

5.9.1. Analytical Details of Hurricane Wind Retrofit Regarding IBHS 

FORTIFIED Home 

Table 5-25 summarizes the effect of various discount rates for the IBHS FORTIFIED Home program. The 

analysis shows when the discount rate from the real cost of borrowing is increased to 7%, the BCR is nearly 

reduced by half. Both benefits and costs change. Benefits go down with higher discount rates because the 

present value of future avoided losses decreases. Costs also go down because at higher discount rates, 

the optimal FORTIFIED designation changes from Gold to Silver in very high wind regions (150 mph to 170 

mph ASCE 7-16 regions). 

Table 5-25: Sensitivity of BCR to discount rate for IBHS FORTIFIED Home Retrofit 

Discount rate 2.2% 3% 7% 

Benefit, $ million $141,000 $115,000 $54,000 

Cost, $ million $24,000 $24,000 $19,000 

BCR 6 5 3 

Table 5-26 summarizes how the expected life of the building affects the calculated benefit-cost ratio for 

the IBHS FORTIFIED Home program. The table shows that BCR varies nearly linearly with effective life of 
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the mitigation, and the optimal FORTIFIED designation does not change at all, within this reasonable band 

of expected life. 

Table 5-26: Sensitivity of BCR to effective life for IBHS FORTIFIED Home Retrofit. 

Effective life, years 50 75  100 

Benefit, $ million $116,000 $141,000 $155,000 

Cost, $ million $24,000 $24,000 $24,000 

BCR 5 6 7 

5.9.2. Analytical Details of Hurricane Wind Retrofit for Manufactured 

Housing 

Table 5-27 summarizes the effect of discount rate on the number of manufactured housing units for which 

an engineered tie-down system is cost effective (having benefit-cost ratio greater than 1.0), along with 

total dollar benefits, total dollar costs, and BCR. As expected, increasing the discount rate modestly 

reduces both the quantity of housing units for which the retrofit is cost effective and BCR. 

Table 5-27: Sensitivity of BCR to discount rate for engineered tie-down systems. 

Discount rate 2.2% 3% 7% 

Housing units with cost-effective retrofit, $ million 0.13 0.12 0.10 

Benefit, $ million $772 $691 $432 

Cost, $ million $194 $184 $154 

BCR 4 4 3 

The useful life of an ETS is uncertain, varying with the degree to which the environment accelerates 

corrosion of the steel straps, connectors, and anchors. Along the Gulf and Atlantic coasts, an ETS might 

last anywhere from 10 years to 30 years, possibly more. Table 5-28 summarizes how the effective life of 

the mitigation affects the overall BCR. The results show that an ETS installation still can be cost effective 

even if the effective life is only 10 years rather than 30 years, although to a smaller total number of housing 

units (100,000 units rather than 130,000 units). 

Table 5-28: Sensitivity of BCR to design life for engineered tie-down systems. 

Effective life, years 10 20 30 

Housing units with cost-effective retrofit, $ million 0.10 0.12 0.13 

Benefit, $ million $315 $526 $772 

Cost, $ million $164 $197 $194 

BCR 2 3 4 
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The installed costs of an ETS appears to be dropping over time and varies depending on demand, model, 

and location. Table 5-29 summarizes how the cost of retrofit influences the overall benefit-cost ratio. The 

analysis assumed a baseline cost of $1,500, but also estimated benefits and costs for $1,000 and $2,000 per 

installation. The number of cost-effective housing units changes by 20,000 when the cost goes up or down 

by $500. 

Table 5-29: Sensitivity of BCR to retrofit cost for engineered tie-down systems. 

Retrofit cost $1,000 $1,500 $2,000 

Housing units with cost-effective retrofit, $ million 0.15 0.13 0.11 

Benefit, $ million $745 $772 $700 

Cost, $ million $148 $194 $220 

BCR 5 4 3 

Pre-1976 manufactured homes have significant weaknesses in the superstructure (the part of the house 

above the frame under the floor) that act like weak links in a chain, weaknesses that an ETS does not 

address. An ETS provides less benefit to these older homes. How does including them in the analysis 

change the results? Table 5-30 answers that question. It shows the number of housing units for which an 

ETS is cost effective, along with benefit, costs, and benefit-cost ratio, under three different conditions: (1) 

considering all manufactured homes in the hurricane-prone regions of the Gulf and Atlantic coasts; (2) 

considering only those built after 1976 (and the advent of HUD’s Manufactured Home Construction and 

Safety Standards); and (3) considering only the most modern manufactured homes, after the standards 

included wind zones.  Considering fewer homes in the first place (only 37% of housing units postdate 

1994) greatly reduces the number for which an engineered tie-down system is cost effective, from 130,000 

(under case 2) to 50,000, although the benefit-cost ratio goes up (from 4 to 5). Including pre-1976 

manufactured homes has a modest effect, increasing the number of manufactured homes for which an 

ETS has a benefit-cost ratio greater than 1.0 from 130,000 to 150,000, and no significant change in overall 

benefit-cost ratio. 

Table 5-30: Sensitivity of BCR to the inclusion of different eras of construction. 

Era of construction All 1976+ 1994+ 

Housing units with cost-effective retrofit, $ million 0.15 0.13 0.05 

Benefit, $ million $870 $772 $953 

Cost, $ million $233 $194 $210 

BCR 4 4 5 

The benefit-cost analyses presented here consider the avoided losses from future disasters, considering 

how severe and frequently each occurs. Sometimes it can be interesting to study the savings if one 

performed a mitigation measure just before a particular disaster occurred. There can be places where the 
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benefit-cost ratio is less than 1.0 when one accounts for the rate at which various disasters occur, but 

greater than 1.0 if one assumes a particular disaster occurs. 

The engineered tie-down system provides a useful illustration. In seven counties of the Florida panhandle, 

the ETS has a benefit-cost ratio less than 1.0; see Section 2.6.2.2. But those counties do experience large, 

rare disasters. Hurricane Michael caused widespread damage there. It produced wind speeds much higher 

than the ASCE 7-16 design wind speed, reaching winds with a 1,700-year mean recurrence interval, that is, 

winds with 0.06% probability of occurring in any given year. Their probability is nearly zero, but they 

actually occurred. What would have been the savings if owners of unanchored manufactured homes had 

invested in an ETS before Michael struck? 

The project team estimated the reduction in loss divided by the cost of the ETS for 18 counties in the 

Florida panhandle given the occurrence either of (1) ASCE 7-16 design wind speeds (which have a mean 

recurrence interval of 700 years, or slightly over 0.1% probability in any given year), and (2) ASCE 7-16 

1,700-year wind speeds (0.06% per year), about what some places experienced in Michael.  In both cases, 

installing ETS on all unanchored manufactured homes saves more than it costs. Given the 700-year winds, 

the ETS saves $2.40 per $1.00 of installation cost. Given the 1,700-year winds, the ETS saves $3.70 per $1.00 

of installation cost and produces a total benefit of $19 million in the 18 counties. One could perhaps call 

that ratio a scenario benefit-cost ratio. See Figure 5-14 for maps of the scenario benefit-cost ratios for (A) 

700-year wind speeds and (B) 1,700-year wind speeds. 

 

Figure 5-14: Scenario benefit-cost ratios of installing ETS on unanchored manufactured homes in the 

Florida panhandle, given (A) 700-year wind speeds and (B) 1,700-year wind speeds. 

5.10. ADOPTING I-CODE REQUIREMENTS FOR EARTHQUAKE 

5.10.1. Building Inventory for Below-Code Design for Earthquake 

To estimate the costs and benefits of adopting modern code requirements, the project team evaluated 

annualized losses and present value of losses as if the building stock built in 2019 were built two different 

ways: to comply with 2018 I-Codes, and to the same, except with strength and stiffness multiplied by 

A  B  
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factors of 0.67, 0.44, and 0.30, to approximate strength and stiffness requirements of 30, 60, and 90 years 

ago. The quantity of buildings built in 2019 is estimated as 1% of the current inventory, using the rule of 

thumb that the United States adds about 1% to its building stock annually. 

5.10.2. Cost of Complying with 2018 I-Codes for Earthquake 

Construction cost is taken as increasing by 1% for a 50% increase in strength and stiffness, as detailed in 

Porter (2016a), and as detailed in Section 5.11.1. The same proportions are assumed to apply to a weaker, 

more flexible building relative to current code: 

𝑐̂ = 0.02 × (
𝐶𝑠

′ − 𝐶𝑠

𝐶𝑠
) 

Equation 5-5 

Where 𝑐̂ refers to the fractional change in construction cost of any new building, 𝐶𝑠
′ refers to design base 

shear under what-if conditions (whether weaker or stronger than current code), and Cs refers to design 

base shear under current code. Thus, the cost to comply with 2018 I-Code requirements for strength and 

stiffness, relative to a building that is 67% as strong as required under current code, is estimated to be 

0.7% of current cost.  

5.10.3. Benefit of Complying with 2018 I-Codes for Earthquake 

Table 5-31 shows BCRs relative to the three eras and the incremental increase in costs and benefits as the 

strength and stiffness of new buildings is increased from 0.30 to 0.44 to 0.67 to 1.0 times current 

requirements. The table shows the ratio of the incremental benefit to the incremental cost, as well as the 

incremental savings of lives and nonfatal injuries. Figure 5-15 plots the incremental benefits against 

incremental costs. 

Table 5-31: Long-term benefits of adopting modern seismic design requirements. 

Strength & 

stiffness as a 

factor of 

current 

Approximately 

equivalent 

era 

ΔCost,  

$ billions 

ΔBenefit,  

$ billions 
ΔB/ΔC 

Δ lives  

saved 

Δ nonfatal 

injuries 

avoided 

0.30 1928 0 0    

0.44 1958 0.3 17.0 57 30 47,000 

0.67 1988 0.4 15.9 40 27 43,000 

1.00 2018 0.6 7.1 12 15 22,000 
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Figure 5-15: Incremental costs and benefits of seismic design provisions. 

5.11. DESIGNING TO EXCEED I-CODE REQUIREMENTS FOR 

EARTHQUAKE 

5.11.1. Cost to Build New Buildings to Exceed I-Code Requirements for 

Earthquake 

This section largely quotes Porter (2016a). There are several reasons why designing to exceed 2015 I-Code 

requirements for earthquake, as conceived here, may not drastically increase construction costs. Informal 

discussions with four California engineers suggest that designing to Ie = 1.5 would increase construction 

costs on the order of 1 to 3% (D. Bonneville, verbal communication, January 2015; E. Reis, verbal 

communication, April 2014; J. Harris, verbal communication, August 2015; R. Mayes, verbal communication, 

January 2015). A fifth source is given by the National Institute of Standards and Technology (NIST) 

Grant/Contract Report (GCR) 14-917-26 (NEHRP Consultants Joint Venture, 2013), in which the authors 

found that redesigning six particular buildings in Memphis, TN, to comply with the 2012 IBC rather than the 

1999 SBC, would increase their strength on average by 60%, and would increase their construction cost 

between 0.0 and 1.0%.  

A sixth source of support can be found in Olshansky et al. (1998), who estimated a similar marginal cost to 

increase from no seismic design to code minimum. It is further supported by the estimated cost to achieve 

an immediate occupancy performance level rather than life safety for one of the index buildings of the 

CUREE-Caltech Woodframe Project (Porter et al. 2006). In California, the marginal construction cost 
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increase of 1 to 3% would translate to a much smaller marginal development cost increase, since land can 

constitute more than half the value of a building, and land value is unaffected by Ie. 

An eighth argument can be seen in the fact that costs do not differ dramatically between locations with 

dramatically different design strengths. One could build five architecturally identical buildings in (A) 

Sacramento, California, (B) San Diego, California, (C) eastern San Francisco, and (D) western San Francisco, 

and find that they have site-class-adjusted, short-period, risk-targeted MCER shaking values (denoted SMS 

in ASCE/SEI 7-10) of 0.8g, 1.2g, 1.5g, and 2.3g, respectively. Pluck the life-safe building at (D) out of the 

ground and place it 10 km east at (C) and it will satisfy design for Ie = 1.5. Place it 800 km south at (B) and it 

would nearly satisfy Ie = 2.0, or a mere 140 km northeast at (A) to satisfy Ie = 3.0. If it were unaffordable to 

build buildings 50% stronger than life safety, there would be no new construction in San Francisco, and all 

new development would take place 140 km away in Sacramento.  

Some people might not believe such low marginal costs are realistic. How can such a strength increase not 

produce a similar cost increase? Consult a square-foot cost manual such as RSMeans (2015) and one will 

find that approximately 67% of construction cost of a new office building is spent on the architectural, 

mechanical, electrical, and plumbing elements (Figure 5-16), approximately 17% on O&P, and of the 

remaining 16% structural cost, approximately half is spent on labor. Most of the final 8% (mostly structural 

material) is spent on the gravity-resisting system: the foundation, floor slabs, and gravity-resisting columns 

and beams. Of the small remaining portion that is spent on materials for the earthquake load-resisting 

system (perhaps as much as 2%), consider that strength does not increase linearly with quantity of 

material, but can increase with the square or a higher power of material. For example, a W44x230 wide-

flange steel shape is about 63% stronger than a W30x191 shape but weighs (and therefore costs) only 

about 20% more. In that particular case, strength increases with cost to the power of 2.6 (e.g., 1.22.6 = 1.63). 

More-extreme cases can be cited. 

A ninth argument can be seen in Weber (1985), who found that to adopt the developing seismic 

provisions of the time would add between 0.9% and 2.1% to construction costs of the day, with the lower 

figure being more applicable where seismic design was already in practice. Weber did not offer an 

estimate of changes in strength or stiffness involved, but the small incremental change of that day does 

agree with the one suggested here on an order-of-magnitude basis.  

In light of these observations, it seems reasonable to estimate that Ie = 1.5 produces a 1% increase in 

construction cost, on average, overall, and that other values increase cost in proportion. The project team 

does not assert that the cost of every building increases in such a simple, linear way. Some increments of 

design strength for some buildings would require changes in foundation design that could dramatically 

increase construction cost. On the other hand, some buildings might increase in construction cost at a 

lower rate relative to Ie because of their inherent strength. As with other aspects of the Interim Study, these 

costs are estimated overall averages, not uniform truths that apply to every single building.  
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Figure 5-16: Proportional cost of new office building construction and impact on construction costs 

associated with increasing lateral strength. 

5.11.2. Vulnerability of Buildings that Exceed I-Code Requirements for 

Earthquake 

Hazus does not offer tabulated vulnerability functions for buildings, but rather creates them as needed for 

internal use only. They cannot be used outside of Hazus, which means they cannot be used in conjunction 

with modern seismic hazard information. Because the project team committed to using modern seismic 

hazard information, using Hazus directly (or the Hazus Advanced Engineering Building Module or FEMA 

BCA Tool) is not an option for evaluating seismic risk to buildings in the present project. 

Furthermore, the Hazus seismic vulnerability functions reflect a single value of strength and stiffness for 

each of its four code levels and each of three special design levels. These are generally consistent with 

design of the 1990s, when Hazus was developed and prior to the advent of design for site-specific seismic 

hazard (albeit inconsistent even with then-current near-fault design modifiers in the final UBC). Since the 

2000 and 2003 editions of the IBC, engineers have designed buildings with minimum lateral strength that 

varies from location to location—even a few kilometers can make a 50% difference in design strength, and 

a 2-times difference over distances as small as 150 km. Thus, to use a single vulnerability function for a 

particular high-code model building type can introduce gross, and unnecessary, errors in building capacity 

and therefore risk. This is unnecessary because it is practical to create seismic vulnerability functions that 

are consistent with modern design, considering design for site-specific seismic hazard.  
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How can one create the required vulnerability functions for classes of buildings that exceed 2015 I-Code 

requirements? For reasons discussed in Chapter 4, FEMA P-58 would be ideal for individual buildings, and 

FEMA P-58 in combination with the Global Earthquake Model (GEM) analytical methodology (Federal 

Emergency Management Agency 2012d, Porter et al. 2014) would be ideal for building classes. They can 

handle structural and nonstructural damage, repair costs, life-safety impacts, and repair time. These tools 

have not yet been automated to the point where they can practically address the approximately 700,000 

combinations of lateral force resisting system (28 non-obsolete model building types), height range (3 

ranges), occupancy class (28 occupancy classes), MCER shaking (31 levels), and degree of extra strength 

and stiffness (10 Ie levels), required for the present analysis. 

Porter (2009a, b) offers a more approximate but readily automated method to create tabular vulnerability 

functions entirely consistent with Hazus. By changing particular model parameters (especially the seismic 

response coefficient Cs of ASCE/SEI 7), one can create vulnerability functions that are consistent with 

designing for site-specific seismic hazard both for code-level and for designing to exceed I-Code 

requirements. For example, one can reflect the vulnerability differently of buildings in which design 

strength Cs = 0.4g in northwestern Tennessee than similar buildings in which Cs = 0.3g in western San 

Francisco, Cs = 0.2g in eastern San Francisco, Cs = 0.13g in San Diego or Sacramento, etc. One can reflect 

the vulnerability of designing to exceed I-Code requirements with a 1.5 seismic importance factor for a 

location with code-level Cs = 0.2g using, for example, a vulnerability function for Cs = 0.3g. The greater 

stiffness required for designing to exceed I-Code requirements can be similarly reflected through a smaller 

value of elastic period Te.  

Advantages and disadvantages of the three approaches are summarized in Table 5 17. The project team 

selected option 2. See Appendix K for details of the analytical methodology. See Box 4-2 for more 

discussion. 

Table 5-32: Options for seismic vulnerability of buildings. 

Option Pros Cons 

1. Porter (2009a,b) high-

code vulnerability functions 

Simple; already published Inconsistent with design for site-

specific seismic hazard since at 

least 2000, e.g., ASCE 7-10 SDS and 

SD1, & therefore likely grossly 

inaccurate. Uses 1990s-era 

pushover approximations of 

structural response.  

2. Create new high-code 

vulnerability functions 

reflecting design for site-

specific hazard using Porter 

(2009a, b) methodology but 

with Ay and Dy reflecting 

Consistent with design for site-

specific seismic hazard that has been 

common since 2000. ASCE 7-10 SDS 

and SD1, more accurate 

More effort. Uses 1990s-era 

pushover approximations of 

structural response. 
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site-specific ASCE 7-10 SDS 

and SD1 

3. Create new vulnerability 

functions using FEMA P-58 

and the GEM component-

based analytical vulnerability 

methodology (Porter et al. 

2014). 

Uses modern 2nd-generation 

performance-based earthquake 

engineering methods (like FEMA P-

58) to reflect structural response, 

rigorous statistical surveys of 

building populations to quantify 

building diversity, and moment 

matching to propagate uncertainty. 

Most accurate. 

No such category-based 

vulnerability functions for all U.S. 

building types have been created. 

Considering the 700,000 

vulnerability functions required and 

the lack of automation to cate 

them, this option seems impractical 

for the present project.  

 

5.12. GRANTS FOR EARTHQUAKE MITIGATION 

Supplementing available data. As in the 2005 Mitigation Saves study, the electronic data provide only a 

subset of the information required for a BCA. They do not include all of the grant application data that the 

grantee submitted on paper. Where the original electronic data contain precise addresses, participating 

agencies provided only approximate geolocation in order to protect personally identifiable information. 

They provided latitude and longitude to no more than 3 decimal places (approximately 100 meters) and 

no street number (e.g., at most street name). Many records in the database provide years in which the 

buildings were built, but none contain information about building type either before or after mitigation, 

beyond a description of the use to which the building is put, such as single-family dwelling. None provide 

the year in which the work was performed. Few include detailed descriptions of the work performed. 

To satisfy its data needs, the project team reached out to some grantees to request additional information, 

but mostly acquired the necessary data via web searches. A great deal of information of many projects is 

available online in the form of scholarly journal articles, trade journal articles, news articles, press releases, 

and the web pages of companies that performed the work. These items provided many of the details of 

the mitigation effort and the year in which the mitigation was undertaken. In cases where the project team 

was unable to acquire sufficient data online about a project, it resampled, substituting a different project 

from the same value stratum. The project team repeated the process of resampling until sufficient data 

were found for a project for each of the 25 strata. 

The project team determined precise geographic locations for all sampled grants (generally to 4 or more 

decimal places, about 10m or less), estimated building area, number of stories, and model building types 

using Google Earth and Google Earth Street View. 
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One can estimate site soil classification for each building (an important variable for site hazard) using the 

USGS OpenSHA site data application tool, which draws on maps of site class by Wills and Clahan (2006) 

and Wald and Allen (2007).26 

Characteristics of sampled projects. The project team sampled 23 high-hazard projects. The target was 25, 

but two very large projects crossed four strata: 1) seismic retrofit of electrical substations in the Los Angeles 

Department of Public Works and 2) replacement of pendant light fixtures in the Los Angeles Unified 

School District. Together, these two projects represented approximately 15% of the total project amount. 

Figure 5-17 shows sample project locations. There were no projects in medium- or low-hazard regions, 

just as in the 2005 Mitigation Saves study. Other high-hazard grants include: 

 Hospitals in San Francisco, Santa Ana, Norwalk, and Duarte, California; and, Olympia, WA. 

 University classroom and administration buildings in Berkeley and San Bernardino, California. 

 Civic centers in Pasadena, Berkeley, Huntington Beach, Santa Monica, and El Centro, California. 

 Miscellaneous other public buildings such as a Seattle, WA, church and a city parking structure. 

Of the 23 sampled projects, 18 deal with structural retrofit of existing buildings. The remainder deal with 

bracing ceilings in two hospital buildings and a county office building and replacing pendant light fixtures 

in schools. Of the 23 sampled projects, two are located in Washington, one in Oregon, and one in Utah. 

The remainder are located in California. 

Methodology. To estimate most benefits, the project team used FEMA’s BCA Tool, Version 5.3.0. Data 

requirements vary between different kinds of projects, but generally involved: 

 Building location (address, latitude, and longitude) 

 Project cost 

 NEHRP site soil class (A, B, C, D, E, or F) 

 Total building area 

 Number of stories 

 Total building replacement cost (new) 

 Time-average number of occupants (averaging over time of day and day of week) 

 Year of construction 

 Building height 

 Historical value 

 Occupancy classification 

 Code level, using FEMA’s pre-code, low-code, moderate-code, high-code classification scheme 

(Federal Emergency Management Agency 2012). Pre-code, for example, refers to a building that was 

                                                 
26 Both those authorities have developed newer maps of site class, but neither has been implemented in OpenSHA. 

The incremental increase in accuracy might be significant for new design or possibly even single-site risk analysis, 

but probably does not matter in a portfolio risk analysis such as this study, where errors will tend to cancel out. 
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designed and built without significant seismic design requirements, while high code refers generally to 

modern seismic design requirements, especially in high-seismicity areas. 

 In some cases, other details such as: public service that the building provides (fire department, hospital, 

government service, etc.); population served; additional travel time to a similar nearby facility if this one 

is rendered inoperative; and annual budget. 

 The user can optionally vary detailed engineering characteristics, such as elastic period of vibration, 

deformation at which complete structural damage occurs, etc. 

One enters the required data in a wizard-style user interface and then calculates EALs before and after 

mitigation using the standard method presented in Chapter 4: integrate hazard (the negative first 

derivative of exceedance rate of each of several levels of excitation) and vulnerability (the loss conditioned 

on excitation, as a fraction of value exposed) and multiply by value exposed. It estimates annualized losses 

in dollar equivalent terms, in each of seven categories: structural repair costs, two categories of 

nonstructural repair costs, acceptable costs to avoid statistical deaths and injuries, relocation costs, and two 

categories of losses associated with direct BI. It calculates the present value of losses before and after 

mitigation and the BCR. 

The BCA Tool estimates direct BI losses but not indirect BI, so the project team applied the same method 

to the study of federal mitigation grants as for the study of exceeding building codes, estimating indirect BI 

as a factor Q of the cost of direct BI. See Appendix K, Section 0 for details. 

The BCA Tool does not estimate loss of historic value or environmental damage. While several of the 

buildings in the earthquake sample are of historical value, the project team generally could not apply the 

method developed in the 2005 Mitigation Saves study to estimate the loss of historical value associated 

with damage, mostly because that method requires an estimate of the annual number of visitors to the 

facility. However, judging from the 2005 study, the loss of historic value is probably very small compared 

with other losses that are estimated here. 
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Figure 5-17: Locations of sample high-hazard earthquake mitigation projects. 

Sample project data development. This section examines one project so that the reader can understand 

the methods used to fill in details that are missing from the grant database. Consider, for example, one 

building from a project to retrofit fire stations in Gresham, Oregon. FEMA data from PDM grant PDMC-PJ-

10-OR-2009-003 indicates that Station 74 was located somewhere on NE 192nd Avenue near 45.533N, -

122.466W, and was built in 1966. Using Google Earth and Google Earth Street View, the project team 

identified the street address as 1520 NE 192nd Avenue, Gresham, Oregon 97230, at coordinates 45.5340N, 

-122.4658E; see Figure 5-18 for satellite and street views. With Google Earth, the project team estimated 

the building’s plan area as approximately 4,700 sf. Based on street views and familiarity with common 

construction practices, one can estimate that the building resists lateral forces with reinforced masonry 

shearwalls and a flexible roof diaphragm (RM1 in FEMA terminology). According to the newspaper DJC 

Oregon, the project mitigated deficient roof-to-wall connections, a common problem with older RM1 

buildings. 

One can estimate the replacement cost (new) of the building using an RSMeans Square Foot Costs Book, 

which provides a nationwide average per-square-foot cost for similar fire stations of $170 per square foot 

(2012 USD). RSMeans provides a location cost factor (accounting for local variations in construction cost) of 

1.0. One can account for increases in construction costs between 2012 and 2016 using a deflator calculated 

as the ratio of national GDP PPP in 2016 to that in 2012. GDP data were acquired from the World Bank. 

The deflator suggests current costs 12% higher than in 2012. One can add another 100% of the building 

value to account for content value, including firefighting apparatus, which leads to an estimated 

replacement cost (new) of $380 per square foot, including contents and apparatus. 
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One can assign a pre-code Hazus design level to the pre-retrofit building in light of its 1966 year of 

construction and its location in Oregon. One can assign a post-retrofit design level of moderate code. The 

term “pre-code” suggests construction before seismic design provisions were adopted, at least for the 

subject building. The term “moderate code” means that the retrofit strengthens the new building, though 

probably not enough to satisfy requirements of the most recent building codes, since the project 

description speaks of modifications to the roof and roof-to-wall connections, but not of changes to wall 

reinforcement. 

The total project amount was $617,000, which one can divide between the two buildings of this project in 

proportion to their plan area. Station 74 was estimated to have cost $353,000 to retrofit, or about $75 per 

square foot, which seems sufficient to strengthen the roof diaphragm and to connect the roof to the walls. 

The project team estimated average occupancy to be 10 people at all hours. A web search suggested that 

the station serves approximately 27,500 people (4 total stations serving a total population of 110,000 

residents of Gresham, Oregon). If the station were rendered inoperative, apparatus from a nearby station 

would have to travel approximately 7.5 additional miles to serve buildings that would otherwise be served 

by Station 74. 

The project team estimated the present value of benefits for Gresham fire stations to be $3.9 million, 

mostly from reduced loss of service to the community in the event of an earthquake, and with small 

contributions from reduced property loss (about 1.2%) and reduced deaths and nonfatal injuries inside the 

stations (about 0.7%). The estimated BCR for this one project is 6.4. 

 

Figure 5-18: Gresham Fire Station 74 (A) in Google Earth Street View, and (B) from above. 

 

5.13. PRIVATE-SECTOR SEISMIC RETROFIT MEASURES 

5.13.1. Analytical Details of Seismic Retrofit for Soft-Story Wood-Frame 

Multifamily Dwellings 

Drawing on the observations by Vukazich et al. (2006) and ATC-38 (Applied Technology Council, 2000), 

discussed in Chapter 3, the project team estimated that on average, 25% of the estimated square footage 

A      B  
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and building replacement cost of existing wood-frame multifamily dwellings (in FEMA terminology, W1 or 

W2 buildings with RES3 occupancy class) have soft-story conditions and potentially would benefit from this 

retrofit measure. The project team estimated that the average resident of such a building might occupy 

the ground story for perhaps 10 minutes a day, dealing with mail, parking, accessing storage space, or 

doing hobbies. 

Table 5-33 summarizes the effect of discount rate on the number of housing units for which soft-story 

retrofit is cost effective, total dollar benefits, total dollar costs, and BCR. The table shows that discount rate 

does not strongly affect the nationwide average BCR for retrofit, where the mitigation measure is cost 

effective, although the discount rate does reduce the number of places where mitigation is cost effective. 

Increasing the discount rate from the real cost of borrowing to 7% reduces by half the quantity of 

dwellings for which the retrofit is cost effective. Note BCR does not decrease monotonically with increased 

discount rate because of the change in the number of places where mitigation is cost effective. Increasing 

the discount rate removes locations with the lowest BCR values. 

Table 5-33: Sensitivity of BCR to discount rate for soft-story retrofit. 

Discount rate 2.2% 3% 7% 

Housing units with cost-effective retrofit, million 1.4 0.9 0.7 

Benefit, $ million $190,000 $150,000 $71,000 

Cost, $ million $16,000 $11,000 $7,600 

BCR 12 14 9 

5.13.2. Analytical Details of Seismic Retrofit for Manufactured Housing 

Table 5-34 summarizes the effect of discount rate on the number of manufactured housing units for 

which engineered tie-downs are cost effective, along with total dollar benefits, total dollar costs, and BCR. 

As with soft-story retrofit, increasing the discount rate reduces the quantity of housing units for which the 

retrofit is cost effective, but it does not strongly affect BCR. Outcomes of this retrofit are less sensitive to 

discount rate than soft-story retrofit because of the shorter design life of an engineered tie-down: Its 

baseline design life is 30 years versus 75 years for soft-story retrofit. 

Table 5-35 summarizes how the effective life of the mitigation affects BCR: Increasing the effective life 

increases the number of manufactured housing units for which the mitigation is cost effective and 

increases the overall BCR. 

 

 

 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   379 
 

Table 5-34: Sensitivity of BCR to discount rate for engineered tie-down systems. 

Discount rate 2.2% 3% 7% 

Housing units with cost-effective retrofit, million 0.14 0.13 0.11 

Benefit, $ million $690 $620 $410 

Cost, $ million $210 $200 $160 

BCR 3 3 3 

Table 5-35: Sensitivity of BCR to design life for engineered tie-down systems. 

Effective life, years 15 30 60 

Housing units with cost-effective retrofit, million 0.10 0.14 0.17 

Benefit, $ million $340 $690 $1,200 

Cost, $ million $140 $210 $250 

BCR 2 3 5 

5.13.3. Analytical Details of Securing Residential Furnishings, Fixtures, 

Equipment, and Contents 

Table 5-36 shows how discount rate affects the benefit-cost ratio of securing residential furnishings, 

fixtures, equipment, and contents. Discount rate does not strongly affect the nationwide average BCR, 

largely because the effective life of four of the five measures is short: 10 years for hot water heaters and 

nine years for the remaining measures other than kitchen cabinet latches. The shorter the effective life, the 

less discounting affects the present value of future savings. 

Only one of the measures, strapping hot water heaters to the building frame, involves a highly uncertain 

parameter: a factor to reflect how fire following earthquake is highly nonlinear with earthquake size. Figure 

5-19 depicts the tornado-diagram analysis of how sensitive BCR is to that parameter, labeled “cat factor” in 

the figure, along with effective life of the mitigation measure and discount rate. The figure shows that the 

mitigation measure is cost effective over the range of reasonable values for this parameter. 

Table 5-36: Sensitivity of BCR to discount rate for residential retrofit measures. 

Element 

Discount rate 

2.2% 3% 7% 

Water heater 24 23 22 

Kitchen cabinet latches 8 7 4 

Bookcases, shelving, and display cases 13 13 13 

Desktop electronics (computers, monitors, stereos, etc.), smooth surface 5 5 5 

Fragile objects on shelves or in display cases 3 3 3 
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Figure 5-19: Tornado diagram for BCR of strapping water heaters to the building frame. 

 

5.14. GRANTS FOR FIRE AT THE WUI 

The database contains a total of 756 individual properties in a total of 114 grants. Two projects, both for 

retrofitting of private structures in Cook County, Minnesota, numbered 338 properties (45% of total), while 

representing only about 14% of the total cost. A sample of the database was extracted, first by hazard level 

(high, medium, and low) and then by 4% slices of total stratum cost, resulting in 75 samples. Of these, 28 

contained sufficient information on which to base an estimate of project BCR. All but one of the projects 

had useful information on the internet. The project team telephoned or emailed subgrantees for 21 of the 

28 grants to obtain additional information. Several of the projects involved a relatively few structures. 

These included: 

 Replacement of several older wood tanks with steel tanks in Calaveras County (California) Water District. 

The grant was for $1,160,000. The project team assumed maintenance would add $10,000 per year for 

the life of the project. The tanks serve an estimated 713 households with a population of 1,476. The 

FEMA BCA Tool (version 4.5.5, no longer available) estimated a project BCR of 2.5. The benefit derives 

from avoiding the loss of revenue from 20% of customers for an extended period following wildfires 

where MRI varies between 6 and 40 years. It also assumes the BCA Tool’s internal discount rate of 7%. 

This benefit is based on the (unstated) assumption that the wood tanks are flammable, while the new 

steel tanks are not vulnerable to fire if supplied with a defensible space. The benefit estimate, however, 

excludes the improved water supply to the customers, which would provide firefighting water supply 

for at least some houses. Assuming improved water supply is available to half the 20% of customers, 

the project team estimated an added benefit of $14 million using FEMA’s BCA Tool (version 5.3) using 

the same 7% discount rate. That is, the addition reflects protecting 70 houses and the associated 

occupant death and injury, as well as the loss of revenue. In the Report, the discount rate is taken as 
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approximately 2.2% rather than 7%, which resulted in a final estimated benefit of almost $32 million, 

resulting in a BCR of 24. (Chapter 2 presents BCRs based on 3% and 7% discount rates, consistent with 

OMB procedures.) 

 

 Wildfire protection for the Virginia Harris Cockrell Cancer Research Center in Smithville, Texas. A 

component of the University of Texas M.D. Anderson Cancer Research Center, the center lies on a tract 

of 713 acres with a high wildfire risk, as defined by the Southern Wildfire Risk Assessment. This risk has 

been evident in recent years: a number of significant wildfires have occurred near the facility. The 

mitigation strategy to protect the center from wildfire damage included establishing more than 23 acres 

of zone-2 and zone-3 defensible areas surrounding the property, and hardening and fire-proofing the 

exterior of the Griffin Building, which houses the research animals used by the center. The project cost 

$1.975 million. The project also installed a wildfire sprinkler system on the exterior of the Griffin Building, 

which is fully automated and independent of public power and water sources. This project created a 

strong barrier to the onset of wildfires, in particular protecting the research animals, which are of great 

value. The applicant evaluated the project in 2010 using the FEMA BCA Tool (version 4.1.3) and found 

an overall BCR of 7.7. The current FEMA BCA Tool (version 5.3) does not seem to be able to handle 

this project (it lacks fire data). USFS BPs for this site and methods developed in the study of above-code 

benefits of this project both suggest a BCR of less than 1. 

 

 Creation of defensible space and replacement of 410 window units on the five-story Mt. St. Francis 

nursing home in Colorado Springs, Colorado, which was built in 1915 for a total project cost of $420,000. 

These improvements permit sheltering in place of the nursing home patients and staff, rather than 

requiring staff and residents to evacuate in case of wildfire. Detailed data for the facility were unavailable 

but, given that the facility has 108 beds, the project team estimated the total facility to have a 

replacement cost (new) of $30 million. Using the FEMA BCA Tool version 5.3 with a discount rate of 

2.13%, the project team estimated a BCR of 10.5. This value does not account for the costs to evacuate 

elderly patients nor the frailty of the patients—meaning that evacuating them might hurt them. If the 

project team were able to include the benefit associated with a lower chance of harm during evacuation 

(because evacuation would be unnecessary), the BCR would be higher. 

With a few exceptions, the data that FEMA was able to provide on remaining projects contained 

insufficient information to directly determine BCRs. For example, a number of projects involved private 

residential roof replacement—that is, replacing a combustible wood shake roof with a non-combustible 

roof. In these programs, homeowners typically received 70% of the new roof cost up to a maximum 

(typically) of $7,500. In many cases and for various reasons, homeowners opted to spend substantially 

more than this, but the total amount spent is not recorded in the project’s electronic data. Without cost, 

one cannot estimate a BCR. Incidentally, to qualify for this roof subsidy, the homeowner was typically 

required to have, or newly create, a defensible space around the home (a not inconsiderable expense). 

Several other programs consisted solely of vegetation management of public or private lands and, in a few 
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cases, subsidies for residential sprinklers. In all these cases, the project data contained insufficient data to 

directly estimate a BCR. 

5.15. PRIVATE-SECTOR WUI RETROFIT 

Table 5-37 summarizes the estimated cost to retrofit a building to comply with the International Wildland-

Urban Interface Code’s chapter-5 requirements of classes 1, 2, and 3 ignition-resistant construction. The 

table shows costs for all three classes in two parts: building (meaning the costs for cladding, glazing, and 

foundation enclosure) and vegetation control (meaning the present value over a 75-year life of the 

property to maintain a defensible space around the house that is relatively free of excess fuel). 

The three classes of ignition-resistant construction differ by the fire hazard severity (moderate, high, or 

extreme), whether the lot provides the required amount of defensible space (between 30 feet and 100 feet 

from the house, depending on fire hazard severity), and whether firefighting water supply requirements 

are met (a source less than 1,000 ft from the house having flow capacity of at least 1,000 gallons to 1,500 

gallons per minute, depending on house size). The 2018 International Wildland-Urban Interface Code 

probably would mostly apply in places with high to extreme fire hazard severity, which would require class 

1 or 2 ignition-resistant construction. The geometric mean of the two suggests a retrofit cost of 

approximately $72,000 to reduce the appearance of excessive accuracy.   

Table 5-37: Estimated cost to retrofit an existing home to comply with the 2018 International Wildland-

Urban Interface Code. 

 Class 1 Class 2 Class 3 

 Suburban Rural Suburban Rural Suburban Rural 

Building $72,200 $80,900 $64,200 $65,400 $3,000 $3,000 

Vegetation $5,000 0 $2,500 0 $1,250 $1,250 

Total $77,200 $80,900 $66,700 $65,400 $4,250 $4,250 

Average $79,050 $66,050 $4,250 

A key assumption reflected in the table (and differing from the examination of new construction to comply 

with the International Wildland-Urban Interface Code) is that the defensible space requirements for 

retrofitted buildings is achieved with a dry garden, meaning some combination of native fire-resistive 

plantings, gravel, or other non-combustible ground cover.  This assumption results in significantly lower 

total cost to manage vegetation than was previously assumed for new construction.  

Hazard varies within counties, so BCR was calculated for that portion of each county that is within the 

wildland-urban interface. It assumed a building life of 75 years and the three discount rates used 

elsewhere in this study. As elsewhere in this study, the retrofit benefits and costs were summed for all 

locations whose BCR exceeded 1.0. The ratio of the two sums is the nationwide total BCR for retrofit to the 

International Wildland-Urban Interface Code. 
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The project team found that retrofit was cost effective for 2.45 million homes, meaning a total retrofit and 

maintenance cost of 2.45 million homes times $72,000 per home, or $176 billion. The overall nationwide 

benefit was estimated to be $320 billion in avoided future losses, for a nationwide average benefit-cost 

ratio of 1.8:1, implying an average per-house benefit of $130,000 in avoided future losses. The project team 

added 36% both to nationwide cost and to benefit to account for nearby nonresidential buildings, which 

brings the total nationwide cost to $240 billion and the total nationwide benefit to $430 billion. 

The distribution of ignition-resistant construction classes is highly uncertain. The project team chose to use 

the geometric mean of class-1 and class-2 retrofit cost to be consistent with the project’s policy of 

deliberately erring on the conservative (low-BCR) side in situations of high uncertainty. Conceivably the 

true mix might be much lower, say the geometric mean of the class-2 and class-3 ignition-resistant 

construction, in which case the average cost would be more like $16,000. Taking the benefit to be constant 

($130,000 per house), the benefit-cost ratio could be as high as 8:1. 
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6. Utilities and Transportation Lifelines 

6.1. INTRODUCTION 

6.1.1. Objectives 

In 2018, a team of experts that contributed to the 2005 study undertook new research to update and 

expand the earlier study to include estimated BCRs for natural-hazard mitigation of utilities and 

transportation lifelines. 

The project team studied a number of benefits, including property loss reduction, reduced deaths and 

nonfatal injuries, reduced incidence of PTSD, reduced direct and indirect business-interruption losses, and 

reduced losses associated with environmental impacts. The team acknowledged benefits for a reasonable 

lifespan of the mitigation measure: 75 to 100 years, depending on the infrastructure being mitigated. The 

team discounted monetary benefits at three discount rates: the cost of borrowing, 3%, and 7% per year, 

but did not dicscount death or injury benefits. However, costs do include up-front and long-term 

maintenance costs.  

Methodologies reflect those presented in the 2017 Interim Report or well-established models of hazard 

(the occurrence frequency with various levels of environmental excitation, such as flood depth) and 

vulnerability (the relationship between loss and degree of environmental excitation). In some cases, new 

methodological elements were required, in which case the project team thoroughly documented new 

methodologies in this report. In no case were proprietary models used. All new methodologies were 

vetted by an independent oversight committee of experts—independent in the sense that they are 

empaneled by the National Institute of Building Sciences and not by the subcontractor  charged with 

carrying out the analysis. 

The project team set out to estimate BCRs for four categories of infrastructure: water and wastewater; 

electricity and telecommunications; ports; and roads and railroads, across four perils: earthquake, flooding, 

wind, and fire at the WUI. The project team sought to use EDA grants to represent the population of 

mitigation measures for each combination of peril and infrastructure with any significant mitigation activity. 

During the progress of its research, the project team found that, although EDA had issued 859 grants as of 

early 2017, only 16 appeared to fund natural-hazard mitigation of utilities and transportation lifelines. Of 

these, the team was able to acquire sufficient data to estimate BCRs for 12 mitigation investments. Because 

too few EDA grants were available to provide statistical value, the project team modified its objectives. In 

light of these limited data , the team instead decided to analyze the grants as case studies to show the 

degree to which mitigation of utilities and transportation lifelines can be cost effective. In some cases, new 

analytical procedures were developed and documented to provide other analysts with new tools to use in 

BCA. 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   385 
 

The 12 summarized grants do not capture all common, practical retrofit measures for utilities and 

transportation lifelines (particularly in regards to making water supply systems, electric utility infrastructure 

and highway bridges better resistant to earthquakes). The project team undertook analysis of additional 

mitigation measures to address these gaps.  

Finally, the project team speculated that prescribed burns to reduce turbidity in water-supply reservoirs 

might represent a cost-effective mitigation measure to reduce impacts on water supply from fire at the 

wildand-urban interface. The thought was that wildfires would burn off the vegetation that stabilizes soil, 

and that later storm runoff could carry soil and bacteria downhill into reservoirs, producing turbidity and 

additional biochemical oxygen demand. Following consultation with several water agencies the project 

team found that turbidity in reservoirs after wildfires could be readily addressed much less expensively 

without performing prescribed burns. Prescribed burns would almost certainly produce very small BCRs, at 

least when benefits are compared to lower-cost strategies to deal with reservoir turbidity. 

6.2. BENEFIT-COST ANALYSES OF 12 EDA GRANTS 

6.2.1. EDA-Funded Flood Mitigation for Roads and Railroads 

6.2.1.1. Elevate Rail in Coralville, Iowa 

Summary of the Grant. EDA, under its Economic Adjustment Assistance program, provided a grant of $7.8 

million in 2010 USD (approximately $8.3 million in 2018) to the city of Coralville, Iowa, to elevate rail next to 

the Iowa River and to elevate nearby trails. The elevated rail bed would protect rail traffic along the line: 

approximately two trains per day, according to a crossing inventory report filed with the U.S. Federal 

Railroad Administration (FRA) and available through FRA’s GIS Web Application.27 The elevated rail bed 

and elevated trails were also intended to act as levees to protect buildings along the city’s Iowa River 

shoreline near the rail bed. Figure 6-1 shows the locations of the elevated rail bed. The stretch of rail north 

of the yellow pushpin in the figure runs just east of First Avenue. The stretch south and east of the yellow 

pushpin runs just north of Second Street. A creek flows into the Iowa River near the pushpin. Satellite 

imagery shows elevated trails adjacent to the creek; these appear to be the ones mentioned in grant data. 

The original rail bed appears to have had a lowest elevation of approximately 645 ft above sea level (ASL), 

raised to approximately 651 ft ASL. FEMA FIRMettes28 suggest that the 100-year and 500-year floodplains 

near the rail have upper edges at approximately 645 ft ASL and 647 ft ASL, respectively. (Elevations are 

calculated here using the datum in Google Earth, as opposed to that of the FEMA FIRMettes.) A 

conservative estimate from satellite imagery of buildings just west of First Avenue and south of Second 

Street suggests 1.5 million ft2 of buildings, in approximately equal proportions of dwellings and 

workplaces. Using a replacement cost of $200/ft2, plus 50% added for content value, the project team can 

                                                 
27 See http://fragis.fra.dot.gov/GISFRASafety/. 
28 A FIRMette is a full-scale section of a Flood Insurance Rate Map (FIRM). 

http://fragis.fra.dot.gov/GISFRASafety/
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conservatively estimate $460 million in protected property. Satellite imagery of First Avenue and Second 

Street suggest traffic flow of 25,000 trips per day. 

 

Figure 6-1: Elevated rail in Coralville, Iowa. 

Flood hazard. Using the elevations and exceedance frequencies associated with a 0.2% and 1% annual 

chance of flooding, the researchers estimated a relationship between elevation and exceedance frequency 

(a flood hazard curve) by assuming that the natural logarithm of exceedance frequency varies linearly with 

elevation.  

Direct damage to buildings. The Hazus flood module provides a vulnerability function for a variety of 

building types. The analysis for this project uses a vulnerability function for 2-story buildings without 

basements.  

Loss of use duration and costs. The project team conservatively estimated that delayed use of rail would 

cost $264/train-hour in 2018 USD (Schlake et al. 2011). The figure considers cost of cars, locomotives, fuel, 

and labor, considering both actual and opportunity costs for an “average” train of 69 cars and 2.7 

locomotives per train. The project team assumed that restoring function to a rail line requires one day per 

foot of flooding for floodwater to recede (as assumed elsewhere in this study) plus one day to inspect the 

line and clear debris. 

If the flood-protection measure affects roadway access to residential property but does not affect actual 

damage to the property, then it is assumed that residents must stay in hotels and eat out, at a cost (or 

equivalent value) of the General Services Administration (GSA) local per-diem rate for meals and incidental 

expenses and accommodations. The project team assumed that one hotel room accommodates a typical 
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family averaging 2.5 people. If the flood-protection measure affects roadway access to workplaces, the 

resulting direct BI cost is taken to be the state daily per-capita GDP. Indirect BI losses are taken as 0.5 times 

the total of ALE and direct BI losses, as shown previously in this study. 

If the flood-protection measure actually did protect homes and workplaces, then for convenience, the 

project team estimated ALE, direct BI losses, and indirect BI losses as a factor of property losses taken from 

those estimated for federal grants for flood protection examined earlier in the study: a total of 30%. 

Casualties. Hazus does not calculate flood-related deaths and injuries. However, for this grant, an estimate 

seemed practical, using the following methodology: in flooding, the primary causes of death is due to 

people drowning when they try to drive through flooded areas. Fatality statistics from four Texas floods 

between 1990 and 2001 show approximately 80 drownings (Table 6-1). The project team tabulated the 

population in the counties experiencing the greatest rainfall intensities (at least 12 inches of rain in 2 days) 

in each flood using U.S. Census data, and found that 8.9 million people were affected by the floods. The 

ratio of 80 deaths to 8.9 million people suggests a fatality rate of 0.90 per 100,000 population. 

Approximately half of drownings in floods are attributed to people trying to drive through floodwaters, so 

the project team estimates 0.45 deaths per 100,000 people who would normally use a road that, in the 

analysis, is flooded or protected by a flood-mitigation measure. Counts of people were estimated one of 

three ways: (1) An engineer associated with the EDA grant provided an estimate of the number of people 

using the road; (2) A flood-protection measure protects a route into an otherwise isolated neighborhood, 

in which case the project team estimated the population of that neighborhood; or (3) the product of 

vehicle count per mile in satellite imagery, estimated traffic speed in miles per hour, and assuming 18 

hours of traffic flow. The project team preferred method 1 over 2, and 2 over 3. Method 3 is crude, but 

should provide a reasonable estimate on an order-of-magnitude basis. 

Table 6-1: Casualty modeling for flooded roads. 

Location Date Deaths Population  Counties 

Central 

Texas 

Oct 

1998 

29  1,585,304  Comal, Bexar, Guadalupe, and Gonzales, per 

https://pubs.usgs.gov/fs/FS-147-99/ 

Houston Jun 

2001 

22  3,668,308  Harris and Jefferson Counties 

Dallas May 

1995 

15  1,954,250  Dallas County 

Central 

Texas 

Dec 

1991 

14  1,699,000  Bexar and Travis, per 

https://pubs.er.usgs.gov/publication/wri954289 

Total  80 8,906,862  

Historic losses. None seem to apply.  

Environmental losses. None seem to apply. 
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Benefit-cost ratio. Considering the foregoing project-specific information presented here, the general 

procedures presented here and elsewhere in the study, a 100-year project life, and a cost-of-borrowing 

discount rate of 2.2%, the project team calculated the project produced $17 million in benefit at a cost of 

$8.3 million, for an overall BCR of $2.05 saved per $1.00 invested, i.e., 2 to 1. The estimate may be overly 

conservative because it is unclear from satellite imagery how far the flood protection extends from the rail 

line. Most of the benefits are from reduced property loss, as shown in Figure 6-2. Using higher discount 

rates of 3% and 7%, the BCRs would be lower: 1.7 and 0.9, respectively. 

 

Figure 6-2: Estimated benefits from elevated rail and trails in Coralville, Iowa. 

6.2.1.2. Elevate Rail near SEMO Port, Missouri 

Summary of the grant. EDA, under its Economic Adjustment Assistance program, provided a grant of $1.9 

million in 2014 USD to the Southeast Missouri (SEMO) Regional Port Authority for various measures to 

improve rail through the port. A large portion of the grant, approximately $1.5 million in 2018 USD, 

elevated rail along the Mississippi River, as shown in green highlighted in Figure 6-3. The work elevated 

the rail from BFE -9.5 ft (that is, 9.5 feet below BFE) to BFE -4 ft (i.e., 4 feet below BFE); the grantee 

suggested that it did not seem cost effective to better protect the rail in light of the much greater cost that 

would have been required. Grant data and FEMA FIRMettes suggest nearby 100-year and 500-year 

floodplains have upper edges about 352 ft ASL and 355 ft ASL, respectively. The grantee estimated traffic 

at 8 to 21 trains per week. 

Flood hazard. Using the elevations and exceedance frequencies associated with a 0.2% and 1% annual 

chance of flooding, the project team estimate a relationship between elevation and exceedance frequency 

(a flood hazard curve) by assuming that the natural logarithm of exceedance frequency varies linearly with 

elevation.  

Loss of use duration and costs. As used elsewhere in this study, delayed use of rail is conservatively 

estimated to cost $264/train-hour in 2018 USD (Schlake et al. 2011). That figure considers the cost of cars, 

locomotives, fuel, and labor, considering both actual and opportunity costs for an “average” train of 69 
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cars and 2.7 locomotives per train. It is assumed that restoring function to a rail line requires one day per 

foot of flooding for floodwater to recede (as assumed elsewhere in this study) plus one day to inspect the 

line and clear debris. 

 

Figure 6-3: Elevated rail (green highlight) in the SEMO Port Railroad. 

Flood hazard. Using the elevations and exceedance frequencies associated with a 0.2% and 1% annual 

chance of flooding, the project team estimate a relationship between elevation and exceedance frequency 

(a flood hazard curve) by assuming that the natural logarithm of exceedance frequency varies linearly with 

elevation.  

Loss of use duration and costs. As used elsewhere in this study, delayed use of rail is conservatively 

estimated to cost $264/train-hour in 2018 USD (Schlake et al. 2011). That figure considers the cost of cars, 

locomotives, fuel, and labor, considering both actual and opportunity costs for an “average” train of 69 

cars and 2.7 locomotives per train. It is assumed that restoring function to a rail line requires one day per 

foot of flooding for floodwater to recede (as assumed elsewhere in this study) plus one day to inspect the 

line and clear debris.  
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Casualties. None seem to apply. 

Historic losses. None seem to apply.  

Environmental losses. None seem to apply. 

Benefit-cost ratio. Considering the foregoing project-specific information presented here and a 

conservative traffic estimate of 13 trains per week (the geometric rather than arithmetic mean of the two 

traffic estimates) the general procedures presented here and elsewhere in the study, a 100-year project life, 

and a cost-of-borrowing discount rate of 2.2%, the project produces $3.0 million in benefit at a cost of 

$1.5 million, for an overall BCR of $2.00 saved per $1.00 invested, i.e., 2 to 1. All of the benefits are from 

reduced BI losses, as shown in Figure 6-4. Using higher discount rates of 3% and 7%, the BCRs would be 

lower: 1.5 and 0.7, respectively. 

 

Figure 6-4: Estimated benefits from elevating rail near SEMO Port, Missouri. 

6.2.1.3. Elevate Road in Seward, Nebraska 

Summary of the grant. EDA, under its Economic Adjustment Assistance program, provided a grant of $2.2 

million in 2010 USD (approximately $2.6 million in 2018) to Seward, Nebraska, to elevate and extend a road 

to an industrial facility. Only the portion of the project cost associated with elevating the road 

(approximately $1.3 million) is considered here, because the extension constituted an expansion rather 

than remediation of the roadway. Figure 6-5 shows the location of the road, just south of the Big Blue 

River (the green space stretching from the middle top of the image to the middle right). The road does 

not provide protection to the industrial facility, which is at a slightly higher elevation. The FEMA FIRMettes 

suggest that the 100-year and 500-year floodplains near the road have upper edges of approximately 

1,446 ft and 1,448 ft ASL, respectively. The road appears to have pre- and post-remediation elevations of 
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1,441 and 1,449 ft ASL, respectively. The industrial facility has 500 employees, so the analysis assumes 500 

trips. 

 
Note: The BCA considers only the extension between the midpoint of the road (the middle pushpin) and 

east end (the right-hand pushpin). 

Figure 6-5: Elevated and extended road in Seward, Nebraska. 

Flood hazard. Using the elevations and exceedance frequencies associated with a 0.2% and 1% annual 

chance of flooding, the project team estimated a relationship between elevation and exceedance 

frequency (a flood hazard curve) by assuming that the natural logarithm of exceedance frequency varies 

linearly with elevation.  

Direct damage to buildings. Not applicable. 

Loss of use duration and costs. Loss of access costs $139 per capita daily GDP per day, and the analysis 

assumed 2.5 people per each of 500 employees. No residences were protected, so no ALE apply.  

Casualties. As described elsewhere, the project team estimated 0.45 deaths per 100,000 trips, and 500 trips 

in this particular case. 

Historic losses. None seem to apply.  

Environmental losses. None seem to apply. 

Benefit-cost ratio. Considering the foregoing project-specific information presented here, the general 

procedures presented here and elsewhere in the study, a 100-year project life, and a cost-of-borrowing 

discount rate of 2.2%, the project team calculated that the project produced $9.4 million in benefit at a 

cost of $1.3 million, for an overall BCR of $7.20 saved per $1.00 invested, i.e., 7.2 to 1. Most of the benefits 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   392 
 

are from BI loss, as shown in Figure 6-6. Using higher discount rates of 3% and 7%, the BCRs are lower: 5.9 

and 3.4, respectively. 

 

Figure 6-6: Estimated benefits from elevated access road in Seward, Nebraska. 

6.2.1.4. Elevate Road and Reconstruct Bridge in Iowa City, Iowa 

Summary of the grant. EDA, under its Economic Adjustment Assistance program, provided a grant for a 

project that ultimately cost $40.6 million in 2018 USD to Iowa City, Iowa, to elevate 3,500 ft of a road and 

to reconstruct a bridge to an industrial facility. Figure 6-7 shows the location of the work: the Park Road 

Bridge and North Dubuque Street serve as an artery for 25,000 daily trips each way between Iowa City 

and Interstate 80. The road also provides the only access to a 1,000-bed University of Iowa residence hall, 

two apartment complexes, and a few other residences. The FEMA FIRMettes and city data suggest that the 

100-year and 500-year floodplains near the road have upper edges of approximately 651 ft and 653 ft 

ASL, respectively, using the same datum as Google Earth. The road appears to have pre- and post-

remediation elevations of 644 and 652 ft ASL, respectively. 
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Figure 6-7: Elevated roadway (North Dubuque Street, highlighted by the red line) and elevated bridge 

(Park Road Bridge over the Iowa River, yellow pushpin) in Iowa City, Iowa. 

Flood hazard. Using the elevations and exceedance frequencies associated with a 0.2% and 1% annual 

chance of flooding, the project team estimated a relationship between elevation and exceedance 

frequency (a flood hazard curve) by assuming that the natural logarithm of exceedance frequency varies 

linearly with elevation. 

Direct damage to buildings. Not applicable. 

Loss of use duration and costs. Loss of access to homes for approximately 1,100 people costs $146 per 

person per day using local GSA per diem rates and assuming two students per hotel room. 

Casualties. As described elsewhere, the project team estimated 0.45 deaths per 100,000 trips, and 25,000 

trips in this particular case. 

Historic losses. None seem to apply.  

Environmental losses. None seem to apply. 

Benefit-cost ratio. Considering the foregoing project-specific information presented here, the general 

procedures presented here and elsewhere in the study, a 100-year project life, and a cost-of-borrowing 

discount rate of 2.2%, the project team calculated that the project produced $456 million in benefit at a 

cost of $40.5 million, for an overall BCR of $11 saved per $1.00 invested, i.e., 11 to 1. Most of the benefits are 

from avoided casualties—people who would drown because they try to drive through the flooded street, 
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as shown in Figure 6-8. Using higher discount rates of 3% and 7%, the benefit-cost ratios are essentially 

the same, 11:1, because the analysis does not discount human life. 

 

Figure 6-8: Estimated benefits of elevating access road and reconstructing bridge in Iowa City, Iowa. 

6.2.1.5. Reconstruct Bridge in Ruidoso, New Mexico 

Summary of the grant. EDA, under its Economic Adjustment Assistance program, provided a grant worth 

$1.3 million in 2018 USD to Ruidoso, New Mexico, to reconstruct a bridge that provides access to the 

homes of 1,000 people. Figure 6-9 shows the location of the bridge, which spans the Rio Ruidoso. The 

bridge was raised slightly but greatly widened to double the flow beneath it, remediating the potential for 

overtopping of the bridge during heavy rainfall. The FEMA FIRMettes suggest that the 100-year and 500-

year floodplains near the bridge have upper edges of approximately 6,823 ft and 6,831 ft ASL, respectively, 

although those elevations reflect the damming effect of the bridge. The road appears to have pre-

remediation elevation of 6,823 ft ASL. 
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Figure 6-9: Reconstructed bridge (yellow pushpin) over Main Road in Ruidoso, New Mexico. 

Flood hazard. Using the elevations and exceedance frequencies associated with a 0.2% and 1% annual 

chance of flooding, the project team estimated a relationship between elevation and exceedance 

frequency (a flood hazard curve) by assuming that the natural logarithm of exceedance frequency varies 

linearly with elevation. To approximate the effect of widening the floodway below the bridge, the project 

team treated the post-reconstruction elevation as having an elevation of 6,827 ft ASL.  

Direct damage to buildings. Not applicable. 

Loss of use duration and costs. Loss of access costs $132 per capita for meals and accommodations.  

Casualties. As described elsewhere, the project team estimated 0.45 deaths per 100,000 trips, and 1,000 

trips in this particular case. 

Historic losses. None seem to apply.  

Environmental losses. None seem to apply. 

Benefit-cost ratio. Considering the foregoing project-specific information presented here, the general 

procedures presented here and elsewhere in the study, a 100-year project life, and a cost-of-borrowing 

discount rate of 2.2%, the project team calculated that the project produced $270,000 in benefit at a cost 

of $1.3 million, for an overall BCR of $0.21 saved per $1.00 invested, i.e., 0.21 to 1, as shown in Figure 6-10. 

Using higher discount rates of 3% and 7%, the BCRs are lower: 0.17 and 0.10, respectively. A BCR below 1:1 
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reflects that the grant decision is based on criteria other than the long-term average cost effectiveness of 

the mitigation measure. 

 

Figure 6-10: Estimated benefits from reconstructing the Main Road Bridge over Rio Ruidoso in Ruidoso, 

New Mexico. 

6.2.2. EDA-Funded Flood Mitigation for Water and Wastewater 

Infrastructure 

This section presents analyses of grants to mitigate natural-hazard risk to water and wastewater facilities. 

Some of the grants address water facilities, some address wastewater, and one addresses both. 

6.2.2.1. Elevate Water Treatment Plant Electrical Equipment in Portsmouth, Virginia 

Summary of the grant. EDA, under its Economic Adjustment Assistance program, provided a grant in the 

amount of $8.6 million in 2003 USD (approximately $11.6 million in 2018) to Portsmouth, Virginia. The grant 

relocated the electrical equipment for Portsmouth’s Lake Kirby water treatment facility from a location at 

21 ft ASL (1 foot lower than the upper edge of FEMA’s SFHA, the so-called 100-year floodplain, around 22 

ft ASL), to a new location at 40 ft ASL (approximately 8 ft higher than the upper edge of the 500-year 

floodplain). Figure 6-11 shows the locations of the old and new electrical facility. The effort aimed to 

maintain water service during floods to the city’s population of 96,200 people. 
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Figure 6-11: Portsmouth’s water treatment plant: A) in 2003, and B) in 2015. 

Flood hazard. Using the elevations and exceedance frequencies associated with a 0.2% and 1% annual 

chance of flooding, the project team estimated a relationship between elevation and exceedance 

frequency (a flood hazard curve) by assuming that the natural logarithm of exceedance frequency varies 

linearly with elevation.  

Direct damage to control building equipment. The Hazus flood module provides a vulnerability function for 

small water treatment plants that operate by pressure.  

Loss of use duration and costs. The project team assumed that restoring mechanical equipment at a water 

treatment plan to function requires one day per foot of flooding for floodwater to recede (as assumed 

elsewhere in this study) plus one week to disassemble, clean, and dry motors, pumps, and other rotating 

equipment, and less time to clean and dry electrical equipment. During that time, residences lack water for 

showers and toilets, so residents must relocate temporarily. They might stay in hotels, at a cost of the GSA 

per diem for lodging (one room for a household of up to three) plus the GSA per diem rate for meals and 

incidental expenses (one per each person). It may be that people stay with friends or family or in a shelter 

at little or no cost, but economists see the value lost as worth something. Residents would rather be at 

home. The measure of that preference, in this case, is taken as the GSA per diem rates. 

Businesses cannot operate without functioning bathrooms, if a water treatment plant is inoperative, all 

businesses are similarly affected. Customers or employees cannot simply go next door. Nor are there likely 

to be portable toilets available for the entire community at a moment’s notice. The analysis therefore 

estimates the direct BI costs resulting from loss of potable water as the state-average per-capita daily GDP. 

Indirect BI is taken as 0.5 times the sum of ALE and direct BI loss, as elsewhere in this study. 

The local GSA per diem for accommodations, for meals and incidental expenses, and the state per-capita 

daily GDP are $87, $61, and $141 respectively. 

Casualties. As discussed elsewhere in this study, the primary cause of death in flooding is due to people 

drowning when they try to drive through flooded areas. Casualty losses are therefore assumed to be zero 

in this case, and there seems to be no reason to suspect that PTSD would occur from temporary loss of 

potable water service.  

A  B  
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Historic and environmental losses. None seem to apply.  

Benefit-cost ratio. Considering the project-specific information presented here, general procedures 

presented elsewhere in the study, a 100-year project life, and a cost-of-borrowing discount rate of 2.2%, 

the project team calculated that the project produced $112 million in benefit at a cost of $11.6 million, for 

an overall BCR of $9.70 saved per $1.00 invested, i.e., 10 to 1. Most of the benefits result from reduced BI 

(Figure 6-12). At discount rates of 3% and 7%, the BCRs are lower: 8 and 3, respectively. 

 

Figure 6-12: Estimated benefits from elevating electrical equipment at the  water treatment plant in 

Portsmouth, Virginia. 

6.2.2.2. Columbus Junction, Iowa, Water Treatment Plant Relocation 

Summary of the grant. EDA, under EDA’s Economic Adjustment Assistance program, provided a grant of 

$4.6 million to Columbus Junction, Iowa. The grant relocated the city’s water treatment facility from a 

location at 587 ft ASL (2 feet lower than the upper edge of FEMA’s SFHA, the so-called 100-year 

floodplain, around 589 ft ASL), see Figure 6-13, to a new location at 594 ft ASL (2 feet higher than the 

upper edge of the 500-year floodplain, around 592 ft ASL, Figure 6-14). The goal was to maintain water 

service to Columbus Junction during floods. The water treatment plant serves 60 commercial customers 

and 600 residential customers, whose total population measures 1,850. 
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Note: In this FEMA FIRMette, the blue area represents the special flood hazard area, with at least 1% 

annual chance of flooding. The brown areas have between 0.2% and 1% annual chance of flooding. 

Figure 6-13: The old water treatment plant in Columbus Junction, Iowa. 

 

Figure 6-14: The new water treatment plant in Columbus Junction, Iowa. 

Flood hazard. Using the elevations and exceedance frequencies associated with a 0.2% and 1% annual 

chance of flooding, the project team estimated a relationship between elevation and exceedance 

frequency (a flood hazard curve) by assuming that the natural logarithm of exceedance frequency varies 

linearly with elevation.  

Direct damage to control building equipment. The Hazus Flood Model provides a vulnerability function for 

small water treatment plants that operate by pressure.  

Loss of use duration and costs. It is assumed here that restoring the water treatment plant to function 

requires one day per foot of flooding for floodwater to recede (as assumed elsewhere in this study) plus 

one week to disassemble, clean, and dry motors, pumps, and other rotating equipment, and less time to 

clean and dry electrical equipment. During that time, residences lack water for showers and toilets, so 

occupants have to relocate temporarily. They might stay in hotels, at a cost of the GSA per diem for 

lodging (one room for a household of up to three) plus the GSA per diem rate for meals and incidental 

expenses (one per each person). It may be that people stay with friends or family or in a shelter at little or 
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no cost, but economists see the value lost as worth something. Residents would rather be at home. The 

measure of that preference is taken here as the GSA per diem rates.  

Businesses cannot operate without functioning bathrooms. If a water treatment plant is inoperative, all 

businesses are similarly affected. Customers or employees cannot go next door. Nor are there likely to be 

portable toilets available for the entire community at a moment’s notice. The analysis estimates direct BI 

loss as the state-average per-capita daily GDP. Indirect BI loss is taken as 0.5 times the sum of ALE and 

direct BI loss, as elsewhere in this study. 

In the case of Columbus Junction, Iowa, GSA per diems for accommodations and for meals and incidental 

expenses are $91 and $51, respectively. The per-capita daily GDP is $139. 

Casualties. As discussed elsewhere in this study, the primary cause of death in flooding is due to people 

drowning when they try to drive through flooded areas. Casualty losses are therefore assumed to be zero 

in this case, and there seems no reason to suspect that PTSD would occur from temporary loss of potable 

water service.  

Historic and environmental losses. None seem to apply. 

Benefit-cost ratio. Considering the foregoing project-specific information presented here, the general 

procedures presented elsewhere in the study, a 100-year project life, and a cost-of-borrowing discount 

rate of 2.2%, the project team calculated that the project produced $5.9 million in benefit at a cost of $4.6 

million, for an overall BCR of $1.30 saved per $1.00 invested, i.e., 1.3 to 1. Most of the benefits are from 

reduced BI to the community, as shown in Figure 6-15. Using higher discount rates of 3% and 7%, the 

BCRs are lower, 1.0 and 0.5, respectively. The BCR is relatively low compared to other mitigation for water 

treatment plants because the measure relocates the water treatment plant, which is relatively costly 

compared with other flood-protection measures considered here, such as building berms and elevating 

electrical equipment. 
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Figure 6-15: Estimated benefits from new water treatment plant in Columbus Junction, Iowa. 

6.2.2.3. Relocate Wastewater Treatment Plant out of Floodplain in Iowa City, Iowa. 

Summary of the grant. EDA, under its Economic Adjustment Assistance program, provided a grant of 

$46.5 million in 2010 USD (approximately $54 million in 2018) to Iowa City, Iowa.  The purpose of the grant 

was to redirect wastewater from the city’s north wastewater treatment plant, in the FEMA SFHA (the 100-

year floodplain), to its south wastewater treatment plant, and expand the south plant to handle the greater 

demand. Expansion of the south plant cost approximately $40.6 million in 2010 USD ($47 million in 2018). 

Figure 6-16 shows the locations of the two facilities.  

The grant aimed to maintain, during floods, wastewater service to the city’s population of 74,400 people. 

The ground at the north plant had an elevation of approximately 646 ft ASL. The 100-year and 500-year 

floodplains near the site of the north plant have upper edges about 650 ft ASL and 652 ft ASL, 

respectively. The south plant also had some risk of flooding (see Figure 6-17), but the expansion mitigated 

individual buildings and equipment by raising equipment within buildings, raising transformer pads, 

building berms, and other measures, to a level one foot above the elevation of 500-year flooding. The 

FEMA FIRMette suggests a 642-ft ASL elevation of the edge of the 100-year floodplain at the south 

treatment plant. Estimates (Stanley Consultants 2011) placed the upper edge of the 500-year floodplain at 

approximately 645 ft ASL, and the lowest equipment needing elevation about 644 ft ASL. Hazus values a 

medium-sized wastewater treatment plant at $200 million (2003 USD) or $276 million in 2018 USD. 
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Figure 6-16: Wastewater treatment plant sites in Iowa City, Iowa : the north plant (denoted 468 north 

WWTP) and the south plant (denoted 468 south WWTP). 
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Figure 6-17: The estimated extent of flooding at the south waste water treatment plant in Iowa City, Iowa, 

before mitigating sensitive buildings and components, using a 0.2% annual exceedance probability (500-

year flood). (Stanley Consultants 2011) 

Flood hazard. Using the elevations and exceedance frequencies associated with a 0.2% and 1% annual 

chance of flooding, the project team estimated a relationship between elevation and exceedance 
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frequency (a flood hazard curve) by assuming that the natural logarithm of exceedance frequency varies 

linearly with elevation.  

Direct damage to wastewater treatment plant equipment. The Hazus flood module provides a vulnerability 

function for wastewater treatment plants. The methodology provides different labels of systems that 

distinguish them by size (small, medium, and large), but the vulnerability functions for different sizes are 

identical. The methodology indicates that the system ceases to function when any flooding occurs. 

Loss of use duration and costs. It is assumed here that restoring the function of a wastewater treatment 

plant requires one day per foot of flooding for floodwater to recede (as assumed elsewhere in this study) 

plus one week to disassemble, clean, and dry motors, pumps, and other rotating equipment, and less time 

to clean and dry electrical equipment. During that time, if the wastewater treatment plant were damaged, 

it is assumed here that homes and businesses are allowed to continue using the sewer system in Iowa City 

at a voluntarily reduced rate and that untreated wastewater flows into overland, through unnamed creeks, 

downstream to the Iowa River, then 25 miles past Hills, Columbus Junction, and Wapello to the Mississippi 

River. It is assumed that by the time it reaches Columbus Junction, the untreated wastewater is diluted to 

the point that the Columbus Junction Water Treatment Plant can handle the additional contaminants and 

that no ALE or BI costs are incurred there.  

Casualties. As discussed elsewhere in this study, the primary cause of death in flooding is due to people 

drowning when they try to drive through flooded areas. Casualty losses are therefore assumed to be zero 

in this case, and there seems to be no reason to suspect that PTSD would occur from temporary loss of 

wastewater service.  

Historic losses. None seem to apply.  

Environmental losses. Regardless of loss-of-use costs, if either wastewater treatment plant were to flood, 

untreated wastewater represents a hazardous spill that would pollute the Iowa River and make it unusable 

for recreation for a season. It is problematic to assign a monetary value to the resulting environmental 

impact. As noted elsewhere in this study, Whitehead et al. (2000) estimate the revealed-preference value 

of $95 per visit to a recreation area (in 2018 USD). The project team assumed that pollution from flooding 

of the wastewater treatment plant would impair the recreational value of the Iowa River between Iowa City 

and the Mississippi River for a season. The analysis attributes that amount to each person who lives 

between Iowa City and the Mississippi River: in Iowa City (population 74,400), Riverside (1,000), Hills (800), 

Columbus Junction (1,800), and Wapello (2,000), essentially assuming one foregone visit per person near 

the river. The project team therefore estimated the environmental impact from flooding of either 

wastewater treatment plant to be worth $7.6 million to avoid.  

Benefit-cost ratio. Considering the foregoing project-specific information presented here, the general 

procedures presented elsewhere in the study, a 100-year project life, and a cost-of-borrowing discount 

rate of 2.2%, the project team calculated that the project produced $195 million in benefit at a cost of $54 

million, for an overall BCR of $3.60 saved per $1.00 invested, i.e., 4 to 1. The BCR is relatively low compared 
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with other water- and wastewater-related grants considered here because of the assumption that Iowa 

City homes and businesses would not have to cease operations solely because of flooding of either 

wastewater treatment plant. That assumption may be overly conservative: conceivably, untreated 

wastewater near businesses at the south end of Iowa City (just downstream of the wastewater treatment 

plant) might so impair air quality and public safety that some businesses would cease operations until 

cleanup were completed. In any case, most of the benefits are from property loss to the wastewater 

treatment plants, as shown in Figure 6-18. Using higher discount rates of 3% and 7%, the BCRs are lower: 

2.3 and 1.04, respectively. 

 

Figure 6-18: Estimated benefits from decommissioning the Iowa City, Iowa, north wastewater treatment 

plant and elevating or otherwise protecting critical equipment at the south plant. 

6.2.2.4. Protect Water and Wastewater Treatment Plants in Greenville, North Carolina from Flood 

Summary of the grant. EDA, under its Economic Adjustment Assistance program, gave $4.8 million in 2001 

USD (approximately $6.8 million in 2018) to Greenville, North Carolina to construct a flood-protection 

berm and pumping station for Greenville's water treatment plant. The grant also paid to raise a flood 

protection wall and a retaining wall at the Northside Wastewater Treatment Plant. Figure 6-19A shows the 

locations of the two facilities. The grant aims to maintain, during floods, the water and wastewater service 

to the city’s population of 91,500 people. The ground at the water treatment plant has an elevation of 21 ft 

ASL; the crest of the berm rises to 33 ft ASL. The 100-year and 500-year floodplains have upper edges 

approximately 24 ft ASL and 27 ft ASL, respectively. Ground level at the wastewater treatment plant is 18 ft 

ASL; its berm has crest elevation of approximately 21 ft ASL. The edges of the 100-year and 500-year 

floodplains are about 17 ft and 19 ft ASL. Hazus values a medium-sized water-treatment plant at $100 

million in 2003 USD, or $138 million in 2018 USD. It values a wastewater treatment plant at $200 million in 

2003 USD or $276 million in 2018 USD. 
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Figure 6-19: A. Water treatment plant (denoted 53 WTP) and wastewater treatment plant (denoted 53 

WWTP) sites in Greenville, North Carolina. B. Image of the water treatment plant, with berm highlighted in 

red. C. Image of the wastewater treatment plant. 

Flood hazard. Using the elevations and exceedance frequencies associated with a 0.2% and 1% annual 

chance of flooding, the project team estimated a relationship between elevation and exceedance 

frequency (a flood hazard curve) by assuming that the natural logarithm of exceedance frequency varies 

linearly with elevation.  

Direct damage to water treatment plant and wastewater treatment plant equipment. The Hazus Flood 

Model provides a vulnerability function for water treatment plants that operate by pressure and another 

for wastewater treatment plants. The methodology provides different labels of systems that distinguish 

them by size (small, medium, and large), but the vulnerability functions for different sizes are identical. The 

methodology also indicates that the system ceases to function when any flooding occurs. 

Loss of use duration and costs. It is assumed here that restoring the function of a water treatment plant or 

of a wastewater treatment plant requires one day per foot of flooding for floodwater to recede (as 

assumed elsewhere in this study) plus one week to disassemble, clean, and dry motors, pumps, and other 

rotating equipment, and less time to clean and dry electrical equipment. During that time, if the water 

treatment plant is damaged, showers and toilets cannot be used in residences and occupants must 

A  

B  C  
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relocate temporarily. They might stay in hotels, at a cost taken to be the GSA per diem for lodging (one 

room for a household of up to three people) plus the GSA per diem rate for meals and incidental 

expenses (one per person). It may be that people stay with friends or family or in a shelter at little or no 

cost, but economists still see the lost value as worth something. Residents would rather be at home, and 

the measure of that preference, in this case, is taken as the GSA per diems rates.  

The project team also assumed that businesses cannot operate without functioning bathrooms. If a water 

treatment plant is inoperative, all businesses are similarly affected. Customers or employees cannot simply 

go next door. Nor are there likely to be portable toilets available for the entire community at a moment’s 

notice. The analysis therefore assumes that without water, direct BI costs the state-average per-capita daily 

GDP. Indirect BI is taken as 0.5 times the total ALE and direct BI loss, as elsewhere in this study. 

The local GSA per diem rates for accommodations and for meals and incidental expenses are $115 and 

$59, respectively. The state per-capita daily GDP is $121. 

Casualties. As discussed elsewhere in this study, in flooding, the primary cause of deaths is due to people 

drowning when they try to drive through flooded areas. Casualty losses are therefore assumed to be zero 

in this case, and there seems to be no reason to suspect that PTSD would occur from temporary loss of 

potable water service.  

Historic losses. None seem to apply.  

Environmental losses. If the wastewater treatment plant floods, untreated wastewater would flow overland 

to the nearby Tar River, polluting the river as it passes nearby Washington, North Carolina, and 25 miles 

downstream into Pamlico Sound, part of the Cape Hatteras National Seashore. The pollution would impair 

the recreational value of Pamlico Sound for approximately one season. Whitehead et al. (2000) used 

revealed-preference data to value a recreational visit to Pamlico Sound at $64 per user in 2000 USD, or 

$95 per visit in 2018 USD. The National Park Service reports that 2.4 million people visit the Cape Hatteras 

National Seashore each year (National Park Service 2018). Thus, the environmental costs of polluting the 

national park can be estimated at $228 million. In addition, Pamlico Sound produces $20 million per year 

in commercial fishing (Sea Grant 2017). The project team therefore estimated the acceptable cost to avoid 

environmental losses associated with flooding of the wastewater treatment plant to be $248 million.  

Benefit-cost ratio. Considering the foregoing project-specific information presented here, the general 

procedures presented elsewhere in the study, a 100-year project life, and a cost-of-borrowing discount 

rate of 2.2%, the project team calculated that the project produced $212 million in benefit at a cost of $6.8 

million, for an overall BCR of $31.00 saved per $1.00 invested, i.e., 31 to 1. The BCR is so high because it 

costs relatively little to build the flood-protection systems that protect a relatively large value. Most of the 

benefits are from reduced BI to the community, but environmental benefits are also significant, as shown 

in Figure 6-20. Using higher discount rates of 3% and 7%, the BCRs are lower: 28 and 13, respectively. 
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Figure 6-20: Estimated benefits from adding flood protection to the water and wastewater treatment 

plants in Greenville, North Carolina. 

6.2.3. Flood Mitigation for Electric and Telecommunications Substation in 

Reedsburg, Wisconsin 

Summary of the grant. EDA, under its Economic Adjustment Assistance program, provided a grant in the 

amount of $1.8 million to the City of Reedsburg, Wisconsin. Among its other products, the grant expended 

$235,000 to build a facility called a telecommunications/electric switching station, essentially a dual-

purpose telephone central office and control building for the adjacent substation yard. The building 

replaced an older building about 40 feet away but 4 feet lower in elevation. See Figure 6-21. 

 

Figure 6-21: Electrical and telephone switching stations in Reedsburg, Wisconsin. The old one is to the right 

with the green cabinet next to it; the new one is to the left, behind the pickup truck. 
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Flood hazard. A FEMA National Flood Hazard Layer FIRMette shows the old building at the elevation of 

the 100-year floodplain, 876 ft, and the new one at the elevation of the 500-year floodplain, 880 feet. The 

project team constructed a flood hazard curve that related depth of flooding to mean exceedance 

frequency with the common assumption that the natural logarithm of mean exceedance frequency varies 

linearly with flood elevation. Thus, for example, flooding reaches 878 feet (2 feet above the base of the old 

building and below the base of the new) with a mean exceedance frequency of 0.004, that is, once every 

250 years.  

Direct damage to control building equipment. The Hazus Flood Model provides a vulnerability function for 

repair cost to low- and medium-voltage substation equipment. It also implies loss of function when the 

depth of flooding reaches 4 feet, which appears to apply to yard equipment, not the control building. It 

seems more reasonable to assume that the control building would become nonfunctional when initially 

flooded, because operators would deenergize equipment at that stage.  

Loss of use duration and costs. Hazus offers no estimate of flood duration or loss-of-use costs. The 

following analysis assumes that flooding lasts one day per foot of depth, plus one day to clear and 

reenergize equipment or to replace damaged computers and reinstall control software. It is assumed that 

loss of function affects all 9,200 inhabitants of Reedsburg. Without power or telecommunications, homes 

are still occupied, but residents must dine out at a cost (or equivalent value) equal to the GSA’s per diem 

rate of $51 per day per person. Insurers commonly call these costs ALE. Without power and 

telecommunications, businesses do not operate at all (no telecommuting, for example), causing a direct BI 

loss of the Wisconsin per-capita daily GDP, $130. Elsewhere, the project team shows that indirect BI 

amounts to an additional $0.50 per $1.00 of direct BI losses and ALE. 

Casualties. Elsewhere in this study the project team estimated that a blackout causes deaths at a rate of 

0.56 per 100,000 population per day, and nonfatal medical injuries 50 times as high. It is not clear that loss 

of electricity alone causes PTSD, so no PTSD benefits apply to this project.  

Historic and environmental losses. None seem to apply.  

Benefit-cost ratio. Considering the foregoing project-specific information presented here, the general 

procedures presented elsewhere in the study, a 75-year project life, and a cost-of-borrowing discount rate 

of 2.2%, the project produces $2.2 million in benefit at a cost of $235,000, for an overall BCR of $9.40 

saved per $1.00 invested, i.e., 9 to 1. Most of the benefits are from reduced BI to the community, as shown 

in Figure 6-22. Using higher discount rates of 3% and 7%, the BCRs are lower, 8 and 4, respectively, but 

still substantially above 1.0. 
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Figure 6-22: Estimated benefits from new telephone and electrical switching building in Reedsburg, 

Wisconsin. 

6.2.4. Wind Mitigation for Electric and Telecommunications 

EDA funded two grants that mitigated wind risk to electric and telecommunication facilities. 

6.2.4.1. Summary of the Grants 

Project 1: Replacing aboveground power lines from Derby to West Charleston and Bloomfield to Canaan 

(both alignments in Vermont). The project description reported by EDA: i) Derby-to West Charleston – 

replacement of 5.25 miles of 46kV transmission lines, and ii) Bloomfield to Canaan – replacement of 26 

miles of 34.5kV transmission lines with 520 poles. “The new electrical distribution system will provide more 

reliable electric service to the area and minimize disruptions to local business operations.”  

The project team conduction online research for additional online information about the project. Vermont 

Electric Coop reported that the replacement of aging, single-phase electric lines with three-phase lines will 

also help to improve the reliability of service to small businesses and farms. 

Project 2: Electric power line improvements to The Point, Seabrook, Texas. The project description reported 

by EDA: infrastructure improvements to The Point, including burying electrical power lines and other 

utilities in order to aid in disaster resiliency. This aid was provided by EDA in response to damage incurred 

during Hurricane Ike (2008). In addition to the EDA grant, the city of Seabrook also received a CDBG grant 

awarded by HUD but administered to the city through the state of Texas. 
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6.2.4.2. Methodology 

The approach for this task consisted of the following steps: 1) utilize the online ASCE 7 Hazard Tool (ASCE 

2018) to determine expected wind speeds for various mean return intervals (MRI), and in the case of the 

Vermont alignments, ice thickness, 2) research and select an existing wind damage model for 

aboveground power poles, 3) identify the exposure and inventory details of the different electric power 

distribution systems, i.e., confirm rural versus urban details, power pole installations (mainly distances 

between poles), confirm type of power pole (wooden versus metal), confirm rough power pole height 

details, 4) research loss estimation or loss avoidance methodologies for wind hazards, and 5) develop 

spreadsheet to perform loss estimates (with and without mitigation) and subsequent BCRs. 

ASCE 7 online hazard platform. For this project, the team utilized the ASCE 7 online hazard platform to 

obtain wind speeds vs. mean return interval for all projects. The ASCE 7 standard that is currently being 

used on the platform is the ASCE/SEI 7-16 (American Society of Civil Engineers Structural Engineering 

Institute 2107, Fig. 26.5-1A and Figs. CC.2-2 to CC.2-4). The platform requires the following input in order 

to return wind speed and ice thickness data: location (latitude and longitude) and risk category. For these 

grants, the team used the lowest Risk Category I (buildings and other structures that represent a low 

hazard to human life in the event of failure).  

In both sets of projects (Vermont and Texas), the geographic extent of the areas of interest were small 

enough where the resolution of the ASCE 7 Hazards Tool was not very sensitive to the placement of the 

position cursor, e.g., the same set of wind speeds and MRIs were returned for both power system 

alignments in Vermont.  

The wind speeds pertain to 3-second gust wind speeds at 33 ft above ground for Exposure Category C. 

Wind speeds vs. MRI for both sets of projects (Vermont and Seagate, Texas alignments) are contained in 

Table 6-2. Figure 6-23 shows a plot of annual frequency versus wind speed (mph) for the Vermont power 

distribution alignments. 

Table 6-2: Wind speeds versus mean recurrence intervals for Vermont and Texas alignments. 

Mean recurrence  

interval (MRI) 

Annual  

frequency (yr-1) 

Wind speed (mph) 

Vermont Seagate, TX 

10 years 0.1 73 78 

25 years 0.04 80 96 

50 years 0.02 84 110 

100 years 0.01 89 121 

300 years 0.003 99 134 
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Figure 6-23: Annual Frequency versus Wind Speed (mph) for Derby-West Charleston & Bloomfield to 

Canaan. 

For the Vermont alignments, the project team also extracted ice thickness information from the ASCE 7 

Hazard Tool. Based on platform readings, the radial ice thickness value (in) is one (1) inch, which 

corresponds to a 50 mph, 3-second gust speed. The project team assumed that the MRI associated with 

this ice thickness value is 50 years. 

Wind damage function for aboveground electric power poles. The project team reviewed three publications 

in order to select an appropriate damage function for aboveground power poles. 

 Fragility Curves for Assessing the Resilience of Electricity Networks Constructed from an Extensive Fault 

Database (Dunn et.al., 2018). 

 

Fragility curves are developed for overhead electrical lines using an empirical approach to model likely 

failures due to wind storm hazards. To generate these curves, the authors compiled a dataset of 12,000 

electrical failures in the United Kingdom and correlated it with the European Reanalysis (ERA) wind 

storm model. The results are presented in terms of number of assets failed per km as a function of wind 

speed. 

 

 Age-Dependent Fragility Models of Utility Wood Poles in Power Distribution Networks against Extreme 

Wind Hazards (Shafieezadeh et.al. 2014). 

 

A sampling approach involving a demand and capacity model was used to generate a statistical sample 

of 20,000 faults that were randomly paired with wind velocity. Fragility models were generated for new 

wood poles, and poles that are 25, 50, 75, and 100 years old. The results are presented in the form of 

probabilities of failure as a function of wind velocity and ANSI pole class. 
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 Effects of Adjacent Spans and Correlated Failure Events on System-Level Hurricane Reliability of Power 

Distribution Lines (Darestani et.al. 2017).  

 

This paper investigates the effects of environmental conditions that may impact the decay rate of 

wooden power poles and ultimately the impact on system reliability. The results are presented in terms 

of probability of failure versus 3-second gust wind speeds for a mean pole age of 30 years. 

Based on the ease of use and the dependency on pole age, the project team decided to use the 

Shafieezadeh et al. (2014) fragility curve for modeling wind damage to aboveground power poles. See 

Figure 6-24. 

 

Figure 6-24: Power pole fragility model for wind effects (Shafieezadeh et al., 2014). 

In order to estimate damage due to excessive ice loads, the project team used a model developed for the 

FEMA study, Electrical Transmission and Distribution Mitigation: Loss Avoidance Study (2008). That study 

analyzed mitigation effectiveness of various measures as applied to power transmission and distribution 

lines in Nebraska and Kansas. For this effort, the project team adapted the methodology for loss 

avoidance presented in that study by substituting local wind hazard information and scaling some of the 

damage models presented in the FEMA study (more discussion below). The damage/pole failure model 

used in the FEMA study for ice hazards was a function of three parameters: the National Electrical Safety 

Code (NESC) (Grade N for older systems and Grade C or B for all new improvements); tree clearance 

(from zero: tree clearance exceeds 10 feet in all locations to three: tree clearance may be less than 10 feet 

at some locations, from 11 to 20 spans per miles of circuit); and radial ice index (from zero to three inches). 

In the FEMA report, for a condition that is associated with one inch radial ice thickness, NESC Grade N, and 

tree clearance index of 3, the probability of pole failure is 0.055. Based on the location of the Vermont 

alignments, this probability is associated with a MRI of 50 years. To scale ice thickness to different MRIs, the 

team used the wind speed-MRI distribution provided by the ASCE 7 Hazard Tool. 
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Loss avoidance calculation. To estimate projected losses based on wind and ice load hazards, the project 

team adopted the methodology presented in FEMA 2008. The methodology provides a stepwise 

calculation procedure that begins with an initial statement of exposure (i.e., rural versus urban, number of 

power poles, population) and hazard levels (ASCE 7). For many of the equations, FEMA 2008 references 

an earlier FEMA document (FEMA 2003), especially for quantifying ice load risks. For convenience, the 

calculation steps are reproduced below. 

Step 1: Number of poles damaged:  N = poles damaged = Pf  (length of power lines in miles)  (no. 

poles per mile)  

Step 2: Number of wires damaged:  W = N3 (for rural) or N6 (for urban) 

Step 3: Number of cross-arms damaged (pole does not require repair): C = N0.1 

Step 4: Number of guy wires damaged:  G = N0.01 

Step 5: Number of pole-mounted transformers to be repaired:  T = N0.2 

Step 6: Hours by lineman in the field:  H = N8 + W2 + C4 + G4 + T2 

Step 7: Number of lineman available: L = population served  0.005  

Step 8: Estimate no. of days to complete restoration of service: D100 = H / (12L) 

Step 9: Estimate losses based on FEMA (2003) unit costs: $7,502 to repair damaged pole & $220 per 

person per day of lost service (costs have been scaled to 2018 costs) 

6.2.4.3. Exposure or Inventory Information 

Vermont alignments: 

Derby to West Charleston: 

 Total population at risk: 5,254 

- Derby   4,613 (population) - Source: 2010 Census 

- W. Charleston  641 (population) – Source: 2010 Census 

 Miles of line 5.25 miles (source: EDA report) 

 No. of poles/mile  18 (default for rural areas) – Source: Federal Emergency Management Agency 

(2003, 2008) 

Bloomfield to Canaan: 

 Total population at risk (source: 2010 Census): 3,680 

- Canaan   972  

- West Stewartstown 386  

- Colebrook  1,394  
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- Lemington 104  

- Columbia  603  

- Bloomfield 221 

 Miles of line  26 miles (source: EDA report) 

 No. of poles/mile  20 (source: EDA report) 

Seabrook, TX Alignments: 

 Total population at risk: 11,952 (source: 2010 Census) 

 Power pole is a Class 5 (more narrow pole) and around 75 years old based on age of Seabrook (roughly 

60 years) 

 Amount of power lines buried equal to the length of streets that are being renovated under the EDA 

grant (1,950 feet) 

 Assume Risk Level 1 for power poles – lowest implemented 

 Distance between poles is 80 feet based on measuring separation in several Google Street Views and 

Google Maps of the Point. 

 66 poles in one mile 

6.2.4.4. Results for Vermont Alignments 

To determine the total benefit of these pole replacements, the project team calculated, on an annualized 

basis, the avoided losses from wind and ice damage for both projects. This section presents the 

intermediate and final results from this analysis. 

Project 1: Vermont alignments 

Based on the EDA data, the project team assumed aboveground power line replacements from i) Derby-

West Charleston – replacement of 5.25 miles of 46kV transmission lines, and ii) Bloomfield to Canaan – 

replacement of 26 miles of 34.5 kV transmission lines with 520 poles. 

i) Derby-West Charleston 

Table 6-3 contains the mean pole failure probability (Pf) from wind and ice damage as a function of wind 

speed. The table contains both the conditional probability of failure and the probability of failure weighted 

by wind speed probability, Pf = Pf |WS  PWS, that is where WS is wind speed (mph). 
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Table 6-3: Pole failure probabilities (Derby to West Charleston alignment). 

Wind speed (mph) Pf |WS PWS Pf 

10  0.024   -     -    

30  0.073   -     -    

50  0.122   0.484   0.059  

70  0.170   0.480   0.082  

90  0.219   0.034   0.007  

After calculating the pole failure probability, the project team followed the procedure presented above to 

produce an annual loss estimate. The calculation process begins by first estimating the total number of 

damaged components (N). Table 6-4 lists the values at each step of the calculation for the Derby to West-

Charleston power distribution alignment. 

Table 6-4: Damaged (Derby to West Charleston alignment). 

 Damage parameters 

Wind speed (mph) Pf N W C G T H 

10  -   -   -   -   -   -   -  

30  -   -   -   -   -   -   -  

50  0.059   5.563   16.688   0.556   0.056   1.113   82.55  

70  0.082   7.728   23.184   0.773   0.077   1.546   114.68  

90  0.007   0.695   2.085   0.070   0.007   0.139   10.31  

The number of linemen available to work on repairs is estimated next in Step 7. Based on the total 

population at risk for the service area (5,2,54), the total number of linemen available for repairs is 

5,2540.005 = 26. 

Table 6-5 shows the number of days until 100% service is restored (D100). The FEMA (2008) methodology 

assumes that in these emergency repair situations, linemen will work shifts of 12 hours per day, 7 days per 

week until all service is restored. 

Table 6-5: Days to full service restoration (Derby to West Charleston alignment). 

Wind speed (mph) D100 (days) 

10  -  

30  -  

50  0.26  

70  0.36  

90  0.03  
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The expected loss based on pole damage/failure is the sum of the total repair cost plus the cost that is 

incurred because of power disruption. As indicated in Table 6-3, $7,502 is used to reflect the cost to repair 

a damaged pole and $220 per person per day is assumed to cover loss of service. Both numbers have 

been scaled up to 2018 to reflect inflation increases. Table 6-6 lists each loss type by wind speed. The sum 

of all losses over all wind speeds is the expected annualized loss (EAL) for the project. 

Table 6-6: EAL from wind and ice damage to poles (Derby to West Charleston alignment). 

Wind speed (mh) Physical damage ($) Loss of function ($) Loss ($) 

10  -   -   -  

30  -   -   -  

50  41,731   372,849  414,580  

70  57,976   517,989   575,964  

90  5,214   46,584   51,798  

Expected annualized loss 104,921  937,422  1,042,343  

ii) Bloomfield to Canaan 

Table 6-7 presents the mean pole failure probability (wind and ice hazards) for power lines between 

Bloomfield and Canaan. 

Table 6-7: Pole failure probabilities (Bloomfield to Canaan alignment). 

Wind speed (mph) Pf |WS PWS Pf 

10  0.0110   -    -   

30  0.0330   -    -   

50  0.0550   0.5462   0.0300  

70  0.0770   0.4194   0.0323  

90  0.0990   0.0318   0.0031  

Table 6-8 shows the damage calculation values for the Bloomfield to Canaan alignment Because of the 

longer length of this alignment compared to Derby to West Charleston line, the damage calculation values 

are higher by a factor of at least two. 

The total number of linemen available for repairs, based on a population of 3,680, is estimated at Number 

of linemen: 3,680  0.005 = 18.4 

Table 6-9 presents the total number of days until 100% of service is restored. Table 6-10 provides the total 

EAL. 
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Table 6-8: Damage (Bloomfield to Canaan alignment). 

 Damage parameters 

Wind speed (mph) Pf N W C G T H 

10  -   -   -   -   -   -   -  

30  -   -   -   -   -   -   -  

50  0.030   15.622   46.866   1.562   0.156   3.124   231.83  

70  0.032   16.793   50.378   1.679   0.168   3.359   249.20  

90  0.003   1.636   4.908   0.164   0.016   0.327   24.28  

Table 6-9: Number of days to full service restoration (Bloomfield to Canaan alignment). 

Wind speed (mph) D100 (days) 

10 -    

30 -    

50 1.05  

70 1.13  

90 0.11  

Table 6-10: EAL due to wind and ice damage to poles (Bloomfield to Canaan alignment). 

Wind speed (mph) Physical damage ($) Loss of function ($) Total loss ($) 

10 -    -    -    

30 -    -    -    

50 117,196  1,047,094  1,164,290  

70 125,978  1,125,561  1,251,539  

90 12,273  109,656  121,930  

Expected annualized loss 255,447  2,282,312  2,537,759  

Table 6-11 Lists the total EAL for Project 1 (Derby to West Charleston and Bloomfield to Canaan). 

Table 6-11: Total EAL for Project 1 by loss type. 

Community Physical damage ($) Loss of function ($) Total ($) 

Canaan to Bloomfield 255,447  2,282,312  2,537,759  

Derby to West Charleston 104,921  937,422  1,042,343  

Expected annualized loss 360,367  3,219,735  3,580,102  

Benefit-cost ratios. Table 6-12 presents the BCR for Project 1 (undergrounding Vermont alignments) for 

four different time horizons (25, 50, 75 and 100 years). The assumption here is that relocating power lines 
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below ground will eliminate any wind or ice load hazards, and thus, the calculated annual losses will be 

zero. This analysis did not consider any new hazards that may affect the lines while buried, e.g., land 

movement, flooding, construction, etc. The project team used a discount rate of 2.2% in this analysis to 

discount future benefits (the rate used for other projects in the overall study). Therefore, the benefit 

presented in table are the losses avoided over the specified time period or horizon. The table presents the 

BCR by time horizon, based on the benefits calculated and the original project cost (extracted from the 

EDA grant information), which is $17,228,894. 

Table 6-12: BCRs for undergrounding Vermont alignments, by time horizon. 

Time horizon Benefit BCR 

25 years  $71,862,364  4.17 

50 years $111,493,407  6.47 

75 years $134,495,275  7.81 

100 years  $147,439,304  8.56 

6.2.4.5. Results for Seabrook, Texas Alignment 

The Texas project involved infrastructure improvements at The Point in Seabrook, Texas, including the 

burial of electrical power lines and other utilities in order to aid in disaster resiliency. Table 6-13 presents 

the pole failure probabilities (mainly from wind effects). 

Table 6-13: Pole failure probabilities (Seabrook, Texas alignment). 

Wind speed (mph) Pf |WS PWS Pf 

25 0 -    -    

50 0.04 0.712  0.028  

75 0.22 0.222  0.049  

100 0.49 0.051  0.025  

125 0.7 0.012  0.008  

150 0.84 0.003  0.002  

175 0.91 0.001  0.001  

200 0.95 1.4E-04 1.3E-04 

225 0.99 3.2E-05 3.2E-05 

250 1 7.3E-06 7.3E-06 

Table 6-14 contains the damage calculated using the steps outlined in Section 6.2.4.2. Since the wind 

hazard is more significant in this area, the range of possible wind speeds and their probabilities of 

occurrence (and the impact on the damage parameters) is much broader than in the Vermont case. 
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Table 6-14: Damage (Seabrook, Texas alignment). 

Wind speed (mph) 

Damage parameters  

Pf N W C G T H 

25 -  -   -   -   -   -   -  

50 0.028  0.694   2.082   0.069   0.007   0.139   10.30  

75 0.049  1.192   3.576   0.119   0.012   0.238   17.69  

100 0.025   0.607   1.822   0.061   0.006   0.121   9.01  

125 0.008   0.199   0.596   0.020   0.002   0.040   2.95  

150 0.002   0.054   0.163   0.005   0.001   0.011   0.81  

175 0.001   0.014   0.041   0.001  1.4E-04  0.003   0.20  

200 1.3E-04  0.003   0.010  3.2E-04 3.2E-05  0.001   0.05  

225 3.2E-05  0.001   0.002  7.7E-05 7.7E-06 1.5E-04  0.01  

Based on a total population at risk of 11,952, the number of linemen available to participate in the repair 

effort is estimated as 11,952  0.005 = 59.76. 

Table 6-15 shows the number of days required to completely restore service (D100) for different wind 

speeds. As in the Vermont case, the project team assumed that linemen will work 12 hours per day, 7 days 

per week until all service is restored.  

Table 6-15: Days to full restoration (Seabrook, Texas alignment). 

Wind speed (mph) D100 (days) 

25 -    

50 0.014  

75 0.025  

100 0.013  

125 0.004  

150 0.001  

175 2.8E-04 

200 6.7E-05 

225 1.6E-05 

 

Using the same unit cost values as in the Vermont case, Table 6-16 lists the EAL by type and by wind 

speed. 
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Table 6-16: EALs from wind damage to poles (Seabrook, Texas alignment). 

Wind speed (mph) Physical damage ($) Loss of function ($) Total loss ($) 

25  -   -  -  

50  5,206   46,512   51,718  

75  8,943   79,899   88,842  

100  4,557   40,713   45,270  

125  1,489   13,306  14,795  

150  409   3,653   4,062  

175  101   905   1,007  

200  24   216   240  

225  6   52   57  

Expected annualized loss  20,735   185,256   205,991  

Benefit-cost ratios. Table 6-17 presents the total benefits and BCR for each time horizon. A 2.2% discount 

rate has been assumed; the total project cost (as recorded by the EDA grant package) is $3,668,691. 

Table 6-17: BCRs for undergrounding by time horizon (Seabrook, Texas alignment). 

Time horizon Benefit ($) BCR 

25 years   4,134,794   4.13  

50 years  6,415,072   6.41  

75 years  7,738,546   7.73  

100 years   8,483,315   8.47  

6.2.4.6. Conclusions and Limitations 

The calculations of future benefits over varying time horizons suggest that the mitigation measures 

undertaken in the EDA projects (i.e., burying electric power distribution lines) are highly cost effective even 

for short time horizons (25 years). That is, the ROI (in the form of avoided losses) is highly likely given the 

measures that have been taken and the projected risks of hazard occurrence.  

In this study, the project team did not explore new risks that may have emerged as a result of burying 

these distribution lines. For example, there may be new risks from local flooding, land movement caused 

by settlement or landslides, or construction accidents. However, it is assumed that any of these new risks 

would be significantly smaller than those that have been mitigated (wind and ice) and therefore, would be 

negligible. 
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6.3. BENEFIT-COST ANALYSIS OF RESILIENT WATER SUPPLY 

GRID 

6.3.1. Introduction 

As part of its research, the project team examined the benefits and costs of implementing a resilient grid in 

an urban water supply network; that is, whether it is cost effective to improve network resilience by 

reducing the vulnerability or otherwise improving all or some trunk lines, thereby forming a resilient grid 

(Davis 2017). Specifically, the project team assume the stress event affecting the network would be an 

earthquake. Figure 6-25 shows a schematic network. The figure shows that a transmission line brings raw 

water from the source (in the figure, a reservoir) to a treatment plant. Treated water is conveyed to 

terminal reservoirs and then the distribution network. Within the distribution network, trunk lines convey 

water to distribution lines. Some or all of the trunk lines can form the resilient grid. In most U.S. cities, the 

distribution piping often has diameters of 6 or 8 inches. Trunk lines typically have diameters between 12 

and 24 inches. Because of topography and other geographic features, as well as historical development, 

water distribution networks in actual cities each have their own peculiarities. To draw general conclusions 

for cities in high seismic hazard locations therefore, rather than examining a particular, real system, the 

project team examined an idealized water supply network that seems generally representative of a 

medium-sized U.S. city. 

 

Figure 6-25: Schematic of water supply network. 
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The project team used a three-phased approach for this study: 

1. In Phase 1, the team examined various configurations of distribution and trunk lines to arrive at a 

water supply network or grid representative of a medium-sized U.S. city (the study region). The region 

is supplied from a water source outside the region via two transmission lines supplying two terminal 

reservoirs, a grid of larger trunk lines, and a network of smaller distribution pipes. The region is square-

symmetric to eliminate bottlenecks or other complicating factors. The size and spacing of distribution 

pipes and trunk lines will be selected so as to provide typical average day demands, including ordinary 

fire flows. The ordinary fire flows are two 5,000 gpm demands. The project team termed this network 

the as-is network.  

2. In Phase 2, the project team stressed the as-is network with random breaks and leaks resulting from 

earthquake excitation, together with extraordinary fire demands associated with the phenomenon of 

fire following earthquake. (Other natural hazards can also increase demand on a water supply system. 

Tsunamis, for example, can also ignite fires and increase demands for firefighting water supply. Under 

earthquake excitation, the as-is system can experience damage-associated costs of repairs as well as 

a shortfall of supply; that is, insufficient water pressure to continue serving all its customers and to 

provide firefighting water supply. The shortfall results because the system was not designed with such 

disasters in mind. This shortfall then has consequences in terms of loss of service, leading to larger 

fires and time to recovery.  

3. In Phase 3, the project team improved the as-is system to form a resilient grid. The improvement 

consists of replacing trunk lines (only) with lower vulnerability pipe; that is, pipe that experiences less 

damage when subjected to earthquake excitation. For example, one might replace cast iron or 

asbestos cement trunk lines with Earthquake Resistant Ductile Iron Pipe (ERDIP). The project team 

then determined the shortfall and resulting consequences of this resilient grid system, stressed with 

the same scenario, and compared them with those of the as-is system. 

The difference in loss of service, fire size, time to recovery, and costs between the as-is and resilient grids is 

a measure of the benefit of the resilient grid. Benefits include reduced losses in several categories: 

 Water-system repair costs  

 Fire-related property losses 

 Direct BI associated with loss of water service and fire damage 

 Indirect BI losses to the rest of the economy that does business with customers who lose water service 

or suffer fire damage 

 Deaths, injuries, and instances of PTSD resulting from fire following earthquake 

The project team converted the benefits to equivalent dollar amounts. In the case of deaths, nonfatal 

injuries, and PTSD, dollar amounts are assigned as in the Mitigation Saves 2017 Interim Report.  

Note that the benefits shown are not exhaustive. They are the ones that can be readily quantified and 

monetized. Mitigation produces other intangible benefits that are not considered here, such as prevention 

of loss of heirlooms, pets, etc. 
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The project team estimated the benefit per year by integrating benefits with frequency of hazard. The 

team estimated the present value of benefits over a time horizon by applying a discount rate equal to the 

real cost of borrowing. The present value of benefits divided by cost is the BCR for the resilient grid. 

6.3.2. Analytical Method 

6.3.2.1. Selecting a Characteristic Study Region 

To develop a study region representative of a medium-sized U.S. city, the project team compiled data for 

all U.S. cities with 2016 (est.) populations greater than 100,000, as shown in Figure 6-26, which encompass 

a total population of 93 million. Because of the decreasing ratio of repair resources with increasingly larger 

populations, the issue of resilient grids is more important the larger the city. Therefore, the initial focus of 

this study is on larger cities. For this purpose, the project team examined the 50 largest cities, as shown in 

Figure 6-27, which encompass a total population of 50 million. The mean population of these 50 largest 

cities is 998,000 and the median population 646,000, so a study area with population on the order of three 

quarters of a million persons was deemed representative of large U.S. cities. 

 

Figure 6-26: Frequency plot of U.S. cities with population greater than 100,000. 
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Figure 6-27: Distribution of 50 largest U.S. city populations, mean (998,000) and median (646,000). 

6.3.2.2. Initial Configuration 

The project team selected a square grid b x b blocks, each block being L (ft.) square, as shown in Figure 

6-28, as representative of a city of about 750,000 population. The study grid is intended to be 

representative of the distribution system of a medium-sized city. The grid consists of b + 1 lines of north-

south and b + 1 lines of east-west distribution pipes regularly spaced at L (depicted as gray lines). Specific 

values were b = 60 and L = 600 feet. The grid consists of 61 lines of north-south and 61 lines of east-west 

distribution piles regularly spaced at L (depicted as gray lines), so that the grid is 36,000 ft (6.82 miles) on a 

side. Trunk lines of the resilient grid are placed every n distribution pipes (depicted by bold blue lines in 

the figure as every 5th distribution pipe, or a grid of 3000 ft). The source is to the south of the grid, which 

supplies two terminal reservoirs placed symmetrically in the east and west parts of the city via transmission 

lines (in red – the transmission lines are not part of the model). The distribution grid is not connected to 

the trunk grid except at intersections of the trunk grid. All parameters are listed in Table 6-18. 
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Figure 6-28: Study grid. 

Table 6-18: Parameters and acronyms used in the study and their values. 

Symbol Parameter Value  

Acont Additional replacement value for contents  50% 

B No. of blocks 60 

B pa Benefits per annum To be solved for 

BCR Benefit-cost ratio To be solved for 

BLF Buildings per large fire  312.5 (derived) 

C Per capita water consumption (gallons per day) 90 

C Project cost per inch-diam. per ft. of installed pipe $50 

Cbldg Replacement cost for buildings  $200 per sq. ft. 

Ccust Cost to customers To be solved for 

CHI Value lost or cost of human injury To be solved for 

Clos Cost of loss of service per day per service connection $720 

Cmorb Value lost due to an injury $0.55 million 

Cmort Value lost due to a fatality $9.4 million 

Cprop Replacement cost for buildings and contents A variable 

CPTSDpc Value lost or cost of PTSD, per person $33,750 

CPTSDpLF Value lost or cost of PTSD, per large fire To be solved for 

Cr Cost of labor for repairs (dollars per hour per worker $100 per hour 

Crep Cost of repairs  = Cutility + Ccust 
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Symbol Parameter Value  

Crep/hr Cost of repair per hour = FrepMatls  CrepLabor 

CrepLabor Labor cost per hour for repairs, 4 pers. crew $400 

Cutility Cost to utility To be solved for 

d Distribution pipe diameter (inches) Varied; d = 6” finally employed 

Dc No. of days required to complete all repairs To be solved for 

EOD Equivalent orifice diameter  EOD = d(0.5d-0.155) 

FD Normal fire demand on the system (gpm) 10,000 

FFi Fire flow initial (gpm) 3,000 

fmorb Nonfatal injuries per million dollars of property loss 1.73 

fmort Fatalities per million dollars of property loss 0.36 

FrepMatls Factor on labor for materials and equipment 30% 

h No. of households (HH) per block 62.5 

Hday No. of hours per day worked by crews 12 

Igns Number of ignitions A variable 

K1 A factor to account for pipe material Varies by material 

L Length of a block (ft.) 600 

MMI Modified Mercalli Intensity VI~IX (denoted 6~9) 

n Interval of trunk lines vis-à-vis distribution lines Varied; n = 10 finally employed 

Ndr No. of distribution repairs To be solved for 

Ndr Total number of repairs to distribution pipe  To be solved for 

NFE Number of fire engines = f(P) 45 

Ntr No. of trunk line repairs To be solved for 

Ntr Total number of repairs to trunk lines To be solved for 

p No. of persons per HH 3.5 

P Residential population in thousands  787,500 

PGA Peak ground acceleration (g) A variable 

PGD Permanent ground deformation A variable 

PLF Population per large fire 1,084 (derived) 

PTSD Post-traumatic stress disorder An acronym 

PV(B) Present value of all future benefits To be solved for 

Rd Crew-hours for distribution line repair  7.6 

RR Repair rate A variable 
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Symbol Parameter Value  

Rt Crew-hours for trunk line repair  16.1 

Tcrew Total no. of repair crews employed by a system B2h/10,000 

TFA Total floor area (sq. ft.) 504 million 

TFALF Total floor area per large fire, sq. ft.  700,000 sq. ft. (derived) 

TFApc Average total floor area per capita (sq. ft. pc) 640 

Tma Mutual aid crew increase per day 20% 

Tmax Upper limit of (1+ Tma)
Dc 2 

WP Wave propagation An acronym 

Z Reservoir head above grid (ft.)  300 

Trunk lines are placed every n distribution pipes (depicted by bold blue lines in the figure as n = 5 or every 

fifth distribution pipe, or a trunk grid of 3000 ft). The source is to the south of the grid and supplies two 

terminal reservoirs placed symmetrically in the east and west parts of the city via transmission lines (shown 

in red, the transmission lines’ vulnerability is considered in the model). The distribution grid is connected to 

the trunk grid only at intersections of the trunk grid. Both grids are assumed to be at 0 feet elevation 

connected to the terminal reservoirs at Z (feet.) elevation with negligible head loss from each reservoir to 

the connection to the trunk line intersection. That is, an unlimited amount of water is delivered at two 

locations to the trunk and distribution grids, at a head of Z = 300 feet, equivalent to 130 psi pressure, prior 

to any frictional losses.  

Each block has h households (HH) with one service connection per household) and p=3.5 persons per 

HH29, so that there are b2h = 225,000 service connections for a total population of b2hp = 787,500, a value 

which is between the median and mean of the 50 largest U.S. cities. Based on data shown in Figure 6-29 

for 2005-2010 for selected U.S. cities (Kenny and Juracek 2012), a value of c = 90 gallons per day per capita 

(gpd pc) for domestic water use was employed in this study. 

                                                 
29 The 2017 US national average population per household is 2.77 

(https://www.census.gov/quickfacts/fact/table/US/PST045217). The value of 3.5 reflects urban daytime population– 

see McKenzie et al (2010). 

https://www.census.gov/quickfacts/fact/table/US/PST045217
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Figure 6-29: Data on 2005-2010 domestic water use for selected U.S. cities. 

The as-is network then consists of two grids: (a) the distribution grid of fixed spacing bL and a diameter to 

be determined in Phase 1, and (b) the trunk line grid whose diameter and spacing is also determined in 

Phase 1. The pipe material in the as-is grid is assumed 50% cast iron and 50% ductile iron. The distribution 

and trunk line grids are hydraulically connected at all of their respective intersections, and the two grids at 

each trunk line intersection. 

6.3.2.3. Hydraulic Analysis and Sizing 

The network (i.e., the two interconnected sub-grids) was hydraulically modeled using EPANET (Rossman 

2000) in a pressure driven analysis (PDA) mode, with one demand per one node for each block; that is, 

the target demand per block is h  p  c = 16,399 gpd = 13.67 gpm per node/block, with a target nodal 

pressure of 70 psi and a minimum acceptable pressure of 20 psi.30 Thus, the total target service 

connection demands on the system are h  p  c  b2 = 13.67  3600 = 49,212 gpm = 70.865 million 

gallons per day (mgd). Added to this is a normal fire demand FD consisting of two fires each requiring 

5,000 gpm or a total of 10,000 gpm. Thus, the total demand on the as-is system is 59,212 gpm. 

There are an infinite number of ways to configure the two grids to meet these targets. System design is 

usually accomplished as a cost minimization problem subject to constraints of acceptable flow and 

                                                 
30 The values of 20 and 70 psi were determined based on discussions with several system operators. The lower value 

is the minimum acceptable pressure for firefighting water supply, and the higher acceptable value the maximum 

pressure in mains supplying residences – a somewhat lower value (40~60 psi) may be more typical, but the higher 

value of 70 psi was employed knowing that the system would be subjected to numerous leaks. 
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pressure and practical considerations such as that distribution pipes are typically 6 inches or 8 inches in 

diameter and trunk lines are 12 inches to 16 inches in diameter. 

Cost C was treated here as project cost per inch-diameter per foot of installed pipe31 including all valves, 

hydrants and other appurtenances. Project cost means all engineering, overhead, contingency and other 

costs are included. Costs for installation of new ductile iron water supply pipe mains vary dramatically, 

because of factors such as the size of the project; whether the pipe is being installed in a new 

development or is replacing existing pipe already in service; regional variations in labor costs; the 

constraints imposed by season and weather; costs associated with rerouting traffic; joint type; overhead 

burden; and many other factors. Discussions with system operators in California and a review of recent 

cost data from Arkansas, Ohio, and North Carolina found a range of costs of $10 to $100 per inch-foot, 

with so-called soft costs such as engineering and project management ranging from 30% to extremes of 

100%. Given this wide variation, this study employed an installed pipe cost of C = $50 per inch-foot. If a 

reader feels that a cost difference is more appropriate for a specific application ($20 per inch-foot) the 

costs can simply be multiplied by the ratio (i.e., 0.4). 

6.3.2.4. As-is Design and Validation 

Given the above parameters, a least-cost network configuration can be determined. The project team 

started with Case 1, which consisted of all distribution pipes being 6 inches in diameter and no trunk lines, 

as shown in Figure 6-30. Using C = $50 per inch-foot, this proposed system has a replacement value of 

2dbLC(b+1) = $1.32 billion (this is the total of the costs of installing the distribution grid and the trunk line 

grid, in this case the latter being zero). However, hydraulic analysis shows this configuration is unable to 

furnish adequate pressure virtually anywhere, and is rejected.  

 

 

                                                 
31 “per inch-ft.” is a common rule of thumb for estimating installed pipe cost. If the cost is $10 per inch-foot, then an 8-

inch pipe costs $80 per foot installed, and a 20-inch pipe $200 per foot installed. 
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Note: (top-left) 6-inch distribution pipe, no trunk lines, two red nodes are the 5000 gpm fire demands; 

(top right) resulting pressure distribution, gray - less than 30 psi everywhere. Total cost = $1.32 billion. 

(bottom) Frequency distribution of nodal pressures, from which it can be seen that almost 100% of nodes 

have less than 30 psi pressure, with a median nodal pressure ((P_n ) ̆) of about 2 psi, which is 

unacceptable. 

Figure 6-30: Water network Case 1: first round of initial design. 

Cases 2 through 9 are shown in Figure 6-31 through Figure 6-38 and are summarized in Table 6-19, from 

which it can be seen that Case 5, consisting of a distribution grid of 6-inch diameter pipe with a trunk line 

grid of 16-inch pipe every tenth distribution pipe is the least cost solution (at $1.72 billion) that satisfies the 

target goals with a median nodal pressure of 55 psi (with 2  5,000 gpm fire flows) and 73 psi (no fire 

flows, Case 5A shown in Figure 6-38. Case 5 has a total of 4.9 million ft. of pipe (927 miles), consisting of 

4.39 million ft. (831miles, 89.7% of all lengths) of 6-inch distribution pipe and 504,000 ft. (96 miles, 10.3%) 

of 16-inch trunk line pipe. This as-is system has a replacement value of $1.32 billion for the distribution 

system and $403 million for the trunk line system, or a total of $1.72 billion. 
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Note: 6-inch distribution, 16-inch trunk lines every 20th distribution pipe; resulting pressure distribution, 

less than 30 psi almost everywhere. Total cost = $1.65 billion, but unacceptable due to inadequate 

pressures. 

Figure 6-31: Water network Case 2: second round of initial design. 
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Note: 6-inch distribution pipe, 16-inch trunk lines every 5th distribution pipe; pressure distribution 

adequate everywhere. Total cost = $2.07 billion. Pn̆= 83 psi, which is acceptable. 

Figure 6-32: Water network Case 3. 

 
Note: 6-inch distribution pipe, 16-inch trunk lines every 6th distribution pipe; pressure distribution 

adequate everywhere. Total cost = $1.95 billion. 

Figure 6-33: Water network Case 4. 
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Note: 6-inch distribution pipe, 16-inch trunk lines every 10th distribution pipe; pressure distribution 

adequate everywhere. Total cost = $1.72 billion, median nodal pressure 55 psi, acceptable. 

Figure 6-34: Water network Case 5. 
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Note: 6-inch distribution pipe, 16-inch trunk lines every 12th distribution pipe; pressure distribution 

adequate everywhere. Total cost = $1.66 billion. 

Figure 6-35: Water network Case 6. 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   436 
 

 
Note: 6-inch distribution pipe, 16-inch trunk lines every 15th distribution pipe; pressure distribution barely 

adequate everywhere. Total cost = $1.61 billion. 

Figure 6-36: Water network Case 7. 

 
Note: 8-inch distribution pipe, 12-inch trunk lines every 15th distribution pipe; pressure distribution barely 

adequate everywhere. Total cost = $1.76 billion. 

Figure 6-37: Water network Case 8. 
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Note: 6-inch distribution pipe, 16-inch trunk lines every 10th distribution pipe; median nodal pressure 73 

psi, Acceptable. Total cost = $1.72 billion. 

Figure 6-38: Water network Case 5A, no fire flow. 
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Table 6-19: Phase 1 as-is design results. 

Case 
Distrib. 

Diam. 

Trunk lines Cost 

(billions $) 

median nodal 

pressure (𝑷𝒏̆) 
Acceptable? 

Diam. Spacing 

1 6” none none $1.32 2 No 

2 6” 16” 20th $1.55 6 No 

3 6” 16” 5th $2.07 83 marginal 

4 6” 16” 6th $1.95 75 OK 

5 6” 16” 10th $1.72 55 OK 

5A 6” 16” 10th $1.72 73 
OK  

(no fire flow) 

6 6” 16” 12th $1.66 50 OK 

7 6” 16” 15th $1.61 42 marginal 

8 8” none none $1.76 10 No 

9 8” 12” 15th $1.98 35 marginal 

As a form of validation, the project team compared the configuration of this initial design with the 

distribution system of the city of San Francisco, as shown in Table 6-20, demonstrating the as-is model is 

reasonably representative of a large U.S. city. Table 6-21 and Figure 6-39 show the comparison of the 

frequencies of distribution pipe diameters for several systems, and Table 6-22 and Figure 6-40 show the 

frequencies for pipe materials, showing, given the somewhat simplified nature of the model, reasonable 

agreement with real systems. 
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Table 6-20: Comparison of as-is design and city of San Francisco water distribution parameters. 

Parameter As-is design San Francisco 

2016 population (est.) 787,500 870,887 

Area (sq. mi.) 47 47 

Retail water use per capita (mgd, 2014-15) 70 77 

total length pipe (millions ft) 4.9 6.5 

       length breakdown by size (%)                    6" 90% 29% 

8" - 37% 

10" - - 

12" - 12% 

14" - - 

16" 10% 7% 

18" - 0.2% 

20" - 1.9% 

> 20" - 7.9% 

 

Table 6-21: Distribution of pipe diameters for as-is and selected water districts. 

Diameter As-is 
San 

Francisco 
EBMUD LADWP 

6 90% 29% 49% 50% 

8 90% 66% 76% 75% 

10 90% 66% 77% 76% 

12 90% 78% 88% 87% 

14 90% 78% 88% 87% 

16 100% 85% 92% 90% 

18 100% 85% 92% 90% 

20 100% 87% 94% 91% 

24 100% 95% 96% 93% 
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Figure 6-39: Distribution of pipe diameters for as-is and selected water districts. 

 

Figure 6-40: Distribution of pipe materials for selected water districts. 

Table 6-22: Distribution of pipe materials for selected water districts. 

Material SF EBMUD LADWP 

AC  30% 8% 

CI 62% 34% 61% 

DI 29%  14% 

PVC  10% 0% 

STY 6% 26% 15% 
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6.3.2.5. Rationale for Resilient Grid 

In the previous section, a system representative of a medium-sized U.S. city has been sized to meet daily 

demands including fire flows, in a manner similar to how most water supply networks are sized. Designing 

in this manner however may fail to meet the demands of extraordinary events such as earthquakes. Such 

extraordinary demands can be met by several means. Designers can wholly increase the pipe diameter 

size of the distribution network, using new but ordinary pipe with its seismic vulnerabilities. However, this 

can be rather expensive. Alternatively, a designer can construct a wholly independent special system, such 

as San Francisco’s Auxiliary Water Supply System or Vancouver, British Columbia’s Dedicated Fire 

Protection System (Scawthorn et al. 2017; Scawthorn, Ballantyne and Blackburn 2000), although such 

systems also may be expensive. 

Another option is to create a resilient grid that will survive the extraordinary event and facilitate temporary 

measures to meet the extraordinary demands. “A resilient network places seismically robust pipes at key 

locations and alignments to help increase the probability of continuous water delivery and reduce the time 

to restore areas suffering a loss of water services after an earthquake” (Davis 2017). This study examines 

the resilient grid concept. However, rather than piecemeal replacement of only selected pipes at key 

locations, the project team left the distribution grid untouched and replace the entire trunk line grid with 

ERDIP, which would be hydraulically isolated from the distribution line grid by seismically actuated valves 

following a major earthquake. In calculating benefit-cost, the project team included the cost of replacing 

the entire trunk line grid, even though portions of the trunk line grid in some cases might not require 

replacement (thus, the benefit-cost calculated in this study is probably an underestimate). 

6.3.2.6. Pipeline Damage and Restoration 

Earthquake damage to the pipe network is typically due to one of two mechanisms: “the wave 

propagation hazard and the permanent ground deformation (PGD) hazard. The wave propagation hazard 

is transient and corresponds to ground shaking. It results in transient strains in buried pipelines, strains that 

disappear when the shaking has stopped. The wave propagation hazard occurs in every event and 

generally leads to low to moderate damage rates for buried pipe (repairs per kilometer of pipe) over wide 

areas.” (O'Rourke and Liu 2012).  

The effect of PGD are much more damaging to pipes than wave-propagation effects, but PGD typically 

occurs only over a portion of a network, whereas wave-propagation effects typically affect the entire 

network. For example, in San Francisco in the 1989 Loma Prieta earthquake, there were 123 repairs 

concentrated in the relatively small Marina district (O'Rourke et al. 1990), all due to PGD effects, and only 

35 repairs spread over the rest of the city (some of which were also due to PGD effects), so that the ratio 

of repair rates from permanent ground deformation to those of wave propagation was perhaps 135/23 or 

about 6 to 1. 

To model leaks and breaks in pipe due to wave-propagation effects, the project team used the American 

Lifelines Alliance (ALA) repair rate estimate for buried pipe ALA(2001): 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   442 
 

RR = K1 0.00187PGV 

Equation 6-1 

Where K1 is a factor to account for pipe material, RR = repairs per 1,000 ft. of main pipe and PGV is peak 

ground velocity in units of inches/second. The project team used K1 = 0.75 to account for the as-is model 

being a mix of CI, DI and other pipe types. The 0.75 factor was arrived at after a review of such factors in 

(ALA 2001). Thus, the total number of repairs to distribution pipe, denoted here by Ndr, and the total 

number of repairs to trunk lines, denoted by Ntr, can be estimated given the total length of distribution 

and trunk lines affected by various levels of PGV, respectively.  

Following commonly accepted assumptions, (Cornell University 2008; DHS 2003) 80% of repairs are due 

to wave passage (PGV effects) repair leaks and the remaining 20% repair breaks. Leaks come in four 

possible types: annular, round, longitudinal, and local loss of wall (also called windowpane). Using relations 

and frequencies (Cornell University 2008) for equivalent orifice area (EOA) for each leak type, the project 

team developed an overall average EOA, which it employed for random repairs. The specific equivalent 

orifice diameter (EOD) is well approximated by EOD = d  (0.5d-0.155). Thus, if the pipe diameter d is 6 

inches, then the average EOD is 2.29 inches, including a 20% weighting of a full pipe break. 

Modeling leaks and breaks in pipe due to PGD effects is more problematic for this study in that the 

location(s) of PGD needs to be specified. PGD effects (mostly liquefaction, lateral spreading, landslide, and 

fault slip) typically only affect a portion of a network. For example, Figure 6-41 to Figure 6-45 show 

potential liquefaction zones for several major West Coast cities. Moreover, the location of the PGD-

impacted area, whether it is central to the system, or near the major supply nodes, or on the far margins 

of the network, will greatly affect the impact on the network. Rather than specify a location, or take a 

probabilistic approach, the project team considered ground-failure effects by averaging PGD repair rates 

over the entire region, and combining them with wave-propagation repair rates. That is, the project team 

assumed about one sixth (16.7%) of the study region is subject to PGD effects, with a 6 to 1 ratio of repair 

rates from PGD to those of wave propagation , resulting in the overall number of repairs due to PGD 

effects being equal in number to those due to wave-propagation effects, so that by simply doubling 

Equation 6-1, PGD effects are reasonably accounted for. It should be noted that repairs associated with 

PGD are more likely to be breaks than leaks, perhaps by as much as a factor of four (ALA 2001). So, this 

study may underestimate breaks resulting from permanent ground deformation, their hydraulic 

consequences, and, ultimately, benefits of the resilient grid. 

A fully probabilistic Monte Carlo analysis would be of interest, but the additional effort does not seem 

necessary to achieve the objectives of this project. 
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Source: http://geohub.lacity.org/datasets/4842ad85584c430481246852280257c2_9 

Figure 6-41: City of Los Angeles, with potential liquefaction zones shown in red. 

 
Source: https://data.sfgov.org/City-Infrastructure/San-Francisco-Seismic-Hazard-Zones/7ahv-68ap/data 

Figure 6-42: City of San Francisco, with hazard zones (almost entirely liquefaction, some landslide in the 

middle of the city) shown in red. 

http://geohub.lacity.org/datasets/4842ad85584c430481246852280257c2_9
https://data.sfgov.org/City-Infrastructure/San-Francisco-Seismic-Hazard-Zones/7ahv-68ap/data
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Figure 6-43: EBMUD liquefaction zones (Porter 2018). 

 

Figure 6-44: City of Seattle liquefaction zones. 
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Source: https://www.portlandoregon.gov/pbem/ 

Figure 6-45: City of Portland liquefaction zones. 

Regarding recovery, the method of Porter (2018) is followed in a somewhat simplified manner. Repairs to 

distribution pipe require Rd = 7.6 crew-hours to accomplish, while repairs to trunk lines require Rt = 16.1 

crew-hours. Crews work Hday hours per day, assumed to be 12 hours per day, until all repairs are 

completed, and several crews can work on one repair to shorten the time required for completing the 

repair. Repairs are assumed to be initiated immediately following the earthquake, and to progress at the 

above rates until completed. The duration of repairs depends on the number of repair crews available. 

The total number of repair crews, denoted by Tcrew, is estimated as the total number of service connections 

normally in service, divided by 10,000 (Porter 2018):   

Tcrew = (total number of service connections)/10,000 

Equation 6-2 

That is, if a water agency has 225,000 service connections (e.g., the project study area), it has 23 crews. 

These are in-house crews. For extraordinary events, crews are added by mutual aid. They are assumed to 

arrive gradually, with an additional Tma = 20% of the number of crews already on site arriving each day 

https://www.portlandoregon.gov/pbem/
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after the first day. Mutual-aid crews arrive until the number of mutual-aid crews equals the number of in-

house crews, which happens on the Day 6 after the earthquake. Mutual-aid crews are assumed to stay 

until the repairs from the mainshock are completed. (This analysis excludes repairs associated with 

aftershocks.) For the above example, on Day 1, the agency can draw on 23 crews, on Day 2 there are 28 

crews, and so on, as shown in Table 6-23 with corresponding number of repairs. 

Table 6-23: Maximum possible repairs per day. 

Day 1 2 3 4 5 6 7 8 9 10 

Number of crews 23 28 34 41 46 46 46 46 46 46 

Distrib. repairs per day 36 44 53 64 72 72 72 72 72 72 

Cum. distrib. repairs 36 80 133 197 269 341 413 485 557 629 

Trunk repairs per day 17 21 25 31 34 34 34 34 34 34 

Cumulative trunk repairs 17 38 63 94 128 162 196 230 264 298 

Given the above, solve for Dc, the total number of days required to complete all repairs, using Equation 

6-3:  

2(𝑅𝑑𝑁𝑑𝑟 + 𝑅𝑡𝑁𝑡𝑟) = ∑{𝑇𝑐𝑟𝑒𝑤 [(1 + 𝑇𝑚𝑎)𝐷 ≤ 𝑇𝑚𝑎𝑥]𝐻𝑑𝑎𝑦}

𝐷𝑐

𝐷=0

 

Equation 6-3 

The left-hand side of the equation gives crew-hours required to perform 2(Rd + Rt) repairs, the factor of 2 

accounting for pipe repairs associated with ground-failure, not included in Equation 6-1. The right-hand 

side of the equation gives the number of crew-hours expended by Day Dc. The inequality in the right-

hand side of Equation 6-3 is shorthand notation to cap at Tmax the number of crews on Day D as a 

multiple of Tcrew. The multiple is taken here as Tmax = 2. 

6.3.2.7. Modeling Fire Ignition, Growth, and Firefighting Response 

For fires following earthquake, the project team assumed an average total floor area per capita, for all 

types of building occupancies of TFApc = 640 sq. feet, taken from ATC-52-1 (Applied Technology Council 

2010) for a total floor area (TFA) of 504 million square feet for the entire as-is model. The project team 

estimated the number of ignitions using Equation 6-4, in which shaking is measured using peak ground 

acceleration, PGA, measured in units of gravity, g. See SPA Risk (2009). 

Igns = (0.5819  PGA2 – 0.0294  PGA)  TFA 

Equation 6-4 

In the equation, Igns refers to the number of ignitions and is rounded to the nearest whole number, and 

TFA is measured in units of millions of square feet. For example, PGA = 0.3g  produces a mean of 22 
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ignitions for the study area. In the present calculations, ignitions are random and may vary around this 

mean.  

Estimating the water needed for fire suppression is a complex matter (Technical Council for Lifeline 

Earthquake Engineering 2005). This study assumes a modest delay in reporting and response such that 

the equivalent of three structures are involved when firefighters arrive at the fire. Using guidelines in DHS 

(2003), to fight a fire involving three structures requires a fire flow (a flow of firefighting water) of 3,000 

gpm. Large fires require significantly larger fire flows. For 10 ignitions, the total required fire flow equates to 

30,000 gpm. For reference, a normal fire engine’s maximum capacity is 1,500 to 2,000 gpm. 

Thus, if the system were subjected uniformly to shaking of MMI = 7, the total demands on the system 

includes the ordinary service connection demands of 49,212 gpm; no ordinary fire demands; break and 

leak demands (assuming full pressure for the full 4.9 million ft. of pipe) of about 4.9  17,700 = 86,765 

gpm; and extraordinary fire demands of 39,000 gpm, for a total of 174,977 gpm. This is the desired total 

flow. The question is whether the damaged system can furnish it. 

The number of fire engines is assumed to total only those belonging to the jurisdiction, on the assumption 

that (at least initially) nearby jurisdictions are all affected by the earthquake and cannot assist for the first 12 

hours. (This assumption is dependent on mutual aid and other factors, and should probably be examined 

further.) The number of engines for a jurisdiction is estimated as: 

NFE = 3.82 + 0.052  P n = 202, r2 = 0.45 

Equation 6-5 

The equation is based on unpublished work by Scawthorn. In the equation, NFE = number of fire engines 

(rounded to nearest whole number) and P is residential population in thousands. The value n = 202 in the 

equation refers to the number of jurisdictions examined, and r2 refers to the coefficient of determination 

from the regression analysis that produced the equation. For the study area, with a population of 787,500, 

Equation 6-5 rounds to 45 engines. By comparison, the city of San Francisco with a 2016 population of 

871,000 has 44 engines. Using Equation 6-5 would produce an estimate of 49 fire engines for San 

Francisco, suggesting reasonable agreement. (San Francisco has experienced very rapid population 

growth recently. Its 2010 population was 805,000, which would equate to 46 engines, and its 2000 

population was 777,000, which would imply 44 engines). 

Firefighting is a complex matter (Technical Council for Lifeline Earthquake Engineering 2005). The project 

team used simplified but reasonable assumptions typical of West Coast cities (e.g., wood bared residential 

construction), as follows: 

a. Ignitions initially require two engines to respond. Thus, for the study area if there are more than 22 

ignitions, the number of ignitions exceeding 22 are initially unfought because of insufficient engines. 

Those fires grow. They are referred to here as large fires because they will rapidly grow to involve a 

large number of buildings. 
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b. Ignitions that are within 1,000 feet of a node with at least 20 psi pressure are responded to first, by two 

engines, and are confined to three buildings (or a very few neighboring buildings) such that the 

property loss is small relative to conflagrations that develop from large fires. These smaller fires are 

neglected for present purposes.  

c. Ignitions that are farther than 1,000 feet from a node with pressure of at least 20 psi require an 

additional engine for each increment of 1,000 ft. for hose-relay purposes. If there are insufficient 

engines to relay water, the ignition grows to become a large fire, because responding fire engines will 

not have water to suppress the fire.  

d. Large fires within a few tens of minutes grow to involve several buildings that under ordinary 

circumstances would require second or greater alarm32 (i.e., at least two engines). If the number of fire 

engines available for a large fire is five or more, the property loss is still relatively small, and is neglected 

for present purposes. If fewer than five engines are available, then a large fire grows to a size that 

cannot be contained, and will cross several firebreaks (e.g., streets). The actual extent is highly 

dependent on wind speed, street width, building setback, building cladding, roofing, and other factors. 

Based on a review of typical conditions in the San Francisco Bay and Los Angeles regions (Scawthorn 

2018; Scawthorn 2011), it is assumed here that the average large fire burns five city blocks. This may 

seem an extraordinarily large area, but it must be kept in mind that by definition large fires are 

unfought, either because of insufficient engines or insufficient water. As such, there is nothing to stop 

their spread, save the cumulative probability of not crossing a firebreak. Given reasonable ranges of 

this probability, it can be shown that five city blocks is an average total burned area. For the study area, 

this equates on average to buildings per large fire BLF = 562.5 = 312.5, which have a total population 

per large fire, PLF of 3.5  312.5 = 1,094 occupants. Given there are 640 sq. feet of floor area per 

occupant, equivalent to 2,240 square feet per building, TFALF or total floor area per large fire is 700,000 

square feet. 

6.3.2.8. Estimating Water and Fire Losses 

Losses associated with damage to water supply include: 

 Pipeline repair cost, denoted here by Cutility 

 Direct BI loss to water customers who lose service, denoted by CDBI,w 

 Buildings that burn in fires that grow only because of lack of adequate firefighting water supply, 

resulting in:  

▪ Cost of property damage, denoted by CPL 

▪ Deaths, financially quantified here in terms of DOT’s acceptable cost to avoid statistical deaths and 

denoted by Cmort 

                                                 
32 The meaning of and number of fire engines responding to a “greater alarm” varies by department due to such 

factors of department size, building density and construction. In general, a first alarm has a response of two or 

three engines (as well as other apparatus, not relevant here) with another two or three engines for each additional 

alarm. 
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▪ Nonfatal injuries financially quantified here in terms of the DOT’s acceptable cost to avoid a statistical 

serious injury (AIS level 3) and denoted by Cmorb 

▪ Cost of PTSD among occupants, denoted here by CPTSD 

▪ Direct BI loss to customers, denoted by CDBI,f 

▪ Indirect BI to the rest of the economy that does business with the customers whose homes or 

buildings burn down because of fires that grow only because of inadequate firefighting water, 

denoted by CIBI,f 

The total property loss associated with repairs (denoted here by Crep) includes the actual cost to the water 

utility of the repair (i.e., labor and materials), plus Ccust the cost to customers of the loss of service: 

Crep = Cutility + Ccust 

Equation 6-6 

Cost to the water utility for all repairs is: 

𝐶𝑢𝑡𝑖𝑙𝑖𝑡𝑦 = ∑(𝐶𝑟𝑒𝑝/ℎ𝑟𝑇𝑐𝑟𝑒𝑤 𝐻𝑑𝑎𝑦𝐷)

𝐷𝑐

𝐷=0

 

Equation 6-7 

where Crep/hr is cost of repairs per hour equal to CrepLabor dollars per hour per worker, assumed here to be 

$100 per hour per worker and a four-person crew times a factor FrepMatls to account for cost of materials 

and equipment, assumed here to be 30% so that the hourly cost of repairs is: 

Crep/hr = FrepMatls  CrepLabor 

Equation 6-8 

while Dc, Hday, and Tcrew are defined in the section on repairs, above.  

Cost to customers Ccust is assumed solely to be due to the cost of loss of service Clos, which is estimated at 

$720 per day per service connection, based on the total regional economic loss attributed to loss of water 

in the 2008 Shakeout study (Jones et al. 2008), divided by the number of customers affected. Thus for 

example, if one incident of pipe damage removes 100 service lines from service, and the repair cannot be 

made until three days following the incident, the cost of loss of service to customers is 3  100  $720 = 

$216,000.  

The total cost due to fires, CF, is the sum of financial cost due to human casualties, property losses and 

direct BI:  

CF = CPL+ CHI + CBI 

Equation 6-9 
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where CPL is the cost of property losses, CHI is the value lost or cost of human injury, and CBI is the cost of 

direct BI, in millions of dollars.  

Regarding property losses, a replacement value Cbldg for buildings typical of West Coast cities of $200 

per square foot (RSMeans 2016) is employed with an addition for contents of Acont of 50%, for a total Cprop 

of $300 per square foot. Given that the total floor area destroyed per large fire, TFALF is 700,000 square 

feet, the property loss per large fire is a CPL of $210 million per Equation 6-10. 

CPL = TFALF  Cprop 

Equation 6-10 

Estimation of value lost due to human injury CHI follows the methods in Multihazard Mitigation Council 

(2018) and is the sum of values lost, or costs, due to mortality and morbidity CMM and PTSD CPTSD:  

CHI = CMM + CPTSD 

Equation 6-11 

Estimating the frequencies of mortality and morbidity due to post-earthquake fires is difficult. Many 

earthquakes have very few deaths due to fires, but a few earthquakes are dominated by fire (Spence, So 

and Scawthorn 2011; Technical Council for Lifeline Earthquake Engineering 2005). On the one hand, 

earthquakes can be regarded as an alarm that will alert the population so that they will not be trapped by 

fire, while on the other hand collapsed buildings may trap people who cannot extricate themselves from 

the path of fires. 

The project team employed a simple approach here, consisting of a review of U.S. fire statistics for the 

period 2003-2015 (USFA 2018). In that period, on average, there were 0.27 fatalities and 1.39 injuries per 

million dollars of property loss, which are the ratios used here for fmort and fmorb per million dollars of 

property loss. See Table 6-24. The value of a statistical life, or cost Cmort due to a fatality is $9.4 million, and 

value of a statistical injury, or cost Cmorb, due to an injury is $0.55 million. 

CMM = CPL (Cmortfmort + Cmorbfmorb) 

Equation 6-12 

which equates to (0.27  $9.4 + 1.39  0.55) = $3.3 million per million dollars of property loss – that is, the 

cost of mortality and morbidity is 3.3 times larger than the property loss. 

Regarding PTSD, the project team assumed all customers in buildings destroyed by large fires suffer PTSD, 

due to which there is a value lost or cost CPTSDpc of $33,750 per person (Multihazard Mitigation Council 

2018).  
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Table 6-24: U.S. fire statistics 2003-2015 (USFA 2018). 

Year 
All building 

fires 
Deaths Injuries 

Loss  

($ million) 

Deaths per $ 

million loss 

Injuries per $ 

million loss 

2003 484400 3185 14825 10259 0.31 1.45 

2004 491700 3120 14850 9759 0.32 1.52 

2005 477900 2935 14775 10478 0.28 1.41 

2006 491600 2565 13900 10570 0.24 1.32 

2007 493300 2855 14800 11460 0.25 1.29 

2008 475300 2750 14350 12631 0.22 1.14 

2009 445400 2570 14100 11069 0.23 1.27 

2010 447000 2635 14650 9834 0.27 1.49 

2011 449900 2530 15000 9575 0.26 1.57 

2012 466800 2450 14500 9884 0.25 1.47 

2013 474000 2820 13875 9500 0.30 1.46 

2014 479000 2825 13275 9488 0.30 1.40 

2015 485500 2635 12800 9790 0.27 1.31 

mean 473,985 2,760 14,285 10330 0.27 1.39 

Standard 

deviation 
16,308 217 644 887 0.03 0.12 

Given that the affected population per large fire, PLF, is 1,094 persons, the cost of PTSD per large fire is:  

CPTSDpLF = CPTSDpc  PLF 

Equation 6-13 

or $36.9 million per large fire. Given CPL the property loss per large fire is $210 million, the total cost of 

human injury per large fire is then 3.3  $210 million + $36.9; that is, CHI = $667 million.  

Regarding BI, the project team used the approach of $69 per day per household for additional living 

expenses, for a period of 720 days. For a large fire, then 5 blocks  62.5 HH/blk  $69/day  720 days = 

CBI = $15.5 million BI costs per large fire.  

In summary then, the cost of a large fire, which on average destroys five city blocks, is CF = (CPL = $210 

million) + (CHI = $667) + (CBI = $15 million) = $892 million.  

The project team applied these values and methodology to the study area for increasing earthquake 

shaking intensities, using hydraulic analysis to determine how the water supply network will cope with 
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these demands. Based on the response of the network, the project team determined the number of large 

fires, and final burnt area, as well as the number and duration of households without water service. 

6.3.2.9. Benefit-Cost Analysis 

The project team calculated the benefit of a resilient grid is calculated as the present value of the reduction 

in losses, accounting for the frequency of shaking that causes those losses. The mathematics are calculated 

in a later section of this report. 

6.3.3. Vulnerability Under As-is Conditions 

As used here, vulnerability means loss conditioned on a level of environmental excitation. This section 

estimates losses and then applies the extraordinary demands on the as-is system resulting from 

increasingly strong shaking, quantified in terms of a uniform level of seismic intensity applied across the 

entire region. The project team used PGV for estimation of pipe damage, and PGA for estimation of 

ignitions, as discussed above. Calculations are performed using these two measures of ground motion, but 

for presentation purposes only, results are presented in terms of MMI 6,7,8, 9 and 1033, converted to MMI 

using Wald et al. (1999). Given a level of ground shaking, the demands on the system are the ordinary 

demands excluding ordinary fire flows, plus leaking and broken pipes, plus fire flows from fires arising from 

the extraordinary event. 

For MMI 6, using the above methodology, stochastic analysis finds 29 distribution pipe and no trunk line 

repairs are required, with 4 ignitions. See Figure 6-46. Total flow increases to 69,220 gpm (versus normal 

flow of 59,212 gpm including normal fire flows), virtually all nodal pressures exceed 10 psi pressure, so no 

services lose water, about 70% of nodes have pressures exceeding 20 psi (minimum for fire flow) so that 

the initial fire flow demands of 3,000 gpm for the 4 extraordinary fires are largely (not fully) met, averaging 

about 1600 gpm. 

 

                                                 
33 MMI are denoted in Arabic (rather than Roman) numerals. 
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Note: Top left: 6-inch distribution lines every block and 16-inch trunk lines every 10th distribution line.  

Demand: normal demand (13.67 gpm) is light gray. The 29 leaks and breaks, and fires, are shown as blue 

or red diamonds; (top right) nodal pressure – virtually all nodes have pressures > 10 psi but 70% are less 

than 20 psi; (bottom) frequency distribution of pressure. Total system demand = 69,220 gpm. 

Figure 6-46: MMI 6 with as-is design. 

The project team calculated that 29 repairs would all be completed within one day, for a cost to the utility 

of about $110,000. Financial loss due to the loss of service is negligible. 

Regarding fires, while fire demands are not fully met initially, the small number of fires compared to the 

resources (45 engines) would suggest a low likelihood fires develop into large fires, so fire losses are 

negligible. 
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For MMI 7, stochastic analysis finds 63 distribution pipe and 7 trunk line repairs are required, and 6 

ignitions occur, with total flow 73,386 gpm. See Figure 6-47. Immediate impacts are: 

 Nodal pressures are less than 10 psi for 85% of the population, so that Day 1 economic loss due to loss 

of water service is 85%  225,000 services  $720 loss/service/day, or $138 million.  

 All nodal pressures are less than 20 psi. However, there are more than five engines per fire so no fires 

grow to be large fires. 

  

 

Note: Demand: normal demand (13.67 gpm) is light gray, 70 total leaks and breaks and the 6 fires shown 

as diamonds; (upper right and bottom) about 85% nodes have pressures > 10 psi but all are less than 20 

psi. Total system flow = 73,386 gpm. 

Figure 6-47: MMI 7, as-is design. 
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At 24 hours after the event (i.e., end of Day one), all fires are extinguished or burnt out, all trunk line 

repairs and all distribution line have been completed and all services have been restored. Total losses then 

are $138 million for loss of service and $0.32 million for utility cost of repairs. 

For MMI 8, stochastic analysis finds 111 distribution pipe and 9 trunk line repairs are required, with 21 

ignitions, see Figure 6-48. Total flow increases to 74,817 gpm. Immediate impacts are: 

 All nodal pressures are less than 10 psi so that Day one economic loss due to loss of water service $162 

million.  

 All 21 fires have insufficient water and grow to be large fires, so that total fire loss is $18.7 billion. It 

should be noted that even with perfect water supply, a maximum of 22 fires could be responded to, 

so that this loss is can be attributed entirely to loss of water. 

At 24 hours after the event (i.e., end of Day 1) all fires are extinguished or burnt out, all 9 trunk line repairs 

and 17 distribution line have been completed. See Figure 6-49. These repairs reduce flow to 72,164 so that 

70% of service pressures are less than 10 psi, resulting in $113 million in economic loss. 

At the end of Day 2, all trunk line and 61 distribution repairs are completed, which reduces flow to 69,851 

gpm and 100% of services with pressure greater than 10 psi. Total utility cost of repairs is $0.53 million. 
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Note: Virtually all nodal pressures are below 10 psi. Total system flow is 74,817 gpm. 

Figure 6-48: MMI 8 as-is design. sustains 111 distribution and 9 trunk line repairs, and 21 ignitions occur. 
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Note: Total flow is 72,096 gpm. It can be seen 70% of nodal pressures are < 10 psi. 

Figure 6-49: MMI 8, nodal pressure distributions at end of Day 1, when all fires out, all trunk line repairs 

and 17 distribution line repairs are completed, and 94 remain. 

Total economic loss due to loss of water services is therefore $18.7 billion due to fire and $276 million in 

economic loss, for a total of $19 billion. 

For MMI 9, stochastic analysis finds 205 distribution pipe and 14 trunk line repairs are required, with 59 

ignitions. See Figure 6-50. Total flow is 94,296 gpm. Immediate impacts are: 

 Virtually all nodal pressures are less than 10 psi so that Day 1 economic loss due to loss of water service 

$162 million.  

 All 59 fires have insufficient water and grow to be large fires, so that total fire loss is $8.32 billion. 

However, even with perfect water supply, only 22 of these fires could have been responded to, so that 

only 22 fires equivalent to $19.6 billion in losses should be attributed to loss of water supply, and the 

remainder of the loss ($33 billion) to insufficient fire resources. 
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Note: All nodal pressures on Day 0 are below 20 psi. Total system flow is 94,296 gpm. 

Figure 6-50: MMI 9, as-is design sustains 205 distribution and 14 trunk line repairs, and 59 ignitions occur. 

At 24 hours after the event (i.e., end of Day 1), all fires are extinguished or burnt out, and all trunk line 

repairs and 7 distribution line have been completed. These repairs leave 95% of services still without water, 

resulting in $154 million in economic loss. Day 2 sees 44 more distribution repairs, which still leaves 93% of 

services without water. Day 3 sees 54 more distribution repairs, but 80% of services are still without water. 

By Day 4, a total of 170 distribution repairs have been completed to date, and 100% of services are 

restored. By Day 5 all repairs are completed. Figure 6-51 shows this process. The total economic loss due 

to loss of service for the four days while service was being restored is $596 million. The total economic loss 

due to fire given loss of water is $19.6 billion, for a total loss attributable to loss of water of $20.2 billion, 

and a total loss for all reasons of $53.2 billion, mostly due to fire. 
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Figure 6-51: MMI 9, cumulative repairs and service restoration vs. days after event. 

For MMI 10, stochastic analysis finds 371 distribution pipe and 31 trunk line repairs are required, with 170 

ignitions. Total flow is 105,054 gpm. Plots of initial demand pressure distributions differ little from those for 

MMI 9, and are not shown here. Immediate impacts are: 

 Virtually all nodal pressures are less than 10 psi so that Day 1 economic loss due to loss of water service 

is $162 million.  

 All 170 fires have insufficient water and grow to be large fires, so that total fire loss is $152 billion. 

However, even with perfect water supply, only 22 of these fires could have been responded to, so that 

only 22 fires equivalent to $19.6 billion in losses should be attributed to loss of water supply. 

Completion of all repairs requires eight days, with all services restored by Day 7, so that the total economic 

loss due to loss of service for the seven days while service was being restored is $1.13 million, and the total 

economic loss due to fire given loss of water is $19.6 billion, for a total loss attributable to loss of water of 

$20.8 billion, and a total loss for all reasons of $153 billion, mostly due to fire. The foregoing results are 

summarized in Table 6-25. 
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Table 6-25: Results for as-is system for increasing seismic intensity. 

 

6.3.4. Vulnerability with Resilient Grid 

The foregoing analysis allows easy assessment of a resilient grid by the project team. The analyst assumes 

the trunk line is resilient, rebuilt to have negligible vulnerability (as is currently assumed for ERDIP), and 

with automatic seismic valves that can quickly isolate the trunk line from the distribution system. The trunk 

line will now be integral and function immediately following an earthquake. It will (a) immediately be able 

to provide water for firefighting if the fire is within a relay-able distance, assumed here to be 1,000 ft. per 

engine34; (b) be able to convey potable water to within a few blocks of most of the population, which 

suffices for emergency conditions for a few days; and (c) greatly increase the restoration of service to 

many customers, since breaks in the distribution system will have a more limited impact. For these reasons, 

a low vulnerability trunk line system capable of being isolated from the more vulnerable distribution 

system constitutes a resilient grid. The project team thus assessed the reduction in loss resulting from 

benefits of the resilient grid. 

For MMI 6, loss of service and the impact of fire was nil. The trunk line sustained no damage, so reduction 

in cost of repairs, and all benefits, are nil.  

                                                 
34 Relay” here refers to the series deployment or “daisy-chaining” of fire engines, so as to serially pump water from a 

source to the fireground. A Class A fire engine is typically able to pump 1500 gpm 1,000 ft. through a 5 inch hose 

(termed Large Diameter Hose, LDH), which is within the capability of most urban fire departments (although the 

supply of LDH may be limited).  Frictional loss in the hose is the limiting factor on distance and pressure. 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   461 
 

For MMI 7, 85% of the population lost service on Day 1, while losses due to the 6 fires was negligible. The 

benefit of water within a few blocks of 85% of the population is difficult to estimate; the cost of no water 

was estimated to be $720 per service connection, so the project team assumed this limited emergency 

provision at selected points along the resilient grid is worth $100 per customer connection, or a total of 

85%  225,000  $100 = $19 million.  

For MMI 8, 55% of the 21 ignitions will be within a relay-able distance of 1,000 feet from the resilient grid, 

reducing the fire-related losses to $8.4 billion for a benefit of $10.3 billion. Losses due to loss of service to 

customers is estimated at $620/$720  $275 = $237 million. Reduction in utility cost of repairs to trunk 

lines exists but is modest. Total benefits of the resilient grid are thus about $10.5 billion.  

For MMI 9, 55% of the 59 ignitions will be within a relay-able distance of 1,000 feet from the resilient grid, 

so that 22 of the ignitions can be prevented from becoming large fires, for a benefit of $19.6 billion 

(although there are still $33 billion in fire losses). Losses due to loss of service are $513 million, or a 

reduction of $83 million. Total benefits of the resilient grid are thus about $19.7 billion.  

Comparably, for MMI 10 the benefit of the resilient grid is $19.8 billion. The above results are summarized 

in Table 6-26. 

Table 6-26: Summary of losses and benefits with and without resilient grid given MMI shaking ($ millions). 

 6 7 8 9 10 

Losses without resilient grid $- $138 $19,007 $53,224 $152,774 

Losses with resilient grid $- $119 $8,667 $33,517 $132,993 

Benefit of resilient grid $- $19 $10,341 $19,707 $19,782 

Cost of resilient grid $403 $403 $403 $403 $403 

Benefit-cost ratio 0 0.05 25.7 48.9 49.1 

6.3.5. Results 

The as-is system consists of 4.39 million feet of 6-inch distribution pipe and 504,000 feet of 16-inch trunk 

line pipe, with a replacement value at $50 per inch-feet of $1.32 billion and $403 million, respectively. This 

system provides potable and firefighting water for a study region with a population of 787,500 and value 

of $100.8 billion.  

Benefits of a resilient grid are defined as reduction in losses attributable to the resilient grid, which are 

determined as fire losses and economic losses due to loss of service for the as-is system, minus those for 

the system with a resilient grid. These are summarized in Table 6-26 for selected levels of seismic intensity, 

and are seen to increase with increasing seismic intensity. It should be noted that these benefits are 

conditioned on the occurrence of the event. 
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Annual frequency of seismic intensity is inversely correlated and varies by location in the United States, as 

can be seen Figure 6-52 for several West Coast cities. 

 

Figure 6-52: Annual frequency of MMI for Los Angeles, San Francisco, Portland and Seattle, Vs 300 mps. 

Given these intensity curves and the benefit data (interpolated linearly between integer values of MMI), the 

project team numerically integrate to determine the benefit per annum, Bpa, attributable to a resilient grid: 

𝐵𝑝𝑎 =  ∑ 𝐵(𝑀𝑀𝐼)𝑓(𝑀𝑀𝐼)∆𝑀𝑀𝐼

9

𝑀𝑀𝐼=6

 

Equation 6-14 

where B(MMI) is the benefit as a function of MMI, f(MMI) it is the annual frequency of MMI, and ∆𝑀𝑀𝐼 is 

the MMI interval employed in the numerical summation. This calculation was performed four West Coast 

cities using ground motion annual frequency data obtained from OpenSHA San Francisco and Los 

Angeles, and Peak Ground Acceleration (PGA) for Portland and Seattle obtained from USGS national 

seismic hazard maps. This data was converted to MMI using Wald et al. (1999). The present value of all 

future benefits PV(B) is then: 

𝑃𝑉(𝐵) = ∫ 𝐵𝑝𝑎𝑒−𝐼𝑡𝑑𝑡
𝑇

0

 

Equation 6-15 

where I is the cost-of-borrowing discount rate per annum, and T, the time horizon of interest, was taken 

as 100 years. Using these values and integrating benefits and annual frequency of occurrence of MMI, the 

project team found the present value of all future benefits for the hypothetical study region sited so as to 
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have the seismic hazard of several West Coast cities. Dividing the present value of all future benefits by the 

replacement value of the resilient grid (which assumes the existing trunk lines are rebuilt with ERDIP pipe 

and seismic isolation valves), the project team determined the benefit-cost ratio, BCR:  

BCR = PV(B) / replacement cost 

Equation 6-16 

This has been done for the four West Coast cities using a cost-of-borrowing discount rate of 2.2%, as 

shown in Table 6-27. The higher seismic hazard locations of San Francisco and Los Angeles have BCRs of 

about 6 to 8, Seattle 1.7 and Portland less than 1. Table 6-28 shows BCRs for discount rates of 2.2%, 3% 

and 7%, from which it can be seen that resilient grids are clearly cost-beneficial for cities in high to very 

high seismic regions (i.e., Seattle, San Francisco and Los Angeles) but may not be cost-beneficial for a 

moderate region such as Portland. 

However, it should be noted that these BCRs are all based on long-term seismic hazard probabilities and 

not time-dependent probabilities. All four cities are judged to be at high risk of a major earthquake in the 

near term, which if taken into account would increase the BCRs significantly. 

Table 6-27: Summary of benefits and BCR, four West Coast cities (cost-of-borrowing discount rate of 

2.2%). 

 San 

Francisco 

Los 

Angeles 

Portland 

OR 

Seattle 

WA 

Benefit per annum, Bpa ($ million) $82.1 $62.27 $5.85 $17.10 

PV(B) ($million) $3,340 $2,534 $238 $696 

Replacement value resilient grid ($ million) $403 $403 $403 $403 

Benefit-cost ratio, BCR 8.3 6.3 0.6 1.7 

6.3.6. Summary and Conclusions 

The project team examined the benefits of an urban water distribution resilient grid concept using an 

idealized study region that was representative of a typical mid-sized U.S. city. The study region is modeled 

as a buried water distribution network consisting of a 600 feet rectangular grid of 6-inch diameter 

distribution pipes, with 16-inch trunk lines spaced every tenth distribution pipe. This sizing was selected so 

as to provide adequate potable and firefighting demands for the study region, and is representative of an 

urban water grid. The grid is fed from supplies arriving at two relatively central points on the trunk line 

grid, typical of terminal reservoirs. 

The examined stress event, earthquake, affects the grid in two ways: (a) the earthquake causes numerous 

leaks and breaks (collectively termed repairs) by shaking and ground failure, and (b) the earthquake also 

causes fires to ignite due to the shaking, which create extraordinary fire flow demands on the system. 
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Modeling follows accepted guidelines for pipe repairs (ALA 2001) and post-earthquake ignitions, fire 

growth, and fire flow demands (SPA Risk 2009; Technical Council for Lifeline Earthquake Engineering 

2005). PGD effects are modeled as a simple increase in repair rates averaged over the entire system, 

rather than focused in a few areas of the network. 

Given these demands, the network is hydraulically analyzed in a PDA mode using EPANET (Rossman 

2000) to determine the network capacity vis-à-vis these demands. As summarized in Table 6-25, repairs 

and ignitions vary from 29 repairs and 4 ignitions for MMI 6, to 402 repairs and 170 ignitions at MMI 10, 

with losses increasing from about nil at MMI 6 to $153 billion at MMI 10, dominated by fire losses. Because 

the fire service is overwhelmed after approximately 22 ignitions, only a portion of the fire losses should be 

attributed to a water system lack of capacity, so that water-related losses are capped at approximately $20 

billion for fire, while losses due to lack of potable supply continue to increase at a more modest rate. Thus, 

water system related losses approximate nil at MMI 6 to $20.7 billion at MMI 10. All of these losses are for 

the as-is system, without a resilient grid; that is, repairs are required to both the distribution and trunk lines. 

The resilient grid concept involves replacement of the trunk lines with low-vulnerability pipe, such as is 

currently available by ERDIP type pipe. The resilient grid then is considered not significantly damaged by 

earthquake, and isolated from the damaged distribution network by seismically-actuated valves. Such 

valves are quite feasible. For example, they have been employed on the San Francisco Auxiliary Water 

Supply System since the 1990s. The resilient grid has a 6000 feet spacing so that, combined with hose lays 

by the fire service, it brings potable supply to within 3000 feet of all customers, thus providing firefighting 

water supply at 55% of the ignitions. In this manner, fire losses are significantly reduced, especially at 

moderate MMI intensities (i.e., 6~8) and potable water supply is significantly improved. While not 

quantified, it is quite likely that only a few repairs to the distribution system, combined with the resilient 

grid, would allow quick re-establishment of water supply to large numbers of customers in selected 

portions of the grid. 

Using conservative estimates of the benefits accruing to the resilient grid, and taking the cost of the 

resilient grid as full replacement of all existing trunk lines, benefits are determined, and range from 

approximately nil at MMI 6 to $20 billion at MMI 10. Applying annual frequencies of these intensities for 

four West Coast cities, the project team found that the resilient grid has a BCR of about 6 to 8 for seismic 

environments typical of Los Angeles and San Francisco, a value of 1.7 for Seattle and 0.6 for Portland, 

based on a cost-of-borrowing discount rate of 2.2%. If higher discount rates are employed, these BCRs 

decline, for a discount rate of 3%, to 5 to 6 for Los Angeles and San Francisco, and 1.3 and 0.5 for Seattle 

and Portland, respectively, and for a discount rate of 7%, to 2 to 3 for Los Angeles and San Francisco, and 

0.6 and 0.2 for Seattle and Portland, as summarized in Table 6-28. 
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Table 6-28: Summary of resilient watergrid BCRs for several discount rates, four West Coast cities. 

Discount rate (pa) San Francisco Los Angeles Portland OR Seattle WA 

2.2% 8.3 6.3 0.59 1.73 

3.0% 6.4 4.9 0.46 1.34 

7.0% 2.9 2.2 0.21 0.61 

In summary, the resilient grid concept is cost beneficial in high to very high seismic regions (i.e., Seattle, 

San Francisco, and Los Angeles). These BCRs are based on long-term seismic hazard probabilities. Since 

all four cities are judged to be at high risk of a major earthquake in the near term, if time-dependent 

hazard probabilities are taken into account, the BCRs would increase significantly. Observations include: 

 The major benefit of the resilient grid is due to improved supply of firefighting water. 

 The benefit of the resilient grid is constrained by the capacity of the fire service. For the study area, this 

plateaus at about 22 ignitions. If the fire service can increase its capacity, for example, by having a 

greater capacity to move water via tanker trunks or portable water supply systems, then the resilient 

grid is much more beneficial.  

 The above observation reinforces the point that the resilient grid concept is not solely a water 

department initiative, but would need to be pursued in close cooperation with the fire service.  

 Irrespective of the fire aspect, however, the resilient grid is quite likely to result in significantly reduced 

time to restoration of water supply to customers.  

 Closer spacing of the resilient grid may not significantly increase the BCR. That is, while closer spacing 

(e.g., trunk lines at every fifth or sixth distribution line, rather than every tenth) increases benefits, it also 

increases costs. If the trunk line spacing is every tenth distribution line for example, then the cost of a 

resilient grid is more than $800 million. Calculation of BCRs for closer (or more sparse) trunk line spacing 

was not performed in detail, but examination of the results for the 1 to10 spacing of the study region 

indicates that the BCRs would in fact remain about the same if the spacing were made 1 to 5.  

 The above findings on BCRs are based on the conservative assumption that the resilient grid requires 

the replacement of 100% of the trunk lines, which is probably overly conservative. If, alternatively, it is 

assumed that only a portion of the resilient grid requires replacement (e.g., say 50% of the existing 

trunk lines are considered of low vulnerability), then the above BCRs are doubled. 

In conclusion, based on a limited examination of an idealized study region representative of a mid-sized 

U.S. city, the concept of a resilient grid is clearly cost-beneficial for high seismicity regions. Future studies 

might examine the resilient grid for other types of stress events, such as flooding or tropical cyclones. 
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6.4. BENEFIT-COST ANALYSIS OF A RESILIENT ELECTRIC 

GRID 

6.4.1. Purpose and Focus 

The purpose of this sub-task to examine the benefits and costs of achieving electric power grid resilience. 

As noted in the Quadrennial Energy Review of the Department of Energy (DOE 2017), “The reliability of the 

electric system underpins virtually every sector of the modern U.S. economy.” Note that quotations in this 

section are from DOE (2017) unless otherwise noted. 

Electric power is not only important in itself, it also underpins virtually all other infrastructure and economic 

activity, as shown in Figure 6-53. This importance has been underscored in very large blackouts, which 

have affected tens of millions of people. Examples include the 2012 blackout in India, which affected 700 

million, and the 2003 U.S. Northeast Blackout, which affected 50 million (Duddu 2015). Such blackouts 

have typically been due to overload or equipment failure rather than extreme external events, such as 

hurricanes or earthquakes, although extreme events are a significant cause. See Table 6-29. 

 

Figure 6-53: Importance of electric power and critical infrass dependencies (DOE 2017). 
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Table 6-29: Blackout initiating events NERC data 1986-2003, from (Hines et al. 2008). 

Cause Percent of events Mean size (MW) Mean size (customers) 

Earthquake  0.8 1,408 375,900 

Tornado  2.8 367 115,439 

Hurricane/tropical storm  4.2 1,309 782,695 

Ice storm  5 1,152 343,448 

Lightning  11.3 270 70,944 

Wind/rain  14.8 793 185,199 

Other cold weather  5.5 542 150,255 

Fire  5.2 431 111,244 

Intentional attack  1.6 340 24,572 

Supply shortage  5.3 341 138,957 

Other external cause  4.8 710 246,071 

Equipment failure  29.7 379 57,140 

Operator error  10.1 489 105,322 

Voltage reduction  7.7 153 212,900 

Volunteer reduction  5.9 190 134,543 

Regarding measuring resilience, “… a number of resilience metrics and measures have been proposed; 

however, there has not been a coordinated industry or government initiative to develop consensus or 

implement standardized resilience metrics”, so that this study employs the decrease in expected service 

outage as a measure of resilience, together with the associated decreases in economic losses. A significant 

contributor to resilience is grid reliability: “Reliability of the grid is a growing and essential component of 

national security… [and]…Standard definitions of reliability have focused on the frequency, duration, and 

extent of power outages” and have not considered in a systematic manner the potential for widespread 

long-duration outages due to major natural disasters. 

Note that DOE (2017) defines and measures reliability as “the ability of the system or its components to 

withstand instability, uncontrolled events, cascading failures, or unanticipated loss of system components. 

Resilience is the ability of a system or its components to adapt to changing conditions and withstand and 

rapidly recover from disruptions…A brief review of how reliability is measured today will help … reliability is 

formally defined through metrics describing power availability or outage duration, frequency, and 

extent…One metric applied with the goal of improving system performance with respect to reliability 

indicators is the System Average Interruption Duration Index (SAIDI). SAIDI measures the total duration of 

an interruption for the average customer given a defined time period……As most outages occur on the 

distribution system rather than the bulk power system, these reliability indices are commonly used to 

measure distribution level reliability. NERC [National Electric Reliability Corporation] uses a number of bulk 
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power system reliability indices…utilities have historically reported SAIDI ... statistics in inconsistent ways… 

only 33 percent of utilities report these statistics, covering 91 percent of the electricity sales in the Nation, 

which indicates that there is room for improving reliability reporting practices.” Note that other metrics of 

electric system performance exist, and they too are often reported inconsistently. 

The electric power grid is complex, with multiple types of electric generation and storage, and transmission 

and distribution to the end user, as schematically depicted in Figure 6-54. These elements are subjected to 

a number of threats, as shown in Figure 6-55, from which it can be seen that one of the more critical 

elements of the system are substations. This is emphasized in Figure 6-56, which shows that substations 

are probably the most crucial element of the electric power system, due both to their vulnerability as well 

as the topology of the grid (multiple sources and transmission paths, but multiple paths converging at 

substations). 

It should be noted that the electric power system is evolving and a new grid is emerging with more 

controllability (“With the advent of more two-way flows of information and electricity—communication 

across the entire system from generation to end use, controllable loads, more variable generation, and 

new technologies such as storage and advanced meters—reliability needs are changing…”) as well as 

more end-user, close-in generation (e.g., photovoltaic). However, the system model used here (source-

transmission-substation-distribution-end-user) is what currently exists, and will exist for a significant period 

going forward. 

 

Figure 6-54: Schematic representation of the U.S. electric power system. (Adapted from DOE 2017) 
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Figure 6-55: Risks to electricity sector resilience from current threats. (DOE 2017) 
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Figure 6-56: Schematic representation of the U.S. electric power system showing EHV substations as a 

critical link. Adapted from DOE (2017). 

 Electric power systems, and substations in particular, are vulnerable to earthquakes. Examples of the 

impacts of earthquakes on electric power systems are given in (Romero et al. 2015): 

 On January 17, 1994, the Northridge Earthquake struck the city of Los Angeles and surrounding areas; 

2.5 million customers lost power. (Dong et al. 2004) 

 On January 17, 1995, the Great Hanshin Earthquake occurred in 1995, affecting the city of Kobe, Japan, 

where 20 fossil-fired power generation units, six 275-kV substations, and two 154-kV substations were 

damaged; approximately 2.6 million customers were affected by outages. (Noda 2001) 

 On May 18, 2008, the Winchman Earthquake caused extensive damage to local power transmission 

and distribution systems in Sichuan Province, China; approximately 900 substations and 270 

transmission lines of the State Power Grid were damaged. (Didinger 2009) 

 Immediately following the February 27, 2010, 8.8-MW Chilean Earthquake, 90% of Chileans did not 

have electricity, which caused the largest power transmission company in Chile to have direct losses of 

approximately U.S. $6.5 billion. (Long 2010) 

 On March 11, 2011, the devastating Tohoku Chino–Taiheiyo-Oki Earthquake, damaged 14 power plants, 

70 transformers, and 42 transmission towers, and caused other failures. Outages affected 4.6 million 

residences, and the April 7 aftershock affected an additional 4 million. (Shubuta 2011) 
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Regarding seismic vulnerability of electric substations, there is extensive literature on the performance of 

substation components (ASCE 1999, Fujisaki 2009, Hosseini 2009, Hosseini et al. 2009, Knight and Kempner 

2009) and several guidelines and standards for seismic design (ASCE 1999, IEEE 693 2005). Retrofitting has 

also been dealt with (Knight and Kempner 2009, Romero et al. 2015, Oikonomou et al. 2016), with some 

investigations of benefits (Neudorf et al. 1995, Shumuta 2004, Han et al. 2007), but costs of retrofitting 

substations do not explicitly appear in the literature and there is little to no quantification of BCRs (e.g., 

Neudorf et al. 1995, who seek the minimum cost alternative, not the BCR). 

Given the above knowledge gaps, the focus of this study then is the benefit versus cost of reducing the 

vulnerability of electric substations and the impact of this vulnerability on service outage. The project team 

examined the hazard of earthquake, with two conditions: substations with standard (i.e. non-seismically 

designed) components, versus a substation with seismically designed components. Benefits are the 

decrease of direct damage and costs of service outage given seismically designed components. Cost is the 

financial burden of retrofitting substation components. 

6.4.2. Electric Power Grid and Substations Vulnerability 

High voltage (H, 138 kV and greater) and extra high voltage (EHV, 345 kV and greater) electric 

transmission lines are shown in Figure 6-57 overlaid on NERC regions, with substations overlaid on Core-

Based Statistical Areas (CABS, greater than 100,000 population) in Figure 6-58. Reviewing these two 

figures, it can be seen that major power imports to urban areas pass through a number of large 

substations, failure of which would disrupt service to major population centers. Analysis of this data shows 

that in urban areas, high voltage substations on average serve 30,000 customers, with a substation 

spacing of about 7 km. 
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Figure 6-57: Electric transmission (138 kV and greater) overland on NERC regions. 

 

Figure 6-58: Substations (138 kV and larger voltage) overland on CABS, greater than 100,000 population. 

H and EHV substations serve two basic purposes: switching (i.e., opening and closing circuits) and 

transforming voltage (e.g., from higher to lower voltage). Switching is inherently required in transmission 
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and distribution of electric power via networks, while voltage is transformed at the generator to higher 

voltage for transmission, and then must be reduced (or stepped down) close to load centers for use at 

lower voltages. Within the fence of a substation is typically a network of overhead bus (rigid or flexible) 

which connects switches, circuit breakers, transformers and other equipment, and sometimes a small 

building housing monitoring and control equipment. See Figure 6-59. Switches are required for routing 

electricity as well as isolating equipment to protect against overload as well as for maintenance. HV and 

EHV transformers are typically large, heavy (100 tons and more) equipment that historically are supported 

on a concrete pad without sufficient attachment for earthquake lateral loading (Kempner Jr. 2008). Large 

ceramic bushings on the transformers also are vulnerable to seismic loading. Retrofitting of substations 

typically involves providing sufficient anchorage for transformers and other equipment (occasionally, base 

isolation is employed), use of more seismically resistant bushings, and allowance for differential movement 

of bus and equipment under lateral loading. Control buildings, if present, are strengthened. Of these 

measures, perhaps the most crucial, as well as cost-driver, is the anchorage of transformers (Romero et al. 

2015). 

 

Figure 6-59: Substation schematic. 

Figure 6-60 shows the threat to major urban substations in California by overlaying their locations on a 

map of a 2% in 50 years probability of PGA exceedance. It can be seen that many substations are subject 

to a very high seismic hazard. Values for vulnerability of substations are available from various sources 

(Anagnos and Ostrom 2000, DHS 2003, Federal Emergency Management Agency 2003, Kempner Jr 2008, 

Fujisaki 2009, Kempner Jr. 2009, Knight and Kempner 2009). In this study, the project team used substation 

fragility and outage duration data from Federal Emergency Management Agency (2003), Figure 6-61 for 

example shows the probability of a substation being in the complete damage state for a substation with 

(U) unanchored equipment, with anchorage designed for a PGA of 0.47g and for a PGA of 1g. Complete 

damage is defined by FEMA (2003) as the “failure of all disconnect switches, all circuit breakers, all 

transformers, or all current transformers, or by the building being in complete damage state.” Other 

damage states are minor, moderate and extensive. Table 6-30 presents the Hazus estimate of the 

parameters of substation fragility and restoration time for each damage state. 
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Table 6-30: Fragility and median duration of outage, high voltage substations (FEMA 2003). 

 Unanchored Anchored 

Damage state Min Mod Ext Compl Min Mod Ext Compl 

Median PGA (g) 0.09 0.13 0.17 0.38 0.1 0.15 0.2 0.47 

β 0.5 0.4 0.35 0.35 0.5 0.45 0.35 0.4 

Median duration outage (days) 1 3 7 30 1 3 7 30 

Using this data, a substation subjected to 0.2g PGA and having unanchored equipment will on average be 

out of service for about 6.1 days, while if anchored to a design PGA of 0.47g, the outage will be about 4.8 

days, or a net benefit of the anchoring of about a 1.3 days’ reduction in outage. If the anchorage is 

designed for a PGA of 1g, the outage is perhaps half a day and the net benefit about a 5.6 days’ reduction 

in outage. 

 

Figure 6-60: Substations (138 kV and larger voltage) overland on CBSA and peak ground acceleration 

(PGA, 2% probability of exceedance in 50 years), southwestern United States.  
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Figure 6-61: Substation seismic fragility – probability of Complete damage state if unanchored (U), 

anchored (A) to 0.47g design, and anchored to 1.0g design. 

6.4.3. Impacts of Loss of Electric Power 

The difference in electric power outage is a measure of the benefit of the resilient grid, which can more 

specifically be quantified in terms of reduced losses in several categories. 

6.4.3.1. Substation Repair and Retrofitting Costs 

Assuming no ground failure, substation repair costs are dominated by damage to large equipment items, 

particularly large transformers. High voltage transformers typically cost between $5 and $10 million each 

(DOE 2012) and a typical substation will have a minimum of three such transformers, so that a minimum 

value of a substation with all associated equipment will be on the order of $20 to $ 50 million 

(replacement value of equipment only). Using an average HV substation equipment replacement value of 

$40 million and Hazus vulnerability data, a substation subjected to 0.2g PGA and having unanchored 

equipment will on average sustain repair costs equivalent to about 56% of replacement value or $22 

million, while if anchored to a design PGA of 0.47g, the loss is about $18 million, or a net benefit of the 

anchoring of about $4 million. If the anchorage and equipment are designed for a PGA of 1g, the loss is 

about $1 million and the net benefit about $21 million. 

Data on the costs to provide this anchorage are sparse. Based on review of proprietary utility data, as well 

as some limited data available from this study’s review of the FEMA database, a value of $5 million per 

substation is assumed for seismic retrofit. 

6.4.3.2. Economic Losses Resulting from Loss of Electric Service 

Economic losses resulting from loss of electric service include: 
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 Direct damage and losses (e.g., food spoilage) 

 Direct BI due to loss of electric service (e.g., loss of ticket sales at an amusement park), and 

 Indirect BI losses to the rest of the economy that does business with customers who lose electric service 

(e.g., loss of parking revenue due to closure of the amusement park). 

Numerous studies have been conducted on the economic impacts of blackouts, although almost all 

address non-disaster caused blackouts of relatively short duration, such as the 2003 Northeast Blackout 

(Tiedemann and Hydro, LaCommare and Eto 2006, Rose et al. 2007a, Küfeoğlu and Lehtonen 2015, 

Larsen et al. 2017). The outages addressed in these studies are typically less than a day and more typically 

an hour, so that they have little direct relevance to this study. An exception is (Rose et al. 2007b), from 

which a current (2018) value of disruption of about $146 per capita per day emerges, for BI only. An 

alternative approach used here is as follows based on a hypothetical outage in California:   

 LTEWA = total weighted average time element loss per day per person who lives in the area affected 

by loss of power = (1+Q)  LDTEWA  

 Q = indirect time element loss as a factor of direct time element loss, from 2017 Interim Report = 0.5 

 LDTEWA = weighted average direct time element loss per day per person who lives in the area affected 

by loss of power = LDBIW  (total number of California firms)/(total California population) + LALER  

 LDBIW = loss per day from direct business interruption for workplaces, per workplace = (total California 

gross state product)/((total number of California firms)  365)  

 LALER = loss per day from additional living expenses for homes, per resident 

Using the following data: 

 Total California population35 = 39,536,653 

 Total number of California employer establishments36 = 922,477 

 Total number of California non-employer establishments37 = 3,206,958 

 Total number of California firms = total number of California employer establishments + total number 

of California non-employer establishments =922,477+3,206,958 = 4,129,435 

 California gross state product38 = $2,746,873,000,000  

 GSA per diem for meals & incidental expenses, not including accommodations39 = $64 

Then LALER = $64, Total number of California firms = 4,129,435, LDBIW = $1,822, LDTEWA = $254, Q = 

0.5 and LTEWA = $381. This approach results in an estimate of about 2.6 times that of (Rose et al. 2007a). 

Lacking more accurate data and noting that Rose et al.’s estimate is for business interruption only, this 

study uses $300 as the total direct and indirect cost of loss of electric service per day. 

                                                 
35 Per https://www.census.gov/quickfacts/CA. 
36 Per https://www.census.gov/quickfacts/CA. 
37 Per https://www.census.gov/quickfacts/CA. 
38 Per http://www.dof.ca.gov/Forecasting/Economics/Indicators/Gross_State_Product/. 
39 Per https://www.gsa.gov/travel/plan-book/per-diem-rates. 

https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA
http://www.dof.ca.gov/Forecasting/Economics/Indicators/Gross_State_Product/
https://www.gsa.gov/travel/plan-book/per-diem-rates
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6.4.3.3. Deaths, Injuries, and Instances of Post-Traumatic Stress Disorder (PTSD) Resulting from 

Loss of Electric Service (e.g., Due to a Traffic Accident) 

Loss of electric service can result in deaths, injuries, and instances of PTSD, for example, due to added 

traffic accidents in the absence of working traffic signals. While a number of papers in the literature 

qualitatively discuss this aspect (Beatty et al. 2006, Henneaux et al. 2011, Lin et al. 2011, Matthewman and 

Byrd 2014), only Anderson and Bell (2012) provides quantitative data, finding about 90 excess deaths 

occurred in New York City due to the 2003 Northeast Blackout, which had an average duration of about 

two days. This equates to 0.000005625 deaths per capita per day, which is used in this study. The value of 

a statistical life, or cost due to a fatality is $9.4 million, so that the economic cost due to fatalities caused by 

loss of electrical service is $53 per capita per day. 

Regarding injuries, the Report includes an estimate of the number of earthquake-induced deaths and 

nonfatal injuries in buildings, as a result of all causes: structural damage, nonstructural damage, and other 

causes such as falls and occupant behavior. The analysis found that building occupants face a risk of 

nonfatal injury on the order of 1,000 times as high as the risk of fatal injuries. The ratio counts injuries 

requiring treatment by medical professionals or paraprofessionals (emergency medical services), not 

injuries for which people would not typically seek aid. These include four degrees of nonfatal injury 

severity, from generally most to least severe and from generally least to most common: hospitalized 

trauma cases, hospitalized non-trauma cases, people treated and released in an emergency department, 

and those treated outside of a hospital. 

As a check of this purely analytically derived ratio of 1,000 nonfatal injuries per death, researchers can 

compare it with the ratio of nonfatal injuries to fatal injuries in the 1994 Northridge Earthquake. As 

reported by several studies and compiled in Porter et al. (2006) for each fatal injury, at least 750 people 

experienced nonfatal injuries. The phrase “at least” refers to the fact that the Northridge researchers 

counted households rather than individual people for the last two categories of nonfatal injury. Since more 

than one person could have been injured in households reporting at least one injury, the ratio of people 

injured to people killed in the 1994 Northridge Earthquake could have been higher than 750. However, the 

1994 Northridge Earthquake injured no more than about 1% of the population to the degree that they 

required medical treatment, so the conditional probability that two people in a household given that one 

was injured seems low, probably between 1% and 10%. (The conditional probability, asserted here to be 

between 1% and 10%, is probably higher than the marginal probability—the 1% figure just mentioned—

because of correlation resulting from common causes.) Therefore, assume 1.05 persons injured per 

household with at least one nonfatal injury, suggesting that the Northridge Earthquake injured on the 

order if 800 people per fatality. Take an average of the two figures—analytical and empirical—as the best 

estimate for normal, building-related injuries, and use a ratio of 900 nonfatal injuries per fatal injury. 

Naturally, this raises questions about the applicability of is the 900 to 1 figure in the case of disrupted 

electric power. Is injury epidemiology from loss of electric power similar to injury epidemiology caused by 

other earthquake-related causes? The answer matters to whether the ratio of 900 to 1, which reflects 

building damage, is actually applicable to electric power. Anderson and Bell (2012) found that most excess 
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deaths during an August 2003 power outage in New York had disease-related causes, as opposed to falls 

in the dark and other trauma injuries that seem to dominate earthquake-related injuries. 

Medicare data show 180 hospital discharges including deaths per 1,000 Medicare enrollees nationwide in 

2014 (Dartmouth Institute 2018), and 45 deaths per year per 1,000 Medicare enrollees (Krumholz et al. 

2015), suggesting 3 nonfatal injuries per fatal injury for disease-related hospitalization. 

Determining which ratio to use, 900 to 1 or 3 to 1, impacts the overall BCR. The former is mostly from 

trauma: impact by structural and nonstructural objects, falls that seem associated with ground and building 

movement, and unsafe behavior caused by panic. The latter is purely related to disease, but would 

exclude some uniquely earthquake-related non-trauma injuries, such as dehydration from prolonged 

entrapment in elevators. A best estimate might lie somewhere between the two figures. Let us use a figure 

closer to the 3 to 1 ratio than the 900 to 1 ratio, both to err on the low side and because the causes of the 

3 to 1 ratio seem more similar to the ones at issue here. The project team therefore used the geometric 

mean of the two figures, 52 to 1, for the present analysis. Using a value of a statistical injury, or cost due to 

an injury of $0.55 million MMC is 52  $53  (0.55/9.4) = $161 per capita per day.  

Lacking data, at present no costs are ascribed to PTSD due to loss of electric service.  

Therefore, the total cost per capita per day due to the loss of electric service is the sum of the economic 

costs plus mortality plus morbidity, or $300 + $53 + $161 = $514 per capita per day.  

The total costs of loss of electric service is this value plus direct damage to electric substations. The 

possibility of damage to generation equipment due to a blackout exists, but is not accounted for in this 

analysis. 

6.4.4. Benefit-Cost Analysis 

The benefit of a resilient grid is calculated as the present value of the reduction in losses, accounting for 

the frequency of shaking that causes those losses. The project team examined four case studies, for 

substations located in the Los Angeles, San Francisco, Portland and Seattle regions. As discussed, the cost 

of retrofit of a substation is $5 million.  

Annual frequency of PGA is inversely correlated and varies by location in the United States, as illustrated in 

Figure 6-62. Given the hazard and the expected damage under unanchored and anchored conditions, 

researchers can numerically integrate to determine the benefit per annum, Bpa, attributable to a retrofitted 

substation: 
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𝐵𝑝𝑎 =  ∑ 𝐵(𝑃𝐺𝐴)𝑓(𝑃𝐺𝐴)∆𝑃𝐺𝐴

1.5

𝑃𝐺𝐴=0

 

Equation 6-17 

 

where B(PGA) is the benefit as a function of PGA, f(PGA) is the annual frequency of PGA, and ∆𝑃𝐺𝐴 is the 

PGA interval employed in the numerical summation. 

 
Note: assuming average shearwave velocity in the upper 30 meters of soil to be Vs30 = 360 m/sec/. 

Source: https://earthquake.usgs.gov/hazards/interactive/ 

Figure 6-62: Annual frequency of PGA for (A) Los Angeles, (B) San Francisco, (C) Portland, and (D) Seattle. 

The present value of all future benefits PV(B) is then:  

𝑃𝑉(𝐵) = ∫ 𝐵𝑝𝑎𝑒−𝐼𝑡𝑑𝑡
𝑇

0

 

Equation 6-18 

where I is the cost-of-borrowing discount rate per annum (2.2%), and T, the time horizon of interest, was 

taken as 100 years.  

A  B  

C  D  

https://earthquake.usgs.gov/hazards/interactive/
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Using these values and integrating benefits and annual frequency of occurrence of PGA, the present value 

of all future benefits for the several West Coast cities is determined. Dividing the present value of all future 

benefits by the retrofit cost of a substation determines the benefit-cost ratio, BCR:  

BCR = PV(B) / replacement cost 

Equation 6-19 

This has been done for the four West Coast cities using a cost-of-borrowing discount rate of 2.2%. 

For San Francisco, the present value of all future losses given an unanchored substation is found to be 

$167 million. If the substation is seismically anchored for a design PGA of 0.47g (the default value in 

Hazus), this value reduces to $129 million, or a reduction of $38.3 million, which has been achieved at a 

retrofit cost of $5 million – in other words, a BCR of 7.7. Comparable estimates are shown in Table 6-31. 

Table 6-31: Benefits and costs of seismically retrofitting an existing electric substation in four West Coast 

cities. 

City 
Present value of future losses, $ millions 

BCR 
Unanchored Retrofit to 0.47 g Benefit 

San Francisco $168 $129 $38 8 

Los Angeles $168 $128 $40 8 

Seattle $126 $95 $31 6 

Portland Oregon $40 $30 $10 2 

An interesting point: it may be that even greater retrofit is justifiable. For example, given that the peak 

ground acceleration of 0.47g in San Francisco has about a 10% probability of being exceeded in a 50-year 

period, would it be cost-beneficial to anchor the substation equipment for a higher acceleration? For an 

anchorage design value of 1g, which has a negligible added cost, the present value of all future losses for 

an anchored substation in San Francisco is $19 million, or a reduction in losses of $148 million – in other 

words, a BCR of 29.6. This clearly demonstrates the cost effectiveness of mitigating critical infrastructure. 

6.5. BENEFIT-COST ANALYSIS OF HIGHWAY BRIDGE 

MITIGATION FOR EARTHQUAKE 

6.5.1. Background 

Between the early 1970s and the early 1990s, a series of earthquakes resulted in freeway bridge collapses in 

urban areas. Notably, 43 people died as a result of a bridge failure following the 1989 Loma Prieta 

Earthquake in San Francisco. Caltrans identified bridges throughout the state that needed to be retrofitted 

to meet seismic safety standards (known as a Phase 1). Following the 1994 Northridge Earthquake, 

additional bridges were identified for a Phase 2. The Phase 1 and Phase 2 Seismic Retrofit Program 
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involved strengthening the columns of existing bridges by encircling certain columns with a steel casing or, 

in a few instances, an advanced woven fiber casing. In addition to the column casing, some bridge 

footings were made bigger and given more support by placing additional pilings in the ground, or by 

using steel tie-down rods to better anchor the footings to the ground. 

Quantifying the benefits of retrofitting bridges requires consideration of secondary impacts, which in many 

cases are far greater than the direct impacts. The delays from traffic disruption during reconstruction 

requires an assessment of traffic demand and freeway capacity, tools typically used to assess road 

construction and maintenance rather than loss estimation. The Reference Engineering Data Automated 

Retrieval System (REDARS) is a software program developed to quantify the primary and secondary 

impacts of earthquake damage to the transportation network with the specific purpose of evaluating state 

DOT bridge retrofit programs. REDARS has been peer reviewed and has been available as a framework 

for analysis for over 15 years. The software is designed to provide end users with a method to evaluate 

strategies to reduce post-event congestion by mitigating, repairing and reopening damaged highways. 

6.5.2. REDARS Technical Specifications 

Figure 6-63 illustrates the REDARS methodology. Seismicity is provided through a library of earthquake 

scenarios that can be run probabilistically. For each event, REDARS calculates probable bridge damage, 

the repair cost of direct damages, and estimates reconstruction time. REDARS includes a transportation 

network analysis that incorporates surveyed origin-destination data from local metropolitan planning 

organizations. Traffic disruption is quantified at various time frames following an event: 7 days, 60 days, 

150 days, and 221 days. The value of traffic disruption is assessed by evaluating the additional duration that 

passengers and commercial freight drivers spend traveling. Given road closures, before-event 

transportation throughput and travel times are compared with after-event transportation throughput and 

travel times to quantify disruption. 

 

Figure 6-63: REDARS methodology flowchart. 
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REDARS includes a library of equiprobable earthquake events (Taylor et al., 2001; Werner et al, 2006). It 

estimates ground motion at bridge and tunnel locations using Silva’s (2002) ground motion prediction 

equation (GMPE) for central U. S. earthquakes, and Abrahamson and Silva (1997) for western states. Soil 

classification is based on NEHRP site classifications. Damage to highway system components (bridges, 

pavements, approach fills, tunnels, and embankments) affects the extent of the repairs that are required 

and the duration of downtime. Bridge damage due to ground shaking is estimated from a version of the 

Hazus MH damage functions (Federal Emergency Management Agency 2008; Dutta and Mander, 1998; 

Mander and Basoz, 1999) adjusted to improve comparisons between its bridge-damage predictions and 

observed damage from the Northridge Earthquake (Appendix K, Werner et al., 2006). The benefits of 

CalTrans Phase 1 and 2 retrofits were captured by incorporating damage functions from Shinozuka (2004) 

that were commissioned by Caltrans expressly for this purpose. 

6.5.3. Benefit-Cost Analyses 

REDARS requires an evaluation of a study region, and given system limitations, networks that are over 

1,000 segments tend to fail. The project team selected a study region roughly corresponding to the Los 

Angeles metropolitan area. The team obtained a Caltrans bridge database from Caltrans identifying 

bridge retrofits throughout the region. These were loaded onto the Highway Performance Monitoring 

System (HPMS)/National Highway Planning Network (NHPN), which provides the geospatial component 

of the NHPN40. The NHPN provided the locations of 597 retrofitted bridges in the study area. Caltrans 

identified that a total of 656 bridges have been retrofitted in Southern California, for a total cost of $485 

million. These numbers were used to scale an estimated cost of retrofit to $441 million. 

 

Figure 6-64: Los Angeles study region. 

                                                 
40 See https://catalog.data.gov/dataset/highway-performance-monitoring-system-hpms-national. 

https://catalog.data.gov/dataset/highway-performance-monitoring-system-hpms-national


NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   483 
 

The project team incorporated casualty rates by examining fatalities due to bridge collapse in major 

California earthquakes since 1970 (see Table 6-32). A total of 47 fatalities were sustained from 14 bridge 

collapses in 4 events, or a fatality rate of 3.35 deaths per bridge collapse. Although Loma Prieta may 

appear as a statistical outlier given the number of deaths per bridge collapse, it is worth noting that the 

Northridge Earthquake occurred at 4:30 a.m. and the San Fernando Earthquake occurred at 6:00 a.m., so 

given a larger sample of events, the number of fatalities per bridge collapse could be substantially higher. 

Each fatality avoided is valued at $9,500,000. A lifespan of 70 years is assumed for a retrofitted bridge, and 

future benefits from avoided traffic delays are discounted using a discount rate of 2.2%. Passenger delays 

are valued at $21.38 per hour, taken from California Transportation by the Numbers (TRIP 2016), and 

freight is valued at $71.05, a default value within REDARS based on traffic-congestion statistics from the 

Rand Corporation (Werner et al., 2006). 

Table 6-32: Fatalities due to bridge collapse between 1970 and 2018. 
 

Collapsed Deaths 

San Fernando 5 3 

Northridge 6 1 

Whittier Narrows - - 

Loma Prieta 3 43 

Total 14 47 

6.5.4. BCR Results 

Based on a 3,000-year walkthrough of potential earthquakes effecting the transportation network, with 

and without bridge retrofits, there is a benefit of $22 million avoided annually attributed to reduced 

reconstruction and traffic delays, with a $166 baseline EAL in the case of no retrofitting, and $144 million 

EAL considering the Caltrans bridge retrofits. Accrued over 70 years at a discount rate of 2.2%, this 

equates to a benefit of $795 million. The annual probability of collapse is estimated at 0.044% before 

retrofit, and 0.0028% after retrofit, equating to an annual benefit of $548 million. Total benefit is estimated 

$1,344 million. Compared to the initial mitigation expenditure of $441 million, the BCR equates to 3.0. 
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Appendix A. Glossary and List of Acronyms 

A.1. GLOSSARY 

Benefit-cost ratio  The ratio of the benefits of a project or proposal, expressed in monetary terms, 

relative to its costs, also expressed in monetary terms. Calculated as the 

discounted value of incremental benefits divided by the discounted value of 

incremental costs. 

Defensible space  An area either natural or manmade, where material capable of allowing a fire to 

spread unchecked has been treated, cleared or modified to slow the rate and 

intensity of an advancing wildfire and to create an area for fire suppression 

operations to occur. 

Fragility  The relationship between environmental excitation and the occurrence probability 

of some undesirable outcome, such as the collapse of a building. 

Fragility function A curve in x-y space where x measures environmental excitation, y measures the 

occurrence probability of some undesirable outcome, and the curve represents 

the performance of a specified asset class. 

Hazard Here, the mathematical relationship between a (usually scalar) measure of 

environmental excitation (such as wind speed) and the frequency with which that 

level of excitation is exceeded, e.g., in times per year. 

Hazard curve  An x-y chart where x measures environmental excitation (e.g., wind speed) and y 

measures exceedance frequency (e.g., times per year). A curve in that space 

represents hazard for a given site. It is generally higher on the left and lower on 

the right.  

Ignition-resistant             Ignition-resistant building materials resist ignition or sustained              

construction and             flaming combustion sufficiently so as to reduce losses from wildland-urban                                                

materials                         interface conflagrations under worst-case weather and fuel conditions with    

                                       wildfire exposure of burning embers and small flames, as prescribed in Section  

                                       503 of the 2015 IWUIC. A schedule of additional requirements for construction in  

                                       wildland-urban interface areas are based on extreme (Class 1), high (Class 2), and          

                                       moderate (Class 3) fire hazard. 

Interface                         Areas with ≥6.18 houses per km2 and <50 percent cover of vegetation located 

<2.4 km of an area ≥5 km2 in size that is ≥75 percent vegetated. 
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Intermix   Areas with ≥6.18 houses per km2 and ≥50 percent cover of wildland vegetation. 

Peril A cause of damage. In this report, peril refers to hurricanes, floods, earthquakes, 

and fire and wildland-urban interface. The word peril is sometimes used instead 

of hazard, because hazard can mean the probabilistic relationship between the 

degree of environmental excitation caused by a peril (such as wind speed, where 

the peril is hurricane) and the frequency with which that degree occurs.  

Risk curve An x-y chart where x measures loss (e.g., deaths) and y measures exceedance 

frequency (e.g., times per year). A curve in that space represents risk for a given 

asset. It is generally higher on the left and lower on the right.  

Risk Here, the mathematical relationship between a (usually scalar) measure of loss 

(such as number of people killed) and the frequency with which that level of loss is 

exceeded, e.g., in times per year. 

Vulnerability The relationship between a scalar measure of environmental excitation (e.g., 

momentum flux in the case of flooding in a velocity zone—a stream or seashore) 

and a scalar degree of loss (e.g., repair cost as a fraction of replacement cost, 

new). 

Vulnerability function A curve in x-y space where x measures environmental excitation, y measures the 

expected value of loss, and the curve represents the performance of a specified 

asset class, such as a woodframe single-family dwelling built after 2012. 

Vulnerable (socially) Vulnerability is also used throughout the Interim Study to represent socially 

vulnerable populations. Social vulnerability refers to the characteristics of people 

and groups that influence their ability to anticipate, cope with, resist and recover 

from the impact of disasters. These characteristics may be social, economic, 

physical, or environmental and are influenced by the structural conditions within 

society that affect the ability to garner resources related to hazards and disasters.  

Wildland  An area in which development is essentially nonexistent, except for roads, 

railroads, power lines, and similar facilities. 

Wildland-urban   The geographical area where structures and other human development meet or              

interface             intermingle with wildland or vegetative fuels. 
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A.2. LIST OF ACRONYMS 

AAL  Average Annualized Loss  

ADA  Americans with Disabilities Act of 1990 

AIA  American Institute of Architects 

AIS  Abbreviated Injury Scale 

ALE  Additional Living Expenses  

ASCE  American Society of Civil Engineers   

ASD  Allowable Stress Design 

ASFPM  Association of State Floodplain Managers 

BCA  Benefit-Cost Analysis 

BCEGS  Building Code Effectiveness Grading Schedule 

BCP  Business Continuity Planning 

BCR  Benefit-Cost Ratio 

BEA  Bureau of Economic Analysis 

BFE  Base Flood Elevation 

BI  Business Interruption 

BOCA  Building Officials and Code Administrators International, Inc. 

BOMA  Building Owners and Managers Association 

BP  Burn Probability 

BSSC  Building Seismic Safety Council 

Caltech  California Institute of Technology 

C&C  Components and Cladding 

CCI  City Cost Index 

CDBG  Community Development Block Grant 

CEA  California Earthquake Authority 

CEUS  Central and Eastern United States 

CFIRE  Council on Finance, Insurance and Real Estate 

CGE  Computable General Equilibrium 

CPI  Consumer Price Index 

CRS  Community Rating System 

CUREE  Consortium of Universities for Research in Earthquake Engineering 

DDF  Depth Damage Function 

DFE  Design Flood Elevation 

DIIM  Dynamic Inoperability IO Model 

DOE  U.S. Department of Energy 

DOT  U.S. Department of Transportation 

DR  Disaster Recovery 

ERM  Enterprise Risk Management 

EAL  Expected Annualized Loss 
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EDA  U.S. Economic Development Administration 

EIA  Energy Information Administration  

ETS  Engineered tie-down system 

FEMA  Federal Emergency Management Agency 

FIL  Fire Intensity Level 

FIRM  Flood Insurance Rate Map 

FIS  Flood Insurance Studies 

FLI  Fireline Intensity 

FMA  Flood Mitigation Assistance 

GBS  General Building Stock 

GDP   Gross Domestic Product  

GEM  Global Earthquake Model 

GIC  Glacier and Ice Cap Mass Balance 

GIS  Geographic Information System 

GMSL  Global Mean Sea Level 

GASL  Global Average Sea Level 

GSL  Global Sea Level 

HFIAA  Homeowner Flood Insurance Affordability Act  

HMA  Hazard Mitigation Assistance 

HMGP  Hazard Mitigation Grant Program 

HUD  U.S. Department of Housing and Urban Development 

IAWF  International Association of Wildland Fire 

IBC  International Building Code 

IBHS  Insurance Institute for Business and Home Safety 

ICBO  International Conference of Building Officials 

ICC  International Code Council 

IEBC  International Existing Building Code 

IEMax  Incrementally Efficient Maximum 

IFM  Integrated Flood Mitigation 

IIM  Inoperability IO Model 

IO  Input-Output 

IRC  International Residential Code 

IRR  Internal Rate of Return 

ISO  Insurance Services Office 

ISR  Inventory-to-Sales Ratios 

IWUIC  International Wildland-Urban Interface Code 

LSL  Local Sea Level  

MCE  Maximum Considered Earthquake 

MCER  Maximum Considered Earthquake, Risk Targeted 

MMC  Multihazard Mitigation Council 
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MOMs  Maximum-of-Maximums 

MRI  Mean Recurrence Interval  

NAICS  North American Industry Classification System 

NBC  National Building Code 

NEHRP  National Earthquake Hazard Reduction Program 

NFIP  National Flood Insurance Program 

NFPA  National Fire Protection Association 

NHC  National Hurricane Center 

NIBS  National Institute of Building Sciences 

NIST  National Institute of Standards and Technology 

NOAA  National Oceanic and Atmospheric Administration 

NSHMP  National Seismic Hazard Mapping Program 

NWS  National Weather Service 

O&P  Overhead and Profit 

OMB  Office of Management and Budget 

OSB  Oriented Strand Board 

OSM  OpenStreetMap 

PA  Public Assistance 

PDM  Pre-Disaster Mitigation 

PPP  Purchasing Power Parity 

PTSD  Post Traumatic Stress Disorder 

RCP  Representative Concentration Pathways 

ROI  Return on Investment 

SBC  Standard Building Code 

SLR  Sea Level Rise 

SBA  Small Business Administration 

SBCCI  Southern Building Code Congress International 

SEAOC  Structural Engineers Association of California 

SEAONC Structural Engineers Association of Northern California  

SEAOSC Structural Engineers Association of Southern California 

SEAOSD Structural Engineers Association of San Diego 

SEC   U.S. Securities and Exchange Commission  

SEI  Structural Engineering Institute 

SFHA  Special Flood Hazard Area 

SRTP  Social Rate of Time Preference 

SSHWS  Saffir-Simpson Hurricane Wind Scale 

TIPS  Treasury Inflation-Protected Securities 

UBC  Uniform Building Code 

UDF  User-Defined Facility 

URM  Unreinforced Masonry 
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USACE  U.S. Army Corps of Engineers 

USAR  Urban search and rescue 

USCB  U.S. Census Bureau 

USFS  U.S. Forest Service 

USGS  U.S. Geological Survey 

VSFA  Value of a Statistical Fatality Avoided 

WHP  Wildfire Hazard Potential 

WUI  Wildland-Urban Interface 

WUS  Western United States 
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Appendix B. Databases 

B.1. BUILDING-RELATED GRANTS 

Program area Y (EDW SAP Data Tools HMGP from NEMIS; FMA & PDM from eGrant) 

Project title Y 

Project status 

Project category, if agency categorizes projects (project type) 

Declaration number (when applicable) 

Declaration title  

Date of loss 

Date project approved or awarded (FEMA is still awarding grants 10 years after Katrina) 

Date mitigation completed (Y, but sometimes years after the work completed) 

Primary peril (flood, wind, earthquake, fire, ...) (Y, but can be dirty) 

Peril 2 (if any) 

Location: census block or address to nearest say 10 or 100, or latitude and longitude (Y, can be dirty) 

Elevation of 1st floor above grade (feet, at main entrance), pre-disaster (iffy; look in BCA) 

Original year built (paper files) 

Building total floor area (sq ft) (paper files) 

Use of the building (occupancy); For businesses: NAICS or SIC (may be able to extrapolate from project 

type--public or private) 

Number of stories above grade (iffy) 

Number of basements (Y/N) 

Replacement cost (new) of building before disaster (paper files) 

Replacement cost (new) of building after disaster and repairs/upgrades (paper files) 

Number of employees or residents (no, but nonresidential may be in BCA or paper files) 

Drawings or description or Xactimate file (no, but paper files) 

Describe any improvement (or just return to pre-disaster condition?) (project description) 

FEMA model building type (or wall material) (paper files) 

In the case of DR: total verified loss ($) (PA) 

Total project cost ($ cost of mitigation or repair) (not to the level of individual buildings; paper) 

Grant amount ($) (same)  

Loss verification report if any (PA not on mitigation side) 
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B.2. DATA.GOV DATABASE OF HMGP GRANTS 

Table A-1: Fields from HMGP grants database. 

Field name Sample 

Region 8 

State Utah 

disasterNumber 820 

declarationDate 1989-01-31T00:00:00 +00:00 

incidentType Flood 

disasterTitle DIKE FAILURE & FLASH FLOODING 

projectNumber 2 

projectType 600.1: Warning Systems (as a Component of a Planned, Adopted, and 

Exercised Risk Reduction Plan) 

projectTitle FLOOD DETECTION INSTRUMENTS 

projectDescription INSTALL INSTRUMENTS BASED ON ASSESSMENT OF STRATEGIC 

LOCATIONS WHERE FLOODING NORMALLY OCCURS TO RECORD 

WATER AND RIVERFALL LEVELS. INSTRUMENTS TO BE DIRECT-

TRANSMITTING TO EMERGENCY OFFICE FOR WARNINGS AND 

EVACUATION. 

projectCounties WASHINGTON 

status Closed 

subgrantee ST. GEORGE 

subgranteeFIPSCode 5365330 

projectAmount 80000 

costSharePercentage 38 

hash 55e80c336c8590edb3c3309d2a61ac90 

lastRefresh 2014-11-20T15:16:39 +00:00 

B.3. PA DATA AVAILABILITY 

When IBM (2016) documented the design of the PA data repository it designed for FEMA, it described 

several so-called star schemas: descriptions of sets of database tables. At the center of each star was a 

table of facts containing the information the project team cared about, such as a list of PA applicants, each 

with an associated disaster ID and location ID. Attached to the center of the star were tables listing the 

allowable values of one field, such as a list of allowable applicant IDs. Each table has a table name and a 

set of field names. Table A-2 maps the PA data to the 2017 Interim Report study data. In the column 
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labeled “PA source,” entries are formatted as table.field, where table refers to the table name in the PA 

database and field refers to the field name in the PA table. 

Table A-2: Mapping PA data to the 2017 Interim Report study data. 

Field PA source Comment 

Program area “PA”   

Project title PA_PROJECT_SITE_DIMENSION

S.project_location_desc 

  

Project status     

Project category, if agency categorizes projects 

(project type) 

    

Declaration number (when applicable) PA_CASE_MGMT_PRJTN_FACTS

.disaster_id 

  

Declaration title      

Date of loss     

Date project approved or awarded      

Date mitigation completed     

Primary peril (flood, wind, earthquake, fire, ...)     

Peril 2 (if any)     

Location: census block or address to nearest say 10 or 

100, or latitude and longitude 

PA_PROJECT_FACTS.LATITUDE 

& 

PA_PROJECT_FACTS.LONGITU

DE 

Separate into 

two fields 

Elevation of 1st floor above grade (feet, at main 

entrance), pre-disaster  

    

Original year built     

Building total floor area (sq ft)     

Use of the building (occupancy); For businesses: 

NAICS or SIC 

    

Number of stories above grade     

Number of basements     

Replacement cost (new) of building before disaster     

Replacement cost (new) of building after disaster and 

repairs/upgrades  

    

Number of employees or residents     

Drawings or description or Xactimate file     
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Field PA source Comment 

Project description (describe any improvement or just 

return to pre-disaster condition?)  

PA_PROJECT_SITE_DIMENSION

S.SCOPE_OF_WORK 

  

FEMA model building type (or wall material)     

In the case of DR: total verified loss ($)   

Total project cost ($ cost of mitigation or repair) PA_PROJECT_FACTS.PROJECT_

AMOUNT 

  

Grant amount ($)  PA_PROJECT_FACTS.FEDERAL_

SHARE_OBLIGATED 

  

Loss verification report if any     

B.4. EDA 

The EDA electronic data referenced in this study date back to 2000. Fewer than 1,000 records address 

disaster. EDA provided the project team with just the disaster-related data, flagged based on 

appropriation descriptions (floods, hurricanes, etc.). The data reflect between 30 and 50 grants per year, 

varying between $100,000 and $2,000,000 in EDA funding. The grants went to nonprofits and public-

sector organizations, and deal with sewer lines, road repairs, and general construction (public works). 
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Appendix C. City of Moore Wind Code 

Enhancements 

Quoted from the City of Moore, Oklahoma (2014b): 

The following additions are hereby included in the dwelling code for the purposes of establishing 

minimum regulations governing residential construction for high wind resistance: 

1. Roof sheathing (OSB or plywood) shall be nailed with 8d ring shank (0.131" × 2.5") or 10d (0.148" × 3") 

nails on 4" on center along the edges and 6" on center in the field. Dimensional lumber decking is 

not allowed. 

2. Maximum spacing for roof framing shall be 16 inches on center. Minimum nominal sheathing panel 

size shall be 7/16. Minimum wood structural panel span rating shall be 24/16. 

3. Connections for roof framing shall be designed for both compression and tension, and may include 

nail plates or steel connection plates. Connections for roof framing shall include connections on 

rafters, web members, purlins, kickers, bracing connections, and the connections to interior brace wall 

top plates or ceiling joists. 

4. Gable end walls shall be tied to the structure, and may include steel connection plates or straps. The 

connections shall be made at the top and bottom of the gable end wall. 

5. Structural sheathing panel (OSB or plywood) shall be required for gable end walls. 

6. Hurricane clip or framing anchor shall be required on all rafter to wall connections. 

7. The upper and lower story wall sheathing shall be nailed to the common rim board. 

8. All walls shall be continuously sheathed with structural sheathing (OSB or plywood) using the CS-WSP 

method. Garage doors shall be framed using the sheathed portal frame method CS-PF. No form of 

intermittent bracing shall be allowed on an outer wall. Intermittent bracing may only be used for 

interior braced wall lines. 

9. Nailing of wall sheathing (OSB or plywood) shall be increased to 8d ring shank (0.131" × 2.5") or 10d 

(0.148" × 3") nails on 4" on center along the edges and 6" on center in the field. 

10. Structural wood sheathing shall be extended to lap the sill plate and nailed to the sill plate using a 4" 

on center along the edges. Structural wood sheathing shall be nailed to rim board if present with 8d 

ring shank (0.131 × 2.5") or 10d (0.148" × 3") nails on 4" on center along both the top and bottom 

edges of the rim board. 

11. Garage doors shall be rated to 135 mph wind or above. 

12. Exterior wall studs shall be 16" on center. 
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Appendix D. Which PA Grant Years to Include 

PA grants changed substantially after Hurricane Katrina struck in 2005. During the course of the study, the 

project team realized that those changes could influence the project objectives and affect the analysis. At 

least three options presented themselves, summarized in Table A-3. In light of their advantages and 

disadvantages, the project team selected option B. 

Table A-3: Options for how to deal with changes in PA grants after 2005. 

Option Advantages Disadvantages 

A. Estimate BCR since 

1993 

Consistent with the 2005 Mitigation 

Saves study and with proposal  

Data-quality issues; less useful to 

readers 

B. Estimate BCR from 

new mitigation 

Much more useful to readers; 

better data quality 

Less consistent with proposal 

C. Do both Advantages of both A and B Inconsistent data and more work, 

without providing a compelling benefit 

to the reader 
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Appendix E. Innovations Since the 2005 

Mitigation Saves Study   

Inventory of U.S. building stock. The project team used a 2008 building-stock inventory extracted from 

Hazus, but updated to 2016, that considered population growth (from Census Bureau data) and 

construction-cost inflation (from RSMeans). The 2005 Mitigation Saves study had no such inventory. 

Seismic vulnerability for buildings designed to exceed I-Code requirements. The project team created new 

vulnerability functions for repair costs, casualties, and loss of function (dollars, deaths, and downtime) for 

the entire U.S. building stock using the Cracking an Open Safe method (Porter 2009b). The 2005 

Mitigation Saves study did not consider designing to exceed I-Code requirements. The net effect of 

adding this consideration is to provide support for a new, practical, low-cost mitigation option.  

Seismic impairment of buildings designed to exceed I-Code requirements. The project team evaluated 

earthquake-induced building impairment (collapse, red-tag, and yellow-tag) using two seismic fragility 

functions developed for the USGS (Porter 2016). These rely solely on three authoritative sources: (1) Luco et 

al.’s fragility model (2007) underlying ASCE 7-10 MCER map, (2) FEMA P-695 (Federal Emergency 

Management Agency 2009) best estimate of the collapse probability of new, code-compliant buildings at 

MCE shaking, and (3) observations of the relative number of collapsed, red-tagged, and yellow-tagged 

buildings in the 1989 Loma Prieta, 1994 Northridge, and 2014 South Napa Earthquakes. The model was 

published in a leading scholarly journal (Earthquake Spectra) and extensively peer reviewed for the USGS, 

both by USGS scientists and by respected members of the Structural Engineers Association of Northern 

California (SEAONC). It was presented to hundreds of members of SEAONC, Structural Engineers 

Association of Southern California (SEAOSC), Structural Engineers Association of San Diego (SEAOSD), and 

Structural Engineers Association of California (SEAOC), as well as faculty and graduate students of several 

leading universities. The 2005 Mitigation Saves study did not consider impairment, red-tagging or yellow-

tagging. The net effect of this consideration is a more robust depiction of risk because it includes this 

more-tangible performance metric and support for a new, practical, low-cost mitigation option.  

Sea level rise. Weather-related losses in the 2017 Interim Report accounted for LSL rise. The 2005 Mitigation 

Saves study did not consider changing sea levels. The net effect of the addition is a more accurate picture 

of mitigation savings from flood mitigation. 

Mitigation investments by HUD and EDA. The project team expanded the scope of federal mitigation 

investments to include grants from programs outside HMGP, PDMA, and Project Impact. The 2005 

Mitigation Saves study did not include these. The net effect of the expanded scope is a richer depiction of 

the benefit of public-sector mitigation investment.  

Mental-health disaster impacts. The project team accounted for the psychological trauma that disasters 

produce with a new methodology. The 2005 Mitigation Saves study did not address mental health. The net 

effect is a richer depiction of disaster losses, more consistent with President Clinton’s 1994 Executive Order 
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to consider all types of benefits, tangible and intangible, from infrastructure investment. This addition raises 

BCRs and makes them more accurate. 

Mitigation synergies. Few mitigation projects focus solely on one type of peril. Even when they do, the 

potential exists for externalities or spillovers. This project offers a framework to quantify synergies between 

mitigation strategies, such as between building design to exceed I-Code requirements, structural and 

nonstructural retrofit of existing buildings, and BCP and DR. An organization that engages in enterprise risk 

management (ERM) using all three strategies is likely to be more resilient than one that engages in only 

one or two. Its risk of ruin seems likely to be more reduced by such a comprehensive ERM approach than 

the sum of their individual effects would indicate.  
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Appendix F. Sea Level Rise 

To estimate the benefits of coastal flood mitigation, one must quantify LSL rise. The analysis requires 

baseline, lower-bound, and upper-bound values of LSL rise over time to estimate BCRs and to test 

sensitivity to uncertainty. The project team considered the advantages and disadvantages of three 

reasonable options: 

1. Kopp (2014) provides analysis and a spreadsheet estimating LSL rise at various coastal locations by 

decade under each of three emissions pathways.  

2. National Oceanic and Atmospheric Administration (2017a) lays out GMSL rise under each of 6 

scenarios (labeled low, intermediate low, through extreme). National Oceanic and Atmospheric 

Administration (2017a) provides GMSL data on a 1-degree grid. 

3. A combination of the two. 

Sea Level Rise Option 1: Kopp (2014) 

Advantages: 

1. Provides best estimates of LSL by location and decade under each of several emissions pathways.  

2. Nobody knows what emissions pathway will turn out to be closest to the truth, but it is straightforward 

to condition on them, e.g., to say “Our baseline BCRs assume RCP6. Our lower-bound BCRs assume 

RCP8.5. Our upper-bound BCRs assume RCP 2.6.” One can call this advantage “clear probabilistic 

conditioning.”  

3. Authoritative. 

Disadvantages: 

1. Not the newest, latest, greatest technique. 

2. Not aligned with Union of Concerned Scientists. 

3. Spatial data requires difficult spatial interpolation. 

Sea Level Rise Option 2: National Oceanic and Atmospheric Administration (2017a) 

Advantages: 

1. Best estimates of GMSL by 1-degree grid cell and decade. 

2. Practical to implement. 

3. Latest, greatest. 

4. Aligned with Union of Concerned Scientists. 

5. Authoritative. 
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Disadvantages: 

1. Scenario labels (low, moderate-low, etc.) are misleading. They imply, for example, that moderate is 

some sort of best estimate of future GMSL. Closer inspection suggests however that it is nothing of 

the kind—not some sort of probabilistic mean, but rather it is labeled moderate only because it is an 

intermediate value in the range Kopp (2014) considered valid.  

2. BCA must attempt to provide best-estimate values, so disadvantage 1 makes the use of the National 

Oceanic and Atmospheric Administration (2017a) option largely useless unless one can tie its scenarios 

back to clear probabilistic conditioning. 

3. Scenario selection guidance in Section 6.1 is of little help for BCA. 

Sea Level Rise Option 3: Combine Kopp (2014) and National Oceanic and Atmospheric Administration 

(2017a) 

Description: select the National Oceanic and Atmospheric Administration (2017a) scenarios that most 

closely resemble the project team’s preferred Kopp (2014) baseline, lower-bound, and upper-bound 

emissions pathways, namely: 

 Baseline = mean outcomes of RCP6.0 (virtually identical to RCP4.5). Closest to intermediate-low. 

 Lower bound = high exceedance probability under RCP2.6. Closest to low. 

 Upper bound = low exceedance probability under RCP8.5. Closest to intermediate-high. 

Advantages: 

1. Practical data set: best estimates of GMSL by 1-degree grid cell and decade.  

2. Latest, greatest. 

3. Aligned with Union of Concerned Scientists. 

4. Authoritative. 

5. Clear probabilistic conditioning. 

6. Baseline errs on conservative side, a key requirement of the project team in the Interim Study. 

Disadvantages: 

1. None are obvious. 

With the advice of the oversight committee and FEMA, the project team selected option 3, combine Kopp 

(2014) and National Oceanic and Atmospheric Administration (2017a). 

This appendix deals with whether and how to consider SLR and future changes in precipitation and wind 

hazard. The project team used the recent and widely cited estimates of LSL rise offered by Kopp et al. 

(2014). Their estimates account for land water storage, Greenland ice sheet melt, Antarctic ice sheet melt, 

glacier and ice cap mass balance (GIC), oceanographic processes (thermal expansion and regional effects), 

and the non-climatic background. At a global level, assuming greenhouse gas emissions continue to 

increase throughout the 21st century, the Representative Concentration Pathways (RCP), trajectory 8.5, 
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Kopp et al. estimate a likely global average sea level (GASL) rise “of 0.6–1.0 m by 2100, with a very likely 

range of 0.5–1.2 m and a virtually certain (99% probability) range of 0.4–1.8 m.” See Kopp et al.’s (2014) 

Table 1 for a summary of their findings. 

Kopp et al.’s upper limit of 1.8m is consistent with the 95th percentile estimated by Jevreja et al. (2014). 

Kopp et al.’s “likely” range expresses the average value ± one standard deviation (oversimplifying slightly). 

Their very-likely range spans the mean ± 1.6 standard deviations. Their virtual-certainty range spans the 

mean ± 2.6 standard deviations. 

Like other authors, Kopp et al. offer lower estimates of GSL for scenarios where greenhouse gas emissions 

peak in the 21st century, then decline: RCP 2.6 estimates GSL if emissions peak in the present decade and 

then decline; RCP 4.5 assumes emissions peak in 2040; and RCP 6 in 2080.  

Despite the uncertainties in each RCP and the uncertainty about when the world will effectively cause 

emissions to decline (e.g., the choice between RCPs), the range in GSL is reasonably constrained: the mean 

values are 2.9 feet under a continuously increasing emissions pathway (RCP 8.5), 2.0 feet under a middle-

of-the-road pathway (RCP 4.5), and 1.8 feet under the most optimistic pathway (RCP 2.6). Even within an 

assumption of an emissions pathway, the year-2100 GSL under each RCP is somewhat uncertain, but the 

range is not very large: on the order of ± 30%. The project team would consider an order of magnitude to 

represent a large degree of uncertainty; plus, or minus 30% would be considered a fairly well constrained 

range for many common structural engineering problems, such as the fundamental period of vibration of 

a building. The point is that despite various uncertainties, the overall range of possible global sea level 

(GSL) rise is fairly well constrained. 

To return to the Kopp et al. (2014) estimates of LSL rise relative to 2000 levels in 2030, 2050, 2100, and 

beyond: their curves estimate LSL at 24 cities along the entire Atlantic, Gulf, and Pacific Coasts in the 

United States. If one thinks of the winners in LSL as places where sea level stays the same or decreases, 

and the losers as places where sea level increases, then Alaska is the big winner (LSL dropping as much as 

3.5 feet by 2100), while the biggest losers are spread along the entire Atlantic and Gulf Coasts in the 

United States, with likely LSL rises up to 4 feet or more and 95th percentiles as high as 6.5 feet by 2100.  

BCA has to consider uncertainty, but it is really about average values. The project team’s goal is therefore 

to provide best estimates of BCR, not best or worst cases, so the tails of LSL are of less interest here than 

mean values. The project team therefore considers the mean values of RCP 6 as the baseline emissions 

trajectory. The project later tests sensitivity of BCR to LSL using two extremes: a lower-bound LSL (5th 

percentile) of the most optimistic emissions trajectory (RCP 2.6) and an upper-bound LSL (95th percentile) 

of the most pessimistic trajectory (RCP 8.5). See Chapter 3 for ranges. For example, the lower-bound, 

mean, and upper-bound year-2100 LSL for New York City are 0.9, 2.5, and 5.1 feet, respectively. The values 

for Miami, FL, are similar: 0.9, 2.2, and 4.3 feet. For San Diego, CA, they are 0.9, 2.1, and 4.1 feet. 

For the reader who is interested in worst cases, LSL becomes more catastrophic farther into the future 

under RCP 8.5: LSL of 12.4-feet in Charleston, South Carolina by the year 2200 means that the city, in 
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which the highest elevation is approximately 14-feet, ceases to exist in its present location by the end of 

the next century. 

Kopp et al. (2014) estimate of the contribution to GSL rise in centimeters under three assumptions of how 

well humanity controls greenhouse gases (called RCP. See Table A-4. Column headers 50, 17-83, etc., refer 

to percentiles. Components refer to the contribution to GSL from several sources. 

Table A-4: Global sea-level rise projections. 

 RCP 8.5 RCP 4.5 RCP 2.6 

cm 50 17-83 5-95 0.5-

99.5 

99.9 50 17-83 5-95 0.5-

99.5 

99.9 50 17-83 5-95 0.5-

99.5 

99.9 

2100-Components 

GIC  18 14–21  11–24  7–29  <30  13 10–17  7–19  3–23  <25  12 9–15  7–17  3–20  <25  

GIS  14 8–25  5–39  3–70  <95  9 4–15  2–23  0–40  <55  6 4–12  3–17  2–31  <45  

AIS  4 -8 to 

15  

-11 to 

33  

-14 to 

91  

<155  5 -5 to 

16  

-9 to 

33  

-11 to 

88  

<150  6 -4 to 

17  

-8 to 

35  

-10 to 

93  

<155  

TE  37 28–46  22–52  12–62  <65  26 18–34  13–40  4–48  <55  19 13–26  8–31  1–38  <40  

LWS  5 3–7  2–8  -0 to 11  <11  5 3–7  2–8  -0 to 11  <11  5 3–7  2–8  -0 to 11  <11  

Total  79 62–100  52–121  39–176  <245  59 45-77 36-93 24–147  <215  50 37-65 29-82 19–141  <210  

Projections by year 

2030 14 12–17  11–18  8–21  <25  14 12–16  10–18  8–20  <20  14 12–16  10–18  8–20  <20  

2050 29 24–34  21–38  16–49  <60  26 21–31  18–35  14–44  <55  25 21–29  18–33  14–43  <55  

2100 79 62–100  52–121  39–176  <245  59 45–77  36–93  24–147  <215  50 37–65  29–82  19–141  <210  

2150 130 100–

180  

80–230  60–370  <540  90 60–

130  

40–

170  

20–310  <480  70 50–

110  

30–

150  

20–290  <460  

2200 200 130–

280  

100–

370  

60–

630  

<950  130 70–

200  

40–

270  

10–520  <830  100 50–

160  

30–

240  

10–500  <810  

Note: GIC = glacier and ice cap mass balance, GIS = Greenland ice sheet melt, AIS =Antarctic ice sheet 

melt, TE = thermal expansion and regional effects, and LWS = land water storage. 
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Note: Their 1.8-meter upper limit (95th percentile) is about the same as the 99th percentile of Kopp et al. 

(2014), which only means that Jevreja et al. express a so somewhat more pessimistic worst case than Kopp 

et al., not that they substantially disagree. 

Figure A-1: Jevreja et al. (2014) estimated the probability distribution function of GSL by the year 2100. 

Table A-5: LSL relative to year 2000, in feet, based on Kopp et al. (2014) projections. 

Location Year Lower Baseline Upper 

Portland, ME 2030 0.2 0.6 0.9 

 2050 0.3 1.0 1.7 

 2100 0.4 2.1 4.6 

Boston, MA 2030 0.3 0.6 1 

 2050 0.4 1.1 1.8 

 2100 0.7 2.3 4.9 

Newport, RI 2030 0.3 0.7 1.1 

 2050 0.5 1.2 1.9 

 2100 0.8 2.4 5 

New York, NY 2030 0.3 0.7 1.2 

 2050 0.5 1.2 1.9 

 2100 0.9 2.5 5.1 

Atlantic City, NJ 2030 0.4 0.8 1.1 

 2050 0.7 1.3 2 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   540 
 

Location Year Lower Baseline Upper 

 2100 1.2 2.8 5.3 

Philadelphia, PA 2030 0.3 0.7 1.1 

 2050 0.5 1.2 1.9 

 2100 0.9 2.5 5 

Lewes, DE 2030 0.4 0.7 1.1 

 2050 0.7 1.2 1.9 

 2100 1.1 2.7 5 

Baltimore, MD 2030 0.3 0.7 1 

 2050 0.6 1.2 1.8 

 2100 1.0 2.5 4.9 

Washington, DC 2030 0.3 0.7 1 

 2050 0.6 1.2 1.8 

 2100 1.0 2.5 4.8 

Norfolk, VA 2030 0.5 0.8 1.1 

 2050 0.8 1.4 2 

 2100 1.4 2.9 5.2 

Wilmington, NC 2030 0.3 0.6 0.9 

 2050 0.5 1.0 1.6 

 2100 0.8 2.2 4.3 

Charleston, SC 2030 0.4 0.7 0.9 

 2050 0.7 1.1 1.6 

 2100 1.0 2.4 4.5 

Fort Pulaski, GA 2030 0.4 0.7 0.9 

 2050 0.7 1.1 1.7 

 2100 1.1 2.4 4.6 

Miami, FL 2030 0.3 0.6 0.9 

 2050 0.6 1.0 1.5 

 2100 0.9 2.2 4.3 

Pensacola, FL 2030 0.2 0.5 0.8 

 2050 0.5 0.9 1.5 

 2100 0.7 2.1 4.2 

Grand Isle, LA 2030 0.9 1.2 1.5 
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Location Year Lower Baseline Upper 

 2050 1.6 2.1 2.6 

 2100 3.0 4.4 6.5 

Galveston, TX 2030 0.7 1.0 1.2 

 2050 1.2 1.6 2.2 

 2100 2.1 3.5 5.7 

San Diego, CA 2030 0.3 0.5 0.6 

 2050 0.5 0.9 1.3 

 2100 0.9 2.1 4.1 

San Francisco, CA 2030 0.3 0.4 0.6 

 2050 0.4 0.8 1.3 

 2100 0.8 2.0 4 

Astoria, OR 2030 0.0 0.2 0.3 

 2050 0.0 0.4 0.8 

 2100 0.0 1.1 3 

Seattle, WA 2030 0.2 0.4 0.5 

 2050 0.4 0.8 1.1 

 2100 0.7 1.9 3.7 

Juneau, AK 2030 -1.3 -1.2 -1 

 2050 -2.2 -1.9 -1.5 

 2100 -4.4 -3.4 -1.7 

Anchorage, AK 2030 -0.2 0.2 0.4 

 2050 -0.4 0.2 0.8 

 2100 -0.6 0.5 2 

Honolulu, HI 2030 0.3 0.5 0.7 

 2050 0.5 0.9 1.4 

 2100 0.9 2.2 4.6 
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Appendix G. Quality Assurance Procedures 

G.1. PROJECT QUALITY ASSURANCE PLAN 

To assure the quality of the findings, the project team follows these quality assurance (QA) methods: 

1. The project team clearly documents all procedures in the Interim Study, consistent with a standard of 

reproducibility common in scholarly journals, especially those of the relevant fields of earth science, 

engineering, economics, and social science. To the extent practical, the project team members offer 

underlying data, but do not hold themselves to a higher standard of providing data than those of 

journals in their fields. For the sake of brevity and efficiency, the project team does not commit to 

reproducing or explaining as in a textbook any prior art that is well documented elsewhere. The 

project team cites those works for the reader’s benefit and provides complete bibliographic 

references. 

 

2. This is an applied research project, not basic research. The project team does not commit to search 

for data that may exist, ought to exist, or ought to be available to the public. It does not commit to 

improve on the state of the practice or state of the art, although as scholars the project team does 

take advantage of convenient opportunities to advance the state of the art in a few useful and 

important ways. (See Appendix E for details.) 

 

3. All data and procedures are based to the maximum extent practical on published, peer- reviewed, 

highly cited works. For the sake of scientific rigor, the project team uses no proprietary data or 

procedures. When confronted with a choice among competing procedures or data sources, the 

project team selects the ones that are both practical and most well accepted. The project team does 

not demand absolute consensus among relevant experts, but does aim for the best available choice. 

 

4. The baseline for all procedures and data is the 2005 Mitigation Saves study. The project team does 

not take the trouble to repeat any defense of the 2005 Mitigation Saves study procedures or choices 

that are already documented in that earlier report. That work has been highly cited and has stood 

the test of time over the decade since its publication. 

 

5. Where there is significant uncertainty or no census, the project team leans toward a conservative 

procedure, e.g., one that estimates lower benefits or higher costs.  

 

6. The goal of the Interim Study is to provide best estimates of the BCR of natural hazard mitigation. 

Still, the project team tries to acknowledge significant uncertainty where it exists and test the sensitivity 

of BCR to major uncertain variables using a deterministic procedure call tornado-diagram analysis, as 

in the 2005 Mitigation Saves study. 
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7. The project team performs internal checks of all results. Project team members choose internal QA 

procedures that best suit their organizations, as long as those procedures satisfy the project team’s 

oversight committee members. (Regarding the oversight committee, see item 8.) 

 

8. The National Institute of Building Sciences has engaged a large oversight committee of highly 

qualified experts. At least two experts represent each topic: flood, wind, earthquake, fire, economics, 

social sciences, and building codes. Oversight committee members generally include one scholar and 

one practitioner for each topic, to better ensure that both theory and practice are properly 

considered. The oversight committee formally met three times: a kickoff web meeting in December 

2016, at the time of delivering the 33% draft of the 2017 Interim Report to FEMA (February 2017), and 

email to review the near-final draft of the 2017 Interim Report (September 2017). At these meetings, 

the project team presented the in-progress or near-final draft report to the oversight committee, who 

had two opportunities to provide feedback: during the presentation meeting and online during the 

week after the presentation meeting. The project team committed to addressing the oversight 

committee members’ comments, although, to retain independence, the project team did not commit 

to completely satisfying the oversight committee on every point. Committee members (listed in Table 

A-6) were selected and appointed by the Institute in consultation with the project team and the FEMA 

contract officers. They work as subcontractors of the Institute, and are therefore independent of the 

project team.  

 

9. The Institute, project team, and oversight committee formally met with a stakeholder group in 

February 2017 to optimize the project’s objectives and the form of its deliverables. The main goal of 

these deliverables is to inform common natural hazard risk-mitigation decisions. They should be 

readily usable by people who make natural hazard risk-mitigation decisions, people who offer or 

formulate incentives to others to engage in natural hazard risk mitigation, or people who further 

develop risk-mitigation techniques and analysis procedures. The National Institute of Building 

Sciences and the project team also met informally with other stakeholders, such as economists and 

engineers from FEMA, DHS, and OMB, as well as other potential users of the Interim Study. 
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Table A-6: 2017 Interim Report oversight committee. 

Topic Person Affiliation 

Flood 

  

Neil Blais(a) Blais & Associates 

Gavin Smith Coastal Resilience Center of Excellence, University of North 

Carolina 

Wind 

  

Tim Reinhold(b) Insurance Institute for Business & Home Safety 

Peter Vickery Applied Research Associates 

Earthquake 

  

Brent Woodworth(b) Los Angeles Emergency Preparedness Foundation 

Lucy Jones Dr. Lucy Jones Center for Science and Society 

Wildfire 

  

Mark Finney U.S. Forest Service 

Kim Zagaris California Office of Emergency Services 

Economics 

  

Phil Ganderton(b) University of New Mexico 

Adam Rose(b) University of Southern California 

Social science Lori Peek Natural Hazards Center, University of Colorado 

Stan Drake City of Moore, Oklahoma 

Jennifer Helgeson National Institute of Standards and Technology 

Codes 

  

  

Steve Winkel The Preview Group 

Terry McAllister National Institute of Standards and Technology 

Tim Ryan City of Overland Park, Kansas 

(a) Committee chair 

(b) Involved in the 2005 Mitigation Saves study. 

G.2. QA PROCEDURES FOR SEISMIC HAZARD AND SEISMIC 

VULNERABILITY 

The project team used either of two procedures to check results. 

Approach 1: Investigator A documents the procedures in terms of what is given and what is required, and 

then presents the solution, carrying out the calculations specified in the solution and documenting one or 

two samples of the calculations from end to end. The documentation and all relevant data are then 

provided to investigator B, who answers the following questions: 

1. Is the documentation clear? If not, investigator B requests that investigator A revises the calculations 

to make all the steps clear and easy to follow. 

2. Do the calculations agree with standard practice? If you are not sure, ask investigator A to revise the 

calculations so that all equations are cited back to a source that you can easily find. 
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3. Are the sample calculations correct, and do they agree with the results shown in the spreadsheet? If 

not, flag errors and ask investigator A to correct them. 

4. Check the first and last output records. 

5. Check the output records that are somehow highest and somehow lowest. 

6. Spot-check 2 records at random from the middle. 

Approach 2: Investigator A documents the procedures. Investigators A and B (or investigators B and C) 

carry out the calculations independently. If their results agree, it suggests that the documentation is clear 

and the calculations are correct. 
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Appendix H. Discount Rate 

H.1. OPTIONS FOR SELECTING THE DISCOUNT RATE 

The project team considered four options for selecting a discount rate for use in the study, and discussed 

them with economists at FEMA and OMB and with the economists on the oversight committee. See the 

options recapped below, with their advantages and disadvantages. With the approval of the oversight 

committee, the project team selected Option 3 as the best compromise. 

1. Use the real interest rate (after-inflation cost of capital, as currently utilized in the Interim Study) as the 

discount rate.  

Advantages: Consistent with the 2005 Mitigation Saves study. Consistent with principles of 

engineering economics.  

Disadvantages: not useful to OMB.  

2. Use OMB Circular A-4 as the discount rate (Office of Management and Budget 2003). 

Advantages: useful to OMB. 

Disadvantages: inconsistent with the 2005 Mitigation Saves study. Inconsistent with principles of 

engineering economics. Seems to conflate IRR analysis with BCA.  

3. Use Option 1 as the baseline and publish Option 2 in a parallel section.  

Advantages: consistent with the 2005 Mitigation Saves study. Consistent with principles of 

engineering economics. Provides OMB with the data they need.  

Disadvantages: none apparent. Possibly confusing to some readers, but doubtful, since the 2005 

Mitigation Saves study project team heard no objections to the 2005 Mitigation Saves study 

tornado diagram analysis used to test sensitivity of the BCR to the discount rate. 

4. Reverse of 3: Use OMB Circular A-4 for the baseline, real cost of borrowing in sensitivity study in a 

parallel section, appendix, or other separate section (Office of Management and Budget 2003). 

Advantages: provides OMB the data they need, and presents in an appendix or elsewhere results 

that are consistent with the 2005 Mitigation Saves study. 

Disadvantages: baseline is inconsistent with the 2005 Mitigation Saves study and principles of 

engineering economics.  

After discussion among the project team members, FEMA, and oversight committee economists 

(Ganderton and Rose), option 3 appeared best. 
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H.2. REAL COST OF BORROWING 

r = real cost of borrowing = long-term cost of borrowing, less inflation 

Residential real cost of borrowing. For residential 15-year and 30-year fixed-rate loans and jumbo loan, 

Wells Fargo charged 0.0401 to 0.0442 in December 201641. This uses a conservative (higher) figure: that of 

30-year fixed jumbo as of December 2016 was 0.0431. The Trading Economics website reported that the 

December 2016 U.S. inflation rate was 0.021042. Thus, 

rRES = 0.0431 – 0.0210 = 0.0221 

Equation A-1 

Commercial real cost of borrowing. For a commercial mortgage, the interest rate is usually 0.5% to 1.0% 

higher than residential mortgage rates (AdvisoryHQ 2017), but as of this writing the two are approximately 

equal. Commercial Loan Direct43 is charging 3.7% to 4.335%. A December 2016 U.S. Securities and 

Exchange Commission (SEC) filing reported that JP Morgan Chase44 is currently charging 2.86% to 5.35%, 

with a weighted average mortgage rate of 0.0423, so take 

rNRES = 0.0423 – 0.0210 = 0.0213 

Equation A-2 

Government real cost of borrowing. Government borrowing is discounted using the composite rate for I 

bonds issued by the U.S. Department of the Treasury45, which from November 1, 2016, through April 30, 

2017, was 0.0276. Also note that in December 2016, the return on Treasury inflation-protected securities 

(TIPS) real yield, as of November 1, 2016, was 0.0069 for a 30-year term, which agrees well with the value 

of rGOV used here: 

rGOV = 0.0276 – 0.0210 = 0.0066 

Equation A-3 

 

 

 

                                                 
41 From https://www.wellsfargo.com/mortgage/rates/ in December 2016 
42 From https://tradingeconomics.com/ in December 2016. 
43 From https://www.commercialloandirect.com/commercial-rates.php in December 2016 
44 From http://www.secinfo.com/d1evd6.w48g.htm, page 132. 
45 From https://www.treasurydirect.gov/indiv/research/indepth/ibonds/res_ibonds_iratesandterms.htm, Dec 2016 

https://www.wellsfargo.com/mortgage/rates/
https://tradingeconomics.com/
https://www.commercialloandirect.com/commercial-rates.php
http://www.secinfo.com/d1evd6.w48g.htm
https://www.treasurydirect.gov/indiv/research/indepth/ibonds/res_ibonds_iratesandterms.htm
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H.3. DISCOUNT RATES ACCORDING TO OMB CIRCULAR A-4 

For purposes of calculating BCR for the benefit of OMB, use the values directed by OMB Circular A-4 

(Office of Management and Budget 2003): 

rA4-1 = 0.07 

rA4-2 = 0.03 

Equation A-4 
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Appendix I. Actual Economic Life of North 

American Buildings 

BCA requires a duration over which to recognize the benefit of the investment. BCRs for exceeding code 

require an estimate of the actual service life of new buildings—the number of years between when they 

are built and when they are demolished. BCRs for federal mitigation grants require an estimate of the 

remaining life of an existing building or of the part of a building that is being remediated. The 2005 

Mitigation Saves study assumed a useful life of 50 years for retrofits to ordinary buildings and 100 years for 

lifeline facilities. 

ASCE 7-10 encodes a 50-year design life of new buildings in its wind and earthquake design maps, but 

design life is not the same thing as actual service life. Emporis Corporation (2007) offers a database of 

high-rise buildings (generally 8 or more stories) worldwide. In the United States, the average existing high-

rise building is already 50 years old, and 25% are already almost 70 years old. While the database 

obviously contains no data on buildings that have been demolished, it suggests that the true service life of 

any particular new U.S. building may be far longer than the design life assumed in ASCE 7.  

Several sources offer guidance without underlying evidence. One highly cited work (Börjesson and 

Gustavsson 2000) suggest a building life cycle of 50 to 100 years, but not for U.S. construction. The U.S. 

Department of Defense assumes a 40-year useful life in life-cycle cost analyses46. DOE suggests that 

commercial buildings have median lifetimes of 50 to 65 years47. 

O’Connor (2004) presents a rare work that offers observations of actual life of particular buildings: a 

demolition survey of Minneapolis/St. Paul, Minnesota that captured building age, building type, structural 

material, and reason for demolition for 227 buildings that were demolished between 2000 and 2003. 

These included 122 residential and 105 nonresidential buildings, among them 148 wood, 57 concrete, 10 

steel, and the remaining 12 various combinations. She does not present an average age of demolished 

buildings, but rather the number of buildings by range of age at demolition, in 25-year increments (0-25, 

26-50, 51-75, 76-100, and 101+). Using the midpoint of each age group one can estimate that the average 

building demolished between 2000 and 2003 in Minneapolis/St Paul was 73 years old. One can also 

estimate the figures for residential (89 years) and nonresidential (55 years). Maintenance costs and 

redevelopment dominate the reasons for demolition. O’Connor does not speculate on how life 

expectancy might differ in other locations or over time, e.g., during other points in the business cycle. 

As shown above, the limited available data support an actual service life of a building between 50 and 75 

years, with the value depending largely on maintenance costs and redevelopment. It seems reasonable to 

                                                 
46 http://wbdg.org/FFC/DOD/UFC/ufc_1_200_02_2016.pdf 
47  U.S. Department of Energy (2011) Table 3.2.7 

http://wbdg.org/FFC/DOD/UFC/ufc_1_200_02_2016.pdf
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take the service life of buildings in harsher environments, especially in coastal areas where maintenance 

costs tend to be higher, as 50 years, and that of buildings farther from the shoreline as 75 years. 
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Appendix J. Cost of Greater Elevation 

The 2017 Interim Report of above-code measures examined, among other things, increasing the elevation 

of houses for greater flood resistance. A common approach to adding elevation is to raise the first floor on 

wooden piles, for which the construction cost appears in RSMeans 2017 Assemblies Cost Data, Section 

A1020 160 2220. One can estimate the cost to raise a single-family dwelling as $33 per foot of elevation 

per pile, and assume 25 piles required, spacing at 12-foot centers, average plan area of 2,400 sf, 9 

additional piles at the perimeter (U.S. Census Bureau 2010b), or $825 per foot of elevation. Wooden stairs 

add $325 per foot of elevation (RSMeans C2010 110 1150), for a total of approximately $1,150 per foot of 

elevation. 

Some houses have wheelchair ramps. How many, and at what cost? Examination of 682 sample houses in 

5 coastal cities listed in vrbo.com suggests that approximately 5% are wheelchair accessible. (In Miami, 

Florida: 6 of 101 are wheelchair accessible = 6%; Biloxi, Mississippi: 6 of 26 = 23%; Galveston, Texas: 18 of 

459 = 4%; Charleston, South Carolina: 1 of 54 = 2%; Tampa, Florida: 5 of 42 = 12%; total 36 of 682 = 5%). 

These data imply that on the order of 5% of new homes with greater elevation would also have wheelchair 

ramps. The 5% figure coincidentally agrees with HUD requirements that 5% of federally funded new 

homes in developments must comply with ADA requirements, and must therefore have wheelchair ramps. 

Realistically, the figure could rise in coming decades as the American population ages, but one can neglect 

this (possibly second-order) consideration. An informal survey of online estimates of the cost of permanent 

wheelchair ramps suggests costs range widely, from $1,000 to $3,000 per foot of elevation. (Sources: 

North Carolina State University College of Design, Center for Universal Design 2004, Networx 2011, 

ProMatcher 2017, Angie’s List 2013. Add 0.05 × $2,000 = $100 per foot of elevation for wheelchair ramps, 

accounting for the fact that only some new houses will be built with wheelchair ramps. 

With nominal additional costs for utility risers and additional exterior closure material for ground-level 

storage space, the total cost is therefore approximately $1,300 per foot of elevation.  
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Appendix K. Details of Seismic Vulnerability 

K.1. PREFACE 

This appendix provides details for the calculation of two aspects of seismic vulnerability: design to exceed 

certain I-Code requirements for earthquake (which one could call above-code design), and design to 

adopt I-Code requirements for earthquake (i.e., with a starting point that one could call below-code 

design). The two analyses were performed at different times: the former prior to the adoption of ASCE 7-

16, the latter afterwards. For design to exceed I-Code requirements, the project team used the design 

maps and provisions of ASCE 7-10, and compared the performance of buildings design to meet those 

requirements (i.e., those of the 2015 I-Codes) with buildings that are stronger and stiffer than ASCE 7-10 

requires by varying factors of 1.25, 1.5, and larger.  

For design to adopt I-Code requirements—the later analysis—the project team used design maps and 

provisions of ASCE 7-16, and compared the design performance of buildings to meet those requirements 

(i.e., those of the 2018 I-Codes) with buildings that are weaker and more flexible than ASCE 7-16 requires 

by varying factors of 0.67, 0.44, and 0.30. References to design parameters hereafter in this appendix refer 

to ASCE 7-10. Parameter names did not change between ASCE 7-10 and ASCE 7-16, but some parameter 

values may have. Examples of parameter values presented hereafter in this appendix reflect ASCE 7-10. 

K.2. CALCULATING THE CAPACITY CURVE 

Start by calculating the parameters of the capacity curve. It is defined by four parameters: Dy, Ay, Du, and 

Au. It is linear from (0,0) to (Dy, Ay), describes a portion of an ellipse between (Dy, Ay) and (Du, Au), and is flat 

to the right of Du. For derivation of the following equations, see Porter (2009a and b), which draws on 

earlier editions of Federal Emergency Management Agency (2012e). One calculates these four parameter 

values from design parameters Cs, Te, and Ie, as follows: 

Let, 

Cs = seismic response coefficient in the language of ASCE 7-10 Chapter 11. Hazus developers refer 

to Cs as design strength.  

Te = approximate (elastic) fundamental period of the as-is (Ie = 1.0) building. This is the mean 

estimate of elastic period, not the conservative (low) value from ASCE 7-10. For code-level 

design, one could use best-estimate values derived from regression analysis of actual 

building response by Chopra and Goel (2000). Alternatively, one could use the values 

tabulated by Federal Emergency Management Agency (2012e) in Table 5.5. The latter 

seems simpler and offers more assurance of consistency with Hazus. Te is a function solely 

of model building type. See Table A-7. 
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Ie = (earthquake) importance factor from ASCE 7-10 Chapter 11. In the case of below-code design, 

Ie is taken as 0.67, 0.44, and 0.30, to reflect buildings that are less strong and stiff than 

current design.  

Then using the equations in Figure 5.4 of Federal Emergency Management Agency (2012e): 

𝐴𝑦 =
𝐶𝑠𝛾

𝛼1
⋅ 𝐼𝑒 

Equation A-5 

𝐷𝑦 =
9.8𝐴𝑦𝑇𝑒

2

𝐼𝑒
 

Equation A-6 

𝐴𝑢 = 𝜆𝐴𝑦 

Equation A-7 

𝐷𝑢 = 𝜆𝜇𝐷𝑦 

Equation A-8 

The parameters , 1, 2, and  vary by model building type and are tabulated in Federal Emergency 

Management Agency (2012e) Chapter 5. Table A-7 repeats them for convenient reference. The reader 

who is familiar with the Hazus methodology may notice the slight difference between Equation A-5 and 

Equation A-6 and their counterparts in Federal Emergency Management Agency (2012e): Ie appears here 

but not there. It appears in the numerator of Equation A-5 because strength increases in proportion to Ie. 

It appears in the denominator of Equation A-6 to keep Dy constant regardless of Ay, that is, to increase 

stiffness in proportion to strength.  

Table A-7: Capacity curve parameters. 

Building 

type 

Roof 

height (ft) 

Period Te 

(sec) 

Modal factor, 

weight, 1 

Modal factor, 

height, 2 

Overstrength 

ratio, yield  

Overstrength ratio, 

ultimate, λ 

W1 14 0.35 0.75 0.75 1.5 3 

W2 24 0.4 0.75 0.75 1.5 2.5 

S1L 24 0.5 0.8 0.75 1.5 3 

S1M 60 1.08 0.8 0.75 1.25 3 

S1H 156 2.21 0.75 0.6 1.1 3 

S2L 24 0.4 0.75 0.75 1.5 2 

S2M 60 0.86 0.75 0.75 1.25 2 
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Building 

type 

Roof 

height (ft) 

Period Te 

(sec) 

Modal factor, 

weight, 1 

Modal factor, 

height, 2 

Overstrength 

ratio, yield  

Overstrength ratio, 

ultimate, λ 

S2H 156 1.77 0.65 0.6 1.1 2 

S3 15 0.4 0.75 0.75 1.5 2 

S4L 24 0.35 0.75 0.75 1.5 2.25 

S4M 60 0.65 0.75 0.75 1.25 2.25 

S4H 156 1.32 0.65 0.6 1.1 2.25 

S5L 24 0.35 0.75 0.75 1.5 2 

S5M 60 0.65 0.75 0.75 1.25 2 

S5H 156 1.32 0.65 0.6 1.1 2 

C1L 20 0.4 0.8 0.75 1.5 3 

C1M 50 0.75 0.8 0.75 1.25 3 

C1H 120 1.45 0.75 0.6 1.1 3 

C2L 20 0.35 0.75 0.75 1.5 2.5 

C2M 50 0.56 0.75 0.75 1.25 2.5 

C2H 120 1.09 0.65 0.6 1.1 2.5 

C3L 20 0.35 0.75 0.75 1.5 2.25 

C3M 50 0.56 0.75 0.75 1.25 2.25 

C3H 120 1.09 0.65 0.6 1.1 2.25 

PC1 15 0.35 0.5 0.75 1.5 2 

PC2L 20 0.35 0.75 0.75 1.5 2 

PC2M 50 0.56 0.75 0.75 1.25 2 

PC2H 120 1.09 0.65 0.6 1.1 2 

RM1L 20 0.35 0.75 0.75 1.5 2 

RM1M 50 0.56 0.75 0.75 1.25 2 

RM2L 20 0.35 0.75 0.75 1.5 2 

RM2M 50 0.56 0.75 0.75 1.25 2 

RM2H 120 1.09 0.65 0.6 1.1 2 

URML 15 0.35 0.5 0.75 1.5 2 

URMM 35 0.5 0.75 0.75 1.25 2 

MH 10 0.35 1 1 1.5 2 

Values of Cs. Values of SS range from 0.037g (North Dakota) to 3.06g (northwest Tennessee). S1 ranges 

from 0.026g (central Texas) to 1.26g (northwest Tennessee), using maps of MCER in ASCE 7-10. Depending 

on site conditions, SMS could range from 0.033g to 3.67g; SM1 from 0.021g to 2.5g, considering Fa and Fv 
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values from the 2015 NEHRP Provisions Tables 11.4-1 and 11.4-2. R-values range from 1 to 8 (ASCE 7-10 

Table 12.2-1). All this implies that Cs values can range from less than 0.01g to greater than 3g, more than 

two orders of magnitude. The project team therefore constructed seismic vulnerability functions for 

buildings with Cs values (in terms of 5% damped elastic spectral acceleration response at 0.2-sec period 

and at 1-sec period) in 31 logarithmic increments of 10-2, 10-1.9, … 101 g.  

Table A-8: Values of ductility capacity . 

Building type High code  

W1 8 

W2 8 

S1L 8 

S1M 5.3 

S1H 4 

S2L 8 

S2M 5.3 

S2H 4 

S3 8 

S4L 8 

S4M 5.3 

S4H 4 

S5L Obsolete 

S5M Obsolete 

S5H Obsolete 

C1L 8 

C1M 5.3 

C1H 4 

C2L 8 

C2M 5.3 

C2H 4 

C3L Obsolete 

C3M Obsolete 

C3H Obsolete 

PC1 8 

PC2L 8 

PC2M 5.3 
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Building type High code  

PC2H 4 

RM1L 8 

RM1M 5.3 

RM2L 8 

RM2M 5.3 

RM2H 4 

URML Obsolete 

URMM Obsolete 

MH 6 

 

Values of Ie. This examines values of Ie equal to 1.0, 1.25, 1.5, 2.0, 3.0, … 8.0. (The last of which would be like 

designing the most ductile system to be elastic.)  

Table A-9: Damping coefficients  for medium-duration (5.5≤M<7.5) earthquakes and high-code 

buildings. 

MBTID Building type  (5.5≤M<7.5) 

1 W1 0.8 

2 W2 0.6 

3 S1L 0.6 

4 S1M 0.6 

5 S1H 0.6 

6 S2L 0.5 

7 S2M 0.5 

8 S2H 0.5 

9 S3 0.5 

10 S4L 0.5 

11 S4M 0.5 

12 S4H 0.5 

13 S5L 0.3 

14 S5M 0.3 

15 S5H 0.3 

16 C1L 0.6 
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MBTID Building type  (5.5≤M<7.5) 

17 C1M 0.6 

18 C1H 0.6 

19 C2L 0.6 

20 C2M 0.6 

21 C2H 0.6 

22 C3L 0.3 

23 C3M 0.3 

24 C3H 0.3 

25 PC1 0.5 

26 PC2L 0.5 

27 PC2M 0.5 

28 PC2H 0.5 

29 RM1L 0.6 

30 RM1M 0.6 

31 RM2L 0.6 

32 RM2M 0.6 

33 RM2H 0.6 

34 URML 0.3 

35 URMM 0.3 

36 MH 0.4 

Select a set of Sd values at which to evaluate the capacity curve. This uses 51 logarithmic increments 10-3, 

10-2.9, … 102 inches. One calculates Sa for each value of Sd as follows: 

 

Equation A-9 
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Where, 

 

Equation A-10 

At each value of Sd below Dy, effective damping equals elastic damping ratio BE. For Sd above Dy, effective 

damping is calculated as:  

 

Equation A-11 

Where, 

𝐾𝑠 =
𝑆𝑎

𝑆𝑑
 

Equation A-12 

𝐾𝐸 =
𝐴𝑦

𝐷𝑦
 

Equation A-13 

This evaluates Equation A-5 throughEquation A-13 for each point on the capacity curve (that is, each Sd 

value) and for each combination of model building type, Cs level and Ie level. Note that one can exclude 

the obsolete model building types S5L, S5M, S5H (steel frame with URM infill, low- mid- and high-rise), 

C3L, C3M, C3H (low-, mid- and high-rise concrete frame with URM infill), and URML and URMM (low- and 

mid-rise URM buildings).  
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K.3. CALCULATE INPUT MOTION FOR EACH POINT ON THE 

CAPACITY CURVE 

The index spectrum represents an idealized 5% damped response spectrum at various values of period T, 

in the space of spectral displacement response on the x axis and spectral acceleration response on the y 

axis. See Porter (2009a) for the derivation of the following relationships. 

First determine whether the performance point lies on the constant-acceleration or constant velocity 

portion of the idealized response spectrum (ignoring the constant-displacement portion, which only the 

tallest buildings and rarest cases involve). The answer depends on whether the period at the performance 

point is less than or greater than the period corresponding to the intersection of the constant-acceleration 

and constant-velocity portions. Let T denote the period of the performance point, in seconds. As before, 

Sd is the x-coordinate of the performance point in inches and Sa is its y-coordinate in units of gravity. Then 

 

Equation A-14 

Let TAVD denote the period at which the constant-acceleration and constant-velocity portions of the 

response spectrum intersect. As shown in Porter (2009a), TAVD varies by seismic domain (plate boundary, 

denoted by WUS, or continental interior, denoted by CEUS, magnitude M, distance from the fault rupture 

to the site R, NEHRP site class, and effective damping ratio Beff. For probabilistic risk analysis, one uses M = 

7, R = 20 km, and NEHRP site class = D. Under these constraints, one can find that TAVD can be reasonably 

approximated as: 

𝑇𝐴𝑉𝐷 = 2.67 ⋅ 𝐵𝐸𝑓𝑓
3 − 1.73 ⋅ 𝐵𝐸𝑓𝑓

2 + 1.09 ⋅ 𝐵𝐸𝑓𝑓 + 0.55 

Equation A-15 
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Figure 7-2: Corner period TAVD for M=7, R=20 km, soil=D, versus effective damping ratio. 

 

Table A-10: Fa as a function of SA02. 

Site class SA02 Fa 

D ≤0.40 1.60 

D 0.50 1.54 

D 0.60 1.47 

D 0.70 1.40 

D 0.80 1.31 

D 0.90 1.20 

D 1.00 1.15 

D 1.10 1.10 

D 1.20 1.04 

D ≥1.30 1.00 

 

 

 

 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   561 
 

Table A-11: Fv as a function of SA10BC for site class D. 

Site class SA10BC Fv 

D ≤0.20 2.40 

D 0.30 2.36 

D 0.40 2.29 

D 0.50 2.21 

D 0.60 2.13 

D 0.70 2.05 

D 0.80 1.99 

D 0.90 1.95 

D 1.00 1.91 

D 1.10 1.87 

D 1.20 1.83 

D 1.30 1.79 

D 1.40 1.75 

D ≥1.50 1.71 

If T ≤ TAVD, one uses Sa, Sd, and BEff previously calculated for each point on the capacity curve, and 

calculates the site-amplified 5% damped short-period spectral acceleration response, denoted by SA02, 

using Equation A-16. 

 

Equation A-16 

The site-amplified 5% damped 1-second spectral acceleration response, denoted by SA10, is given by, 

 

Equation A-17 

where (SS/S1) is the spectral acceleration response factor, taken here as 2.75 for simplicity (it takes on a 

value of 3.0 in CEUS and 2.5 in WUS). The term Fa(SA02) refers to the value of Fa given that the site-

amplified 5%-damped short-period spectral acceleration response is SA02. TablesTable A-10 andTable 

A-11 give Fa(SA02) and Fv(SA10BC) in 0.1-g increments for Site Class D. 
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If T > TAVD, one uses Sa, Sd, and BEff previously calculated for each point on the capacity curve, calculates 

the site-amplified 5% damped 1-sec spectral acceleration response using  

 

Equation A-18 

and then the site-amplified 5% damped short-period spectral acceleration response is given by 

 

Equation A-19 

where (SS/S1) is taken as 2.75 as before, Fv(SA10) refers to the value of Fv given that the site-amplified 5%-

damped 1-second spectral acceleration response is SA10. TablesTable A-12 andTable A-13 give Fa(SA02BC) 

and Fv(SA10) in 0.1-g increments for site class D. 

Repeat these calculations for each point on the capacity curve and for each combination of model 

building type, Cs level, and Ie level. As before, omit the obsolete model building types S5L, S5M, S5H, C3L, 

C3M, C3H, URML, and URMM. 

Table A-12: Fa as a function of SA02BC for site class D. 

Site class SA02BC Fa 

D ≤0.20 1.60 

D 0.30 1.56 

D 0.40 1.48 

D 0.50 1.40 

D 0.60 1.32 

D 0.70 1.24 

D 0.80 1.18 

D 0.90 1.14 

D 1.00 1.10 

D 1.10 1.06 

D 1.20 1.02 

D ≥1.30 1.00 
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Table A-13: Fv as a function of SA10 for site class D. 

Site class SA10 Fv 

D ≤0.60 2.40 

D 0.70 2.37 

D 0.80 2.33 

D 0.90 2.29 

D 1.00 2.25 

D 1.10 2.21 

D 1.20 2.17 

D 1.30 2.12 

D 1.40 2.07 

D 1.50 2.01 

D 1.60 1.99 

D 1.70 1.96 

D 1.80 1.94 

D 1.90 1.91 

D 2.00 1.89 

D 2.10 1.86 

D 2.20 1.83 

D 2.30 1.80 

D 2.40 1.77 

D 2.50 1.73 

D ≥2.60 1.71 

 

K.4. CALCULATE DAMAGE FOR EACH POINT ON THE 

CAPACITY CURVE 

The damageable building components are idealized as comprising three parts: displacement-sensitive 

structural elements, displacement-sensitive nonstructural elements, and acceleration-sensitive 

nonstructural elements, each with five possible damage states in the following order: none (damage state 

is shown by d = 0), slight (d = 1), moderate (d = 2), extensive (d = 3), and complete (d = 4). Part of the 

structure can also collapse; therefore, the damage state is represented by d = 5. The probabilistic damage 

state of each of these three elements is evaluated using fragility functions that are idealized as lognormal 
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cumulative distribution functions. The probability that an element is in one of these damage states is taken 

as the difference in probability between it and that of the next higher damage state. 

Equation A-20 represents the probabilistic damage state to the structural elements. Equation A-21 does 

the same for the nonstructural drift-sensitive element (note no damage state 5, which refers to collapse). 

Equation A-22 does the same for the acceleration-sensitive element (note that the input parameter is Sa at 

the performance point, not Sd). In all three equations, P[A|B] denotes the probability that statement A is 

true given that statement B is true, Ds denotes uncertain damage state of the structural element (the 

meaning of the subscript s), Dnd that of the nonstructural drift-sensitive element (note subscript nd), and 

Dna that of the nonstructural acceleration-sensitive element (na). Parameter d denotes a particular value of 

Ds, Dnd, or Dna (0 = undamaged, 1 = slight damage, 2 = moderate damage, 3 = extensive damage, 4 = 

complete, and 5 = collapse). Sd denotes spectral displacement response at the performance point, Φ() 

denotes the standard normal cumulative distribution function evaluated at the expression in parentheses, 

ln() denotes the natural logarithm of the expression inside the parentheses. The parameters  and  are 

the median capacity and standard deviation of the natural logarithm of capacity. They vary by element, 

building type, and damage state. Their damage states are denoted by their first subscript, and the element 

to which they refer is denoted by the second subscript: For example, 1,s denotes the median capacity of 

damage state 1 for the structural element (s). The parameter Pc denotes the fraction of all building 

occupiable floor area that is already in the complete damage state that is also collapsed. One repeats 

these calculations for each point on the capacity curve and for each combination of model building type, 

Cs level and Ie level. 

 

Equation A-20 
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Equation A-21 

 

Equation A-22 

 

Figure A-3: Illustration of probabilistic damage state for structural components. 

For any building type and performance point (Sd, Sa), calculate the 13 probabilities: the probability that the 

structural component is in each of 5 damage states; the probability that the nonstructural drift sensitive 

component is in each of 4 damage states; and the probability that the nonstructural acceleration-sensitive 
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component is in each of 4 damage states. The calculation requires (Sd, Sa), 12 values of  (one for each of 3 

components and each of 4 damage states), 12  values (one for each of 3 components and each of 4 

damage states), and 1 value for Pc. 

Repeat for each combination of model building type, Cs level and Ie level, omitting the obsolete model 

building types S5L, S5M, S5H, C3L, C3M, C3H, URML, and URMM. 

K.5. CALCULATE BUILDING REPAIR COST AS A FRACTION OF 

BUILDING REPLACEMENT COST 

One assigns an expected value of loss to each element and damage state, and applies the theorem of 

total probability to estimate the expected value of loss for the building as a whole (denoted by Lb), as 

shown in Equation A-23. In the equation, Lb denotes the expected value of loss as a fraction of value 

exposed given excitation x and Ld,s denotes the expected value of loss given the structural element in a 

particular damage state d. In the case of repair costs, losses accumulate from all three elements. The first 

summand in Equation A-23 refers to repair costs to the structural element (note the subscript s). The 

second summand adds up repair costs for the nonstructural drift-sensitive element (note subscript nd). 

The third adds repair costs for the nonstructural acceleration-sensitive element (note subscript na). See 

Table A-14 for parameter values of repair cost Ld,s, Table A-15 for Ld,ns, and Table A-16 for Ld,na, all adapted 

from Federal Emergency Management Agency (2012e). These parameter values vary by occupancy class, 

so one repeats for each combination of model building type, occupancy class, Cs level and Ie level. 

 

Equation A-23 
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Table A-14: Structural repair costs as a fraction for building replacement cost (new), Ld, s. 

No. Label Occupancy Class 1. Slight 2. Mod 3. Ext 4. Com 

1 RES1  Single-Family Dwelling  0.005 0.023 0.117 0.234 

2 RES2  Mobile Home  0.004 0.024 0.073 0.244 

3-8 RES3a-f  Multi-Family Dwelling  0.003 0.014 0.069 0.138 

9 RES4  Temporary Lodging  0.002 0.014 0.068 0.136 

10 RES5  Institutional Dormitory  0.004 0.019 0.094 0.188 

11 RES6  Nursing Home  0.004 0.018 0.092 0.184 

12 COM1  Retail Trade  0.006 0.029 0.147 0.294 

13 COM2  Wholesale Trade  0.006 0.032 0.162 0.324 

14 COM3  Personal and Repair Services  0.003 0.016 0.081 0.162 

15 COM4  Professional/Technical/Business Services  0.004 0.019 0.096 0.192 

16 COM5  Banks/Financial Institutions  0.003 0.014 0.069 0.138 

17 COM6  Hospital  0.002 0.014 0.070 0.140 

18 COM7  Medical Office/Clinic  0.003 0.014 0.072 0.144 

19 COM8  Entertainment & Recreation  0.002 0.010 0.050 0.100 

20 COM9  Theaters  0.003 0.012 0.061 0.122 

21 COM10  Parking  0.013 0.061 0.304 0.609 

22 IND1  Heavy  0.004 0.016 0.078 0.157 

23 IND2  Light  0.004 0.016 0.078 0.157 

24 IND3  Food/Drugs/Chemicals  0.004 0.016 0.078 0.157 

25 IND4  Metals/Minerals Processing  0.004 0.016 0.078 0.157 

26 IND5  High Technology  0.004 0.016 0.078 0.157 

27 IND6  Construction  0.004 0.016 0.078 0.157 

28 AGR1  Agriculture  0.008 0.046 0.231 0.462 

29 REL1 Church/Membership Organization  0.003 0.020 0.099 0.198 

30 GOV1  General Services  0.003 0.018 0.090 0.179 

31 GOV2  Emergency Response  0.003 0.015 0.077 0.153 

32 EDU1  Schools/Libraries  0.004 0.019 0.095 0.189 

33 EDU2  Colleges/Universities  0.002 0.011 0.055 0.110 
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Table A-15: Nonstructural drift-sensitive repair costs as a fraction for building replacement cost (new), Ld,nd. 

No. Label Occupancy Class 1. Slight 2. Mod 3. Ext 4. Com 

1 RES1  Single-Family Dwelling  0.010 0.050 0.250 0.500 

2 RES2  Mobile Home  0.008 0.038 0.189 0.378 

3-8 RES3a-f  Multi-Family Dwelling  0.009 0.043 0.213 0.425 

9 RES4  Temporary Lodging  0.009 0.043 0.216 0.432 

10 RES5  Institutional Dormitory  0.008 0.040 0.200 0.400 

11 RES6  Nursing Home  0.008 0.041 0.204 0.408 

12 COM1  Retail Trade  0.006 0.027 0.138 0.275 

13 COM2  Wholesale Trade  0.006 0.026 0.132 0.265 

14 COM3  Personal and Repair Services  0.007 0.034 0.169 0.338 

15 COM4  Professional/Technical/Business Services  0.007 0.033 0.164 0.329 

16 COM5  Banks/Financial Institutions  0.007 0.034 0.172 0.345 

17 COM6  Hospital  0.008 0.035 0.174 0.347 

18 COM7  Medical Office/Clinic  0.007 0.034 0.172 0.344 

19 COM8  Entertainment & Recreation  0.007 0.036 0.178 0.356 

20 COM9  Theaters  0.007 0.035 0.176 0.351 

21 COM10  Parking  0.004 0.017 0.087 0.174 

22 IND1  Heavy  0.002 0.012 0.059 0.118 

23 IND2  Light  0.002 0.012 0.059 0.118 

24 IND3  Food/Drugs/Chemicals  0.002 0.012 0.059 0.118 

25 IND4  Metals/Minerals Processing  0.002 0.012 0.059 0.118 

26 IND5  High Technology  0.002 0.012 0.059 0.118 

27 IND6  Construction  0.002 0.012 0.059 0.118 

28 AGR1  Agriculture  0.000 0.008 0.038 0.077 

29 REL1 Church/Membership Organization  0.008 0.033 0.163 0.326 

30 GOV1  General Services  0.007 0.033 0.164 0.328 

31 GOV2  Emergency Response  0.007 0.034 0.171 0.342 

32 EDU1  Schools/Libraries  0.009 0.049 0.243 0.487 

33 EDU2  Colleges/Universities  0.012 0.060 0.300 0.600 
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Table A-16: Nonstructural acceleration-sensitive repair costs as a fraction for building replacement cost 

new, Ld, na. 

No. Label Occupancy Class 1. Slight 2. Mod 3. Ext 4. Com 

1 RES1  Single-Family Dwelling  0.005 0.027 0.080 0.266 

2 RES2  Mobile Home  0.008 0.038 0.113 0.378 

3-8 RES3a-f  Multi-Family Dwelling  0.008 0.043 0.131 0.437 

9 RES4  Temporary Lodging  0.009 0.043 0.130 0.432 

10 RES5  Institutional Dormitory  0.008 0.041 0.124 0.412 

11 RES6  Nursing Home  0.008 0.041 0.122 0.408 

12 COM1  Retail Trade  0.008 0.044 0.129 0.431 

13 COM2  Wholesale Trade  0.008 0.042 0.124 0.411 

14 COM3  Personal and Repair Services  0.010 0.050 0.150 0.500 

15 COM4  Professional/Technical/Business Services  0.009 0.048 0.144 0.479 

16 COM5  Banks/Financial Institutions  0.010 0.052 0.155 0.517 

17 COM6  Hospital  0.010 0.051 0.154 0.513 

18 COM7  Medical Office/Clinic  0.010 0.052 0.153 0.512 

19 COM8  Entertainment & Recreation  0.011 0.054 0.163 0.544 

20 COM9  Theaters  0.010 0.053 0.158 0.527 

21 COM10  Parking  0.003 0.022 0.065 0.217 

22 IND1  Heavy  0.014 0.072 0.218 0.725 

23 IND2  Light  0.014 0.072 0.218 0.725 

24 IND3  Food/Drugs/Chemicals  0.014 0.072 0.218 0.725 

25 IND4  Metals/Minerals Processing  0.014 0.072 0.218 0.725 

26 IND5  High Technology  0.014 0.072 0.218 0.725 

27 IND6  Construction  0.014 0.072 0.218 0.725 

28 AGR1  Agriculture  0.008 0.046 0.138 0.461 

29 REL1 Church/Membership Organization  0.009 0.047 0.143 0.476 

30 GOV1  General Services  0.010 0.049 0.148 0.493 

31 GOV2  Emergency Response  0.010 0.051 0.151 0.505 

32 EDU1  Schools/Libraries  0.007 0.032 0.097 0.324 

33 EDU2  Colleges/Universities  0.006 0.029 0.087 0.290 
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K.6. CALCULATE CONTENT REPAIR COST AS A FRACTION OF 

CONTENT REPLACEMENT COST 

Content loss, Lc, is estimated solely as a function of nonstructural acceleration-sensitive damage, as in 

Equation A-24. See Table A-7-17 (adapted from Federal Emergency Management Agency 2012e) for 

values of the parameter Ld,c, which does not vary by occupancy class. The probability P[Dna = d|Sa = y] is 

the same as in Equation A-23. Repeat for each combination of model building type (except the obsolete 

ones), Cs level and Ie level. 

 

Equation A-24 

Table A-7-17: Content damage factors conditioned on acceleration-sensitive damage states. 

 Acceleration sensitive nonstructural damage state 

Slight Moderate Extensive Complete 

L1,c L2,c L3,c L4,c 

All occupancies 0.01 0.05 0.25 0.50 

K.7. CALCULATE INJURED OCCUPANTS AS A FRACTION OF 

ALL INDOOR OCCUPANTS 

Injuries are estimated solely as a function of structural damage. Hazus recognizes four injury severity levels, 

from slight to fatal; see the definitions copied in Table A-18. Injured Occupants, Li, are denoted by i1, i2, i3, 

and i4. Equation A-25 expresses the fraction of occupants in injury severity levels i1, i2, i3, and i4. The 

probabilities P[Ds = d|Sd = x] are the same ones from Equation A-20. See Federal Emergency 

Management Agency (2012e) Tables 13.3 through 13.7 for values of Ld,i1 through Ld,i4; note that in these 

variables, d is a parameter that can take on the values 1, 2, 3, 4, and 5, so there are five values of Ld,i1, five 

of Ld,i2, etc., for a total of 20. One calculates Li1, Li2, Li3, and Li4 for each point on the capacity curve. Repeat 

for each combination of model building type (except the obsolete ones), Cs level and Ie level. 
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Equation A-25 

Table A-18: The injury severity levels in Hazus. 

 

K.8. CALCULATE LOSS OF FUNCTION DURATION 

Duration of loss of function (recovery time in Hazus terminology) is also estimated solely as a function of 

structural damage and occupancy class. The expected value of building recovery time Lt, in days is given 

by Equation A-26. In this equation, the probabilities P[Ds = d|Sd = x] are the same as in Equation A-20. In 

the equation, Ld,t denotes the duration of loss of function for structural damage state d. It varies by 

occupancy class. See Federal Emergency Management Agency (2012e) Table 15.10 for building recovery 

time by damage state and occupancy class. Note that the loss of function duration for collapse (Ds = 5) is 

the same as for complete structural damage, so L5t is taken as the value of L4t, hence the second 

summand postmultiplies the collapse probability by L4t. 
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Equation A-26 

Repeat the calculation of Lt for each point on the capacity curve and for each combination of model 

building type (except the obsolete ones), Cs value, Ie value, and occupancy class. 

K.9. CALCULATE DIRECT, INDIRECT TIME-ELEMENT LOSSES 

PER OCCUPANT 

Rental and BI costs vary widely. Hazus offers some very old (1994) rental and disruption costs and warns 

that costs vary widely geographically. Therefore, it is important to revisit these amounts by calculating 

direct and indirect time-element losses LBI, dollars per day per occupant. For residential occupancies RES1 

through RES3 and RES5, assume monthly household furniture, higher commute costs, and miscellaneous 

other costs of $600/month/household, monthly house rental cost of $1500/month/household, and 2.5 

people per household per Organisation for Economic Co-operation and Development (2016), suggesting 

$28/person/day. For temporary lodging (RES4), assume lost revenue and wages equal to a typical average 

per-night hotel cost of $125 per day. For nursing homes (RES6), assume lost revenue and wages equal to 

the average daily cost of a private room in a nursing home, $248 per day (Mullin 2013). For nonresidential 

occupancies, estimate output loss (direct BI loss) per day of downtime as the ratio of industry wages and 

earnings to number of employees, converted to dollars per day. Results are shown in Table A-19. 

Table A-19: Output loss per day of downtime VBI and per-dollar indirect BI loss Q. 

No. Occupancy Class Label VBI Q 

1 Single-Family Dwelling RES1 $   28.00 0.470 

2 Mobile Home RES2 $   28.00 0.470 

3 Multi-Family Dwelling RES3a $   28.00 0.470 

4 Multi-Family Dwelling RES3b $   28.00 0.470 

5 Multi-Family Dwelling RES3c $   28.00 0.470 

6 Multi-Family Dwelling RES3d $   28.00 0.470 

7 Multi-Family Dwelling RES3e $   28.00 0.470 

8 Multi-Family Dwelling RES3f $   28.00 0.470 

9 Temporary Lodging RES4 $ 125.00 0.372 

10 Institutional Dormitory RES5 $   28.00 0.470 

11 Nursing Home RES6 $ 248.00 0.500 

12 Retail Trade COM1 $ 132.28 0.037 

13 Wholesale Trade COM2 $ 295.21 0.033 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   573 
 

No. Occupancy Class Label VBI Q 

14 Personal and Repair Services COM3 $ 166.77 0.374 

15 Professional/Technical Services COM4 $ 414.93 0.016 

16 Banks/Financial Institutions COM5 $ 411.00 0.017 

17 Hospital COM6 $ 243.60 0.500 

18 Medical Office/Clinic COM7 $ 237.82 0.500 

19 Entertainment & Recreation COM8 $ 118.94 0.637 

20 Theaters COM9 $ 118.94 0.637 

21 Parking COM10 $ 118.94 0.374 

22 Heavy IND1 $ 312.49 0.260 

23 Light IND2 $ 242.04 0.438 

24 Food/Drugs/Chemicals IND3 $ 203.04 0.064 

25 Metals/Minerals Processing IND4 $ 233.26 0.009 

26 High Technology IND5 $ 465.98 0.041 

27 Construction IND6 $ 228.35 0.051 

28 Agriculture AGR1 $ 124.43 0.095 

29 Church REL1 $ 165.50 0.045 

30 General Services GOV1 $ 230.28 0.045 

31 Emergency Response GOV2 $ 230.28 0.045 

32 Schools EDU1 $ 162.11 0.035 

33 Colleges/Universities EDU2 $  162.11 0.035 

For indirect BI, use IO analysis to estimate the per-dollar indirect BI loss Q resulting from $1.00 of direct BI 

in a given occupancy class. Calculate Q for each occupancy class by setting the output loss for that 

occupancy class to $1.00 and the output losses for all the other occupancy classes to 0. For example, to 

calculate Q for RES3 occupancy, set the output losses for RES1, RES2, RES4, …. EDU2 to 0, and the output 

loss for RES3 to 1.0. The resulting indirect BI to the entire economy can then be assigned to Q for RES3. 

Thus, LBI, the BI loss per occupant, can be estimated as a function of the number of days of loss of use Lt, 

as follows: 

 

Equation A-27 
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K.10. CALCULATE FRACTION OF RESIDENTS DISPLACED 

FROM THEIR HOMES 

Following Federal Emergency Management Agency (2012e) Section 14.2, estimate displaced residents as 

the number of occupants of residences in the complete structural damage state, plus 90% of residents of 

multifamily dwellings in the extensive damage state. Equation A-28 expresses the LDR, the fraction of 

residential occupants who will be displaced from their homes. 

𝐿𝑑𝑟 = 𝑃[𝐷𝑠 = 4|𝑆𝑑 = 𝑠]  RES1 and RES2 

𝐿𝑑𝑟 = 0.9 ⋅ 𝑃[𝐷𝑠 = 3|𝑆𝑑 = 𝑠] + 𝑃[𝐷𝑠 = 4|𝑆𝑑 = 𝑠]  RES3 through RES6  

Equation A-28 

K.11. CALCULATE COLLAPSE PROBABILITY BASED ON 

NUMBER OF COLLAPSED BUILDINGS, TOTAL BUILDING 

AREA 

For building collapse, either use the Hazus methodology or a newer one suggested by Luco et al. (2007). 

The former would be more consistent with the foregoing analyses, but the latter is simple and has a much 

stronger analytical basis, e.g., Applied Technology Council (2009). Therefore, the latter is used to calculate 

collapse probability, Pcol, as a fraction of the number of buildings and the number of collapsed buildings, 

NCOL, as a factor of total building area (sf). 

Luco et al. (2007) and Applied Technology Council (2009) suggest that the capacity of a new building to 

resist collapse can be estimated as a lognormal cumulative distribution function. Porter (2015) showed that 

the data in Applied Technology Council (2009) imply that the median capacity 𝜃 can be estimated as 3.47 

times MCER shaking (e.g., 3.47  CS  R  1.5), where R denotes the ASCE 7-10 response modification 

coefficient from ASCE 7-10 Table 12.2-1. Table A-19 maps ASCE 7-10 building types to Hazus building 

types and shows the relevant R factors. The table shows three values for each model building type: one 

each for moderately high to very high, moderate, and low seismicity regions, based on judgment of the 

predominant ASCE 7-10 seismic force-resisting system (from Table 12.2-1) corresponding to each FEMA 

model building type in each region. “Seismicity region” refers here to the predominant seismicity region in 

the sense of FEMA P-154. Luco et al. (2007) use a value for the standard deviation of the natural logarithm 

of capacity equal to 𝛽 = 0.8. Strength and collapse capacity increases with Ie. 

For low-rise buildings (1-3 stories), calculate 

𝜃02 = 5.20 ⋅ 𝐶𝑠 ⋅ 𝑅 ⋅ 𝐼𝑒 

Equation A-29 
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For mid- and high-rise buildings (4+ stories) 

𝜃10 = 5.20 ⋅ 𝐶𝑠 ⋅ 𝑅 ⋅ 𝐼𝑒 

Equation A-30 

And in both cases, use the same  = 0.8, so 

 

Equation A-31 

 

Equation A-32 

 States with predominantly moderately-high (MH) to very high (VH) seismicity: AK, CA, HI, MT, NV, OR, 

SC, TN, UT, WA  

 States with predominantly moderate seismicity: AL, AR, AZ, CO, ID, KY, MA, ME, MO, NH, NJ, NM, NY, 

OK, VT, WY 

 States with low seismicity: all others 

Pcol gives the fraction of buildings that collapse. The project team is also interested in the number of 

buildings that collapse. (Not the same as the Hazus estimated fraction of total square footage in the 

complete damage state that is assumed to be collapsed. The difference is that only a portion of the 

number of buildings in the complete damage state collapse, and only a portion of the area of those 

buildings actually collapse.) One can estimate number of collapsed buildings as a factor of total building 

area (sf) using: 

NCOL = Pcol/Aavg 

Equation A-33 

where Aavg denotes the average area of a single building and varies by occupancy class. One can calculate 

Aavg from the California inventory in Hazus, dividing total building area by total building count (there does 

not appear to be a table in the documentation showing these values). See Table A-20. 
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Table A-20: Response modification coefficients R. 

MBTID MBT 
R, MH-VH 

seismicity 

R, mod 

seismicity 

R, low  

seismicity 

ASCE 7-10 Table 12.2-1 

seismic force-resisting system 

1 W1 6.5 6.5 6.5 A15 

2 W2 7 7 7 B22 

3 S1L 8 4.5 3.5 C1, C3, C4 

4 S1M 8 4.5 3.5 C1, C3, C4 

5 S1H 8 4.5 3.5 C1, C3, C4 

6 S2L 6 3.25 3.25 B2, B3, B3 

7 S2M 6 3.25 3.25 B2, B3, B3 

8 S2H 6 3.25 3.25 B2, B3, B3 

9 S3 6 3.25 3.25 B2, B3, B3 

10 S4L 7 6 6 D3, D4, D4  

11 S4M 7 6 6 D3, D4, D4  

12 S4H 7 6 6 D3, D4, D4  

16 C1L 8 5 3 C5, C6, C7 

17 C1M 8 5 3 C5, C6, C7 

18 C1H 8 5 3 C5, C6, C7 

19 C2L 6 5 5 B4, B5, B5 

20 C2M 6 5 5 B4, B5, B5 

21 C2H 6 5 5 B4, B5, B5 

25 PC1 5 5 4 B8, B8, B9 

26 PC2L 6 5 5 B4, B5, B5 

27 PC2M 6 5 5 B4, B5, B5 

28 PC2H 6 5 5 B4, B5, B5 

29 RM1L 5 3.5 2 A7, A8, A9 

30 RM1M 5 3.5 2 A7, A8, A9 

31 RM2L 5 3.5 2 A7, A8, A9 

32 RM2M 5 3.5 2 A7, A8, A9 

33 RM2H 5 3.5 2 A7, A8, A9 

36 MH 6.5 6.5 6.5 NIST 1995 
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Table A-21: Average building area Aavg (square feet per building) inferred from Hazus. 

OCCID OccLabel Aavg 

1 RES1 1700 

2 RES2 1100 

3 RES3 6500 

4 RES4 31100 

5 RES5 22700 

6 RES6 12100 

7 COM1 71400 

8 COM2 27400 

9 COM3 9900 

10 COM4 69100 

11 COM5 3800 

12 COM6 33100 

13 COM7 6700 

14 COM8 5000 

15 COM9 4900 

16 COM10 23800 

17 IND1 23000 

18 IND2 22700 

19 IND3 25100 

20 IND4 14800 

21 IND5 25200 

22 IND6 22300 

23 AGR1 16300 

24 REL1 15600 

25 GOV1 9800 

26 GOV2 8500 

27 EDU1 25500 

28 EDU2 33500 
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K.12. CALCULATE FRACTION OF BUILDINGS THAT ARE 

RED-TAGGED, NUMBER OF RED-TAGGED BUILDINGS AS 

A FACTOR OF TOTAL BUILDING AREA 

Porter (2016a) shows that for every collapsed building, approximately 3.8 are red-tagged, NR. Thus, the 

fraction of buildings that are red-tagged, PR, can be estimated as: 

𝑃𝑟 = 3.8 ⋅ 𝑃𝑐𝑜𝑙 ≤ 1 − 𝑃𝑐𝑜𝑙 

Equation A-34 

The number of red-tagged buildings, as a factor of total building area in sf, can be estimated as: 

𝑁𝑅 = 𝑃𝑟/𝐴𝑎𝑣𝑔 

Equation A-35 

K.13. CALCULATE FRACTION OF BUILDINGS THAT ARE 

YELLOW-TAGGED, NUMBER OF BUILDINGS THAT ARE 

YELLOW-TAGGED AS A FACTOR OF TOTAL BUILDING 

AREA 

Porter (2016a) shows that for every red-tagged building, approximately 13 are yellow-tagged, Py. 

𝑃𝑦 = 13 ⋅ 𝑃𝑟 ≤ 1 − 𝑃𝑐𝑜𝑙 − 𝑃𝑟 

Equation A-36 

And the number of yellow-tagged buildings, NY, as a factor of total building area in sf, can be estimated 

as: 

𝑁𝑌 = 𝑃𝑦/𝐴𝑎𝑣𝑔 

Equation A-37 

K.14. CALCULATE PERSONS TRAPPED IN COLLAPSED 

BUILDINGS AS A FRACTION OF ALL INDOOR 

OCCUPANTS 

Porter (2016b) shows that on average, 25% of the area of buildings with at least some collapse actually 

experiences collapse, and estimates that 1 in 3 people occupying the collapsed area are trapped, not 
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fatally injured, and need extrication. Thus, the number of trapped people in collapsed buildings, Ltc, 

requiring extrication, as a fraction of total indoor occupants, can be estimated by: 

𝐿𝑡𝑐 = 0.083 ⋅ 𝑃𝑐𝑜𝑙 

Equation A-38 

K.15. TABULATING VULNERABILITY FUNCTIONS 

At this point, the analyst has calculated each of the following quantities for each combination of Sd, model 

building type (except obsolete ones), Cs, Ie, and occupancy class. (Others are calculated along the way, but 

these are the ones that matter for later). 

Ground-motion-severity measures: 

  SA02: soil-amplified 5% damped spectral acceleration response at 0.2 sec period 

  SA10: soil-amplified 5% damped spectral acceleration response at 1.0 sec period 

Loss measures: 

  Lb: mean building repair cost as a fraction of its replacement cost new 

  Lc: mean content repair cost as a fraction of its replacement cost new 

  Li1: mean fraction of indoor occupants in injury severity level 1 

  Li2: mean fraction of indoor occupants in injury severity level 2 

  Li3: mean fraction of indoor occupants in injury severity level 3 

  Li4: mean fraction of indoor occupants in injury severity level 4 

  Lt: mean duration of loss of function, in days 

  LBI: mean business interruption loss per occupant per day, $ 

  Ldr: mean fraction of residential occupants displaced from their homes 

  Pcol: fraction of buildings that collapse 

  NCOL: number of collapsed buildings, as a factor of total building area (sf)  

  Pr: fraction of building that are red-tagged 

  NR: number of red-tagged buildings, as a factor of total building area (sf)  

  Py: fraction of building that are yellow-tagged 

  NY: number of yellow-tagged buildings, as a factor of total building area (sf)  

  Ntc: fraction of indoor occupants trapped in collapsed buildings 

Recall that all of these quantities have been calculated for each of 51 points on the capacity curve, which 

were parameterized by pairs (Sd, Sa). One can then relate a value of SA02 to each loss measure, and 

construct a one-to-one pairing, creating a set of vulnerability and fragility functions that relate 5%-

damped short-period spectral acceleration response SA02 to each measure. One can also create similar 

fragility and vulnerability functions in terms of 5%-damped 1.0-second spectral acceleration response, 

SA10.  
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Because of how one calculates the ground-motion-severity measures SA02 and SA10 from Sd, they are not 

the same 51 values for each combination of model building type, Cs, Ie, and occupancy class. It will be 

more convenient later to have losses tabulated at a consistent set of ground-motion-severity levels, so for 

each combination of 28 non-obsolete model building types, 28 occupancy classes, 31 Cs levels, and 10 Ie 

levels, one can linearly interpolate at 401 ground-motion input levels SA02 = {0.00g, 0.01g, 0.02g, … 4g} 

and again at 401 values of SA10 = {0.00g, 0.01g, 0.02g, … 4.00g}. Thus, at the end of this step, there are 

two very large tables (28  28  31  10  401 = 97.5 million records) containing the seismic vulnerability 

functions, with the fields listed in Box K-1 (functions in terms of 5%-damped short-period spectral 

acceleration response SA02) and Box K-2 (functions in terms of 5%-damped 1-second spectral 

acceleration response, SA10). 
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Box K-1. Vulnerability Functions in Terms of 5% Damped Short-Period Spectral 

Acceleration 

MBTID: an integer index 1, 2, … 36 corresponding to model building types (only 28 used) 

OCCID: an integer index 1, 2, … 28 corresponding to occupancy classes 

CSID: an integer index 1, 2, … 31 corresponding to a Cs value 

IEID: an integer index 1, 2, … 10 corresponding to an Ie value 

SA02ID: an integer index 0, 1, 2, … 400 corresponding to a value of SA02 

Model building type: one of {W1, W2, … MH}; omitting obsolete types, 28 types 

Occupancy class: one of {RES1, RES2, RES3, … EDU2}, 28 classes 

Cs: one of {10-2, 10-1.9, … 101}, units of gravity, 31 values 

Ie: one of {1, 1.25, 1.5, 2, 3, 4, 5, 6, 7, 8} for above-code design, {1.0, 0.67, 0.44, 0.30} for below-code 

design 

SA02: one of x = {0.00, 0.01, 0.02, … 4.00}, units of gravity, 401 values 

yb(x) = mean building repair cost as a fraction of its replacement cost new given SA02 = x 

yc(x) = mean content repair cost as a fraction of its replacement cost new given SA02 = x 

yi1(x) = mean fraction of indoor occupants in injury severity level 1 given SA02 = x 

yi2(x) = mean fraction of indoor occupants in injury severity level 2 given SA02 = x 

yi3(x) = mean fraction of indoor occupants in injury severity level 3 given SA02 = x 

yi4(x) = mean fraction of indoor occupants in injury severity level 4 given SA02 = x 

yT(x) = mean duration of loss of function, in days, given SA02 = x 

yBI(x) = mean business interruption loss per occupant per day, $, given SA02 = x 

ydr(x) = mean fraction of residential occupants displaced from their homes given SA02 = x 

ycol(x) = fraction of buildings that collapse, given SA02 = x 

yCOL(x) = number of collapsed buildings, as a factor of total building area (sf), given SA02 = x 

yr(x) = fraction of buildings that are red-tagged, given SA02 = x 

yR(x) = number of red-tagged buildings, as a factor of total building area (sf), given SA02 = x   

yy(x) = fraction of building that are yellow-tagged, given SA02 = x 

yY(x) = number of yellow-tagged buildings, as factor of total building area (sf), given SA02 = x   

ytc(x) = fraction of indoor occupants trapped in collapsed buildings, given SA02 = x 
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K.16. STATEWIDE WEIGHTED-AVERAGE VULNERABILITY 

FUNCTIONS 

The project team wanted to express benefits and costs for design above code, without generating 

countless combinations of building type and occupancy class. Therefore, the team estimated BCRs for a 

weighted average of the building types common in each state, with weights that reflect that state’s recent 

construction practice.  

Box K-2. Vulnerability Functions in Terms of 5% Damped 1-Sec Spectral Acceleration SA10 

MBTID: an integer index 1, 2, … 36 corresponding to model building types (only 28 used) 

OCCID: an integer index 1, 2, … 28 corresponding to occupancy classes 

CSID: an integer index 1, 2, … 31 corresponding to a Cs value 

IEID: an integer index 1, 2, … 10 corresponding to an Ie value 

SA10ID: an integer index 0, 1, 2, … 400 corresponding to a value of SA10 

Model building type: one of {W1, W2, … MH}; omitting obsolete types, 28 types 

Occupancy class: one of {RES1, RES2, RES3, … EDU2}, 28 classes 

Cs: one of {10-2, 10-1.9, … 101}, units of gravity, 31 values 

Ie: one of {1, 1.25, 1.5, 2, 3, 4, 5, 6, 7, 8} for above-code design, {1.0, 0.67, 0.44, 0.30} for below-code 

design 

SA10: one of {0.00, 0.01, 0.02, … 4.00}, units of gravity, 401 values 

yb(x) = mean building repair cost as a fraction of its replacement cost new given SA10 = x 

yc(x) = mean content repair cost as a fraction of its replacement cost new given SA10 = x 

yi1(x) = mean fraction of indoor occupants in injury severity level 1 given SA10 = x 

yi2(x) = mean fraction of indoor occupants in injury severity level 2 given SA10 = x 

yi3(x) = mean fraction of indoor occupants in injury severity level 3 given SA10 = x 

yi4(x) = mean fraction of indoor occupants in injury severity level 4 given SA10 = x 

yT(x) = mean duration of loss of function, in days, given SA10 = x 

yBI(x) = mean business interruption loss per occupant per day, $, given SA10 = x 

ydr(x) = mean fraction of residential occupants displaced from their homes given SA10 = x 

ycol(x) = fraction of buildings that collapse, given SA10 = x 

yCOL(x) = number of collapsed buildings, as a factor of total building area (sf), given SA10 = x 

yr(x) = fraction of buildings that are red-tagged, given SA10 = x 

yR(x) = number of red-tagged buildings, as a factor of total building area (sf), given SA10 = x 

yy(x) = fraction of building that are yellow-tagged, given SA10 = x 

yY(x) = number of yellow-tagged buildings as factor of total building area (sf), given SA10 = x 

ytc(x) = fraction of indoor occupants trapped in collapsed buildings, given SA10 = x 
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Use the Hazus inventory of buildings with the highest design level as weights. That is, for states with high-

code buildings, weight vulnerability functions by the total estimated statewide building area of high-code 

buildings for each model building type and occupancy class. For states with no high-code buildings, use 

the statewide total building area of moderate-code buildings as weights. In both cases, the weights are 

normalized so they add to 1.0. 

Consider two averaging schemes: one that averages all types together, and one that distinguishes 

between residential and nonresidential construction. Thus, weights for the residential weighted average 

vulnerability functions use as weights the total square footage by model building type and occupancy 

class, but with zero weight for all nonresidential occupancy classes. Likewise, 

weights for the nonresidential weighted average vulnerability functions use as weights the total square 

footage by model building type and occupancy class, but with zero weight for all residential occupancy 

classes.  

Box K-3. Statewide Vulnerability Functions in Terms of 5% Damped Short-Period Spectral 

Acceleration SA02 

MBTID: an integer 1xx, where xx denotes the state's U.S. Federal Information Processing Standard (FIPS) 

numeric code, as specified in FIPS Publication “FIPS PUB” 5-2 (https://catalog.data.gov/dataset/fips-

state-codes)   

OCCID: an integer index 100 to indicate all residential occupancies, 200 to indicate all nonresidential 

occupancies, or 0 to indicate all occupancy classes 

CSID: an integer index 1, 2, … 31 corresponding to a Cs value 

IEID: an integer index 1, 2, … 10 corresponding to an Ie value 

SA02ID: an integer index 0, 1, 2, … 400 corresponding to a value of SA02 

Model building type: XX, where XX is the FIPS state alpha (same as postal) code as specified in FIPS 

PUB 5-2 

Occupancy class: one of {RES, NRES, AVG}, indicating average of all residential occupancies, 

nonresidential occupancies, or all occupancies, 3 classes 

Cs: one of {10-2, 10-1.9, … 101}, units of gravity, 31 values 

Ie: one of {1, 1.25, 1.5, 2, 3, 4, 5, 6, 7, 8} for above-code design, {1.0, 0.67, 0.44, 0.30} for below-code 

design 

SA02: one of {0.00, 0.01, 0.02, … 4.00}, units of gravity, 401 values 

yb(x) = mean building repair cost as a fraction of its replacement cost new given SA02 = x 

…  

(same as Box K-1)  

... 

ytc(x) = fraction of indoor occupants trapped in collapsed buildings, given SA02 = x 
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Using the vulnerability functions listed in Appendix M, create a set of residential vulnerability functions, 

nonresidential vulnerability functions, and overall average vulnerability functions, one for each state. Thus, 

at the end of this step, there are two very large tables (50  3  31  10  401 = 18,646,500 records) 

containing seismic vulnerability functions, with the fields listed in Box K-3 and Box K-4. 

K.17. NATIONWIDE WEIGHTED-AVERAGE VULNERABILITY 

FUNCTIONS 

Create a single set of weighted-average vulnerability functions, using total building areas from all states as 

weights. As before, to reflect recent trends in construction, weights only consider high-code building areas 

for states with high-code construction, moderate-code building areas for states without high-code 

construction, and low-code building areas for states without high or moderate-code construction. These 

are like those shown in Box K-3 and K-4 except: 

MBTID: an integer 1,000, to indicate a nationwide average  

Model building type: “U.S.” 
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K.18. UNCERTAINTY DOES NOT MATTER TO BCR 

In Porter (2010), a method is proposed to model the uncertainty in loss when its expected value is 

calculated by the Hazus approach, but in the present case one does not need to calculate uncertainty. The 

EAL is solely a function of the expected value of loss at any level of excitation and the frequency with which 

that level of excitation is exceeded, as shown in Equation 4-1. That may seem counterintuitive. Recall, 

however, that EAL is the expected value of a sum of uncertain summands. The expected value of a sum 

equals the sum of the expected values of the summands. Put another way, the expected value operator 

E[*] is a linear operator, in the sense that 

𝐸[𝑋 + 𝑐] = 𝐸[𝑋] + 𝑐 

𝐸[𝑋 + 𝑌] = 𝐸[𝑋] + 𝐸[𝑌] 

𝐸[𝑎𝑋] = 𝑎𝐸[𝑋] 

where a and c are constants, X and Y are uncertain, and X need not be statistically independent of Y.  

Box K-4. Statewide Vulnerability Functions in Terms of 5% Damped 1-Sec Spectral 

Acceleration 

MBTID: an integer 1xx, where xx denotes the state FIPS numeric code, as specified in “FIPS PUB” 5-2 

(https://catalog.data.gov/dataset/fips-state-codes)   

OCCID: an integer index 100 to indicate all residential occupancies, 200 to indicate all nonresidential 

occupancies, or 0 to indicate all occupancy classes 

CSID: an integer index 1, 2, … 31 corresponding to a Cs value 

IEID: an integer index 1, 2, … 10 corresponding to an Ie value 

SA10ID: an integer index 0, 1, 2, … 400 corresponding to a value of SA10 

Model building type: XX, where XX is the FIPS state alpha (same as postal) code as specified in FIPS 

PUB 5-2 

Occupancy class: one of {RES, NRES, AVG}, indicating average of all residential occupancies, 

nonresidential occupancies, or all occupancies, 3 classes 

Cs: one of {10-2, 10-1.9, … 101}, units of gravity, 31 values 

Ie: one of {1, 1.25, 1.5, 2, 3, 4, 5, 6, 7, 8} for above-code design, {1.0, 0.67, 0.44, 0.30} for below-code 

design 

SA10: one of {0.00, 0.01, 0.02, … 4.00}, units of gravity, 401 values 

yb(x) = mean building repair cost as a fraction of its replacement cost new given SA10 = x 

…  

(same as Box K-2)  

... 

ytc(x) = fraction of indoor occupants trapped in collapsed buildings, given SA10 = x 
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K.19. CALCULATING BCR AT THE CENSUS-TRACT, 

COUNTY, STATE, AND NATIONAL LEVEL 

The project team has extracted from Hazus a nationwide inventory of buildings, as discussed elsewhere in 

the Interim Study. The inventory estimates the stock of existing buildings, but one can extrapolate to new 

construction by recognizing that approximately 1% of the current building stock is replaced every year. 

Therefore, the benefits and costs of design are calculated to exceed I-Code requirements for 1% of the 

current building stock, which is the annual benefit and annual cost of designing to exceed I-Code 

requirements. The ratio of the benefit and cost is the BCR for exceeding I-Code requirements. The 

following defines the necessary parameters of hazard, vulnerability, and exposed value: 

Hazard, from USGS National Seismic Hazard Maps 

x = a particular value of SA02  

G(x) = mean frequency (events per year) of earthquakes causing shaking SA02 ≥ x, by census 

tract 

Vulnerability from Box K-3, from Sec K.1.15, by state, Ie value, and aggregate occupancy (RES or 

NRES) 

A = total building area, 1,000 sf, in a particular census tract and aggregate occupancy class (RES 

and NRES), as of some basis year, in the project team’s case, 2002.  

Vb = total replacement cost new of buildings in a census tract, by aggregate occupancy and 

basis year, $1,000s 

Vc = total replacement cost new of contents in a census tract, by aggregate occupancy class, 

and year, $1,000s 

Nocc2PM = total number of indoor occupants at 2 PM, by tract, aggregate occupancy class, etc., 

as of the basis year (2002) 

Nocc2AM = number of indoor occupants at 2 AM, by tract, aggregate occupancy class, etc., as of 

the basis year (2002) 

Nocc5PM = number of indoor occupants at 5 PM, by tract, aggregate occupancy class, etc., as of 

the basis year (2002) 

Nocc = time-average number of indoor occupants, by tract, aggregate occupancy class, etc., as 

of the basis year (2002)  
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𝑁𝑜𝑐𝑐 =
40

168
𝑁𝑜𝑐𝑐2𝑃𝑀 +

98

168
𝑁𝑜𝑐𝑐2𝐴𝑀 +

30

168
𝑁𝑜𝑐𝑐5𝑃𝑀 

Equation A-39 

IA = estimated 2016 building area as a factor of building area in 2002 = 1.089, based on the ratio 

of U.S. population in the two years = 324,100,000/297,600,000 

IB = estimated 2016 square-foot construction cost as a factor of basis-year Vb, based on the ratio 

of RSMeans’ 30-city average historical cost indices in 2016 and 2002, respectively = 1.61  

Vi1 = acceptable cost to avoid Hazus injury severity level 1 = $53,000 

Vi2 = acceptable cost to avoid Hazus injury severity level 2 = $550,000 

Vi3 = acceptable cost to avoid Hazus injury severity level 3 = $3,700,000 

Vi4 = acceptable cost to avoid Hazus injury severity level 4 = $9,500,000 

VCRY = acceptable cost to avoid collapse, red-tagging, or yellow-tagging. The project team 

cannot find sufficient evidence to assign a particular value to this parameter. This assumes that 

other calculations of loss associated with PTSD cover the emotional trauma associated with the 

sudden impairment of a home, and therefore assign VCRY = $0.  

Vusar = urban search and rescue cost to extricate 1 trapped victim = $10,000. It is based on 100 

person-hours x $100/hr. The first figure is based on an estimated 2,000 person-hours expended 

in urban search and rescue efforts at the Northridge Meadows Apartment Buildings in the 1994 

Northridge Earthquake, which extricated 20 people (https://goo.gl/C5CST6). The second figure 

is based on the annual budget of the Los Angeles Fire Department (approximately $630 million) 

divided by the number of uniformed firefighters (approximately 3200) divided by 2000 work 

hours per person per year. 

g = population growth rate, U.S. average = 0.007 per year (World Bank 2017)  

r = discount rate for private-sector or public-sector borrowing, less inflation. See Appendix H for 

discussion on values used.  

t = duration over which benefits will be recognized. The half-life of a new building is probably 

on the order of 100 years, but the 2005 Mitigation Saves study recognized benefits only for 50 

years in ordinary buildings. This uses an intermediate value of t = 75 years. 

One then calculates, for each census tract and each aggregate occupancy (RES and NRES), the sum of A, 

Vb, Vc, Nocc2AM, Nocc2PM, Nocc5PM. Then calculate the following annualized damage and loss values for each 

set of Ie vulnerability functions. Use the vulnerability functions for the value of ASCE 7-10’s Cs appropriate 
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to each census tract, calculated as 2/3  SMS/R, where R is taken as 6.4, based on a building-value-

weighted average for high-code (recent) California construction.  

County (5-digit FIPS code, e.g., 06001 = Alameda County, CA) 

Aggregated occupancy class (RES or NRES) 

A = total building area, 1,000 sf, in a particular census tract and aggregate occupancy class (RES 

and NRES), as of some basis year, in the project team’s case, 2002.  

Vb = total replacement cost new of buildings in a census tract, by aggregate occupancy and 

basis year, $1,000s 

Vc = total replacement cost new of contents in a census tract, by aggregate occupancy class, 

and year, $1,000s 

Nocc2PM = total number of indoor occupants at 2 PM, by tract, aggregate occupancy class, etc., 

as of the basis year (2002) 

Nocc2AM = number of indoor occupants at 2 AM, by tract, aggregate occupancy class, etc., as of 

the basis year (2002) 

Nocc5PM = number of indoor occupants at 5 PM, by tract, aggregate occupancy class, etc., as of 

the basis year (2002) 

Nocc = time-average number of indoor occupants, by tract, aggregate occupancy class, etc., as 

of the basis year (2002)  

EADb = expected annualized damage factor for building repairs, e.g., the expected value of the 

annual cost to repair new buildings, as a fraction of replacement cost new. (Note that this 

equation involves a proper integral that is actually evaluated numerically. The same form is used 

in many of the following equations. See Equation A-63 for the numerical method.)  

 

Equation A-40 

EANi1 = expected annualized number of people in new buildings in Hazus injury severity 1. The 

factor IA accounts for population growth. The factor 0.01 accounts for the fact that 1% of the 

existing building stock is added in a year. Nocc is number of people in 2002.  
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Equation A-41 

EANi2 = expected annualized number of people in new buildings in Hazus injury severity 2 

 

Equation A-42 

EANi3 = expected annualized number of people in new buildings in Hazus injury severity 3 

 

Equation A-43 

EANi4 = expected annualized number of people in new buildings in Hazus injury severity 4 

 

Equation A-44 

EADT = expected annualized number of days required to restore new buildings to functionality 

 

Equation A-45 

EANdr = expected annualized number of displaced households (RES only). The factor IA accounts 

for population growth.  

 

Equation A-46 

EADcol = expected annualized fraction of new buildings experiencing collapse 
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Equation A-47 

EANcol = expected annualized number of new buildings experiencing collapse. In the following 

equation, the factor of 1,000 accounts for the fact that A is expressed in 1,000 sf. The factor of 

0.01 accounts for the annual growth in the building stock.  

 

Equation A-48 

EADr = expected annualized fraction of new buildings that are red-tagged 

 

Equation A-49 

EANR = expected annualized number of new buildings that are red-tagged 

 

Equation A-50 

EADy = expected annualized fraction of new buildings that are yellow-tagged 

 

Equation A-51 

EANY = expected annualized number of new buildings that are yellow-tagged 

 

Equation A-52 
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EANtc = expected annualized number of occupants of new buildings who are trapped in 

collapsed buildings 

 

Equation A-53 

This then tabulates monetary losses in annualized terms: 

EALb = expected annualized building repair cost of new buildings (all expressions for EAL are in 

2016 USD). The factor of 0.01 is to account for the fact that only 1% of the building stock is 

replaced annually. The factor of 1,000 accounts for the fact that Vc is expressed in $1,000s.  

 

Equation A-54 

EALc = expected annualized content repair cost in new buildings 

 

Equation A-55 

EALtc = expected annualized cost of urban search and rescue efforts.  

 

Equation A-56 

EALBI = expected annualized loss associated with loss of function, both direct and indirect. The 

factor IA adjusts the occupant loads Nocc from 2002 to 2017 values. The factor 0.01 accounts for 

the fact that 1% of the building stock is added or replaced annually. EADT is the average annual 

number of days that new buildings are unavailable. VBI is the estimated output loss (the 

additional living expense or direct BI loss) in 2017 USD associated with one day's loss of use. The 

factor R2 is a multiplier for indirect BI: it is the indirect BI loss calculated using input-output 

analysis resulting from $1.00 of direct BI. VBI and R2 vary by occupancy type and are shown in 

Table A-19. 

 

Equation A-57 
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Now calculate acceptable costs to avoid statistical human injuries in expected annualized terms. 

EALi1 = expected annualized value of avoiding statistical Hazus severity 1 injuries 

 

Equation A-58 

EALi2 = expected annualized value of avoiding statistical Hazus severity 2 injuries 

 

Equation A-59 

EALi3 = expected annualized value of avoiding statistical Hazus severity 3 injuries  

 

Equation A-60 

EALi4 = expected annualized value of avoiding statistical Hazus severity 4 injuries 

 

Equation A-61 

EALPTSD = expected annualized loss associated with PTSD, estimated as shown in Equation A-62, 

where VPTSD = $90,000 

 

Equation A-62 

Several of these equations contain an integral of the form 

 

Equation A-63 

Equation A-63 is only rarely solvable in closed form. More commonly, y(x) and G(x) are available at 

discrete values of x. If one has n + 1 values of x, at which both y(x) and G(x) are available, and these are 

denoted by xi, yi, and Gi: i = 0, 1, 2, … n, respectively, then I in Equation A-63 can be replaced by Equation 

A-64. The equation gives an exact solution when y(x) is linear between values of x and ln(G(x)) is linear 

between values of x: 
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Equation A-64 

Where, 

 

Porter (2016) shows several different ways how Ie = 1.5 costs approximately 1% greater construction cost 

than Ie = 1.0. In Equation A-65, one takes the marginal cost as proportional to the strength increase: 2% 

per unit of Ie above 1.0, with an additional factor of 0.01 to account for the 1% annual growth in the 

building stock. The benefit b, cost c, and BCR bcr of designing to exceed I-Code requirements for the 

given census tract, aggregate occupancy class (RES or NRES), and earthquake importance factor are given 

by 

 

Equation A-65 

 

Equation A-66 

 

Equation A-67 

 

Equation A-68 

 

Equation A-69 
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In EquationsEquation A-66 andEquation A-67, money refers to losses associated with financial 

consequences while injuries refers to losses associated with deaths and nonfatal injuries, including PTSD. 

Evaluate EquationsEquation A-65 throughEquation A-69 for each census tract, each aggregate occupancy 

class, and each value of Ie ∈ {1.0, 1.25, 1.5, 2.0, … 8.0}. As discussed earlier, this does not apply a discount 

rate to statistical injuries avoided. 

K.20. AGGREGATION TO COUNTIES 

Readers of the 2019 Report may have trouble digesting BCR information at the census-tract level. Few 

people know in what census tract their buildings reside. Therefore, benefits and costs are aggregated first 

at the county and then at the state level. Census tract numbers contain within them a code to indicate the 

state (the first 2 digits) and county (the next 3 digits). Thus, the first 5 digits uniquely identify a county and 

state. Therefore, sum benefits and costs over all tracts for each combination of: 

 County FIPS code (first 5 digits of the census tract number) 

 Ie value, and  

 Aggregate occupancy class (RES or NRES). 

This assumes a fraction f of all new buildings are designed to exceed I-Code requirements, and initially 

take f as 1.0. Results can later be scaled by whatever fraction f seems realistic. The quantity BCR is 

insensitive to f. 

 

Equation A-70 

 

Equation A-71 

 

Equation A-72 

Again, evaluate EquationsEquation A-68 throughEquation A-70 for each value of z ∈ {1.25, 1.5, 2.0, … 8.0}, 

searching for the range of Ie (e.g., the particular values of z) where BCR > 1.0. Note that if the same fraction 

of new buildings are designed to exceed I-Code requirements in each subsequent year 0, 1, 2, ... t - 1, 

benefits and costs will increase with population growth as in: 
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Equation A-73 

 

Equation A-74 

For the given values of population growth rate p = 0.007/year and t = 75 years, P = 98.2. BCR remains as 

calculated in Equation A-72.  

Thus, one evaluates Equation A-73 and Equation A-74 for each combination of county FIPS code, 

aggregate occupancy class (RES or NRES), and each Ie value above 1.0, e.g., z ∈ {1.25, 1.5, 2.0, … 8.0}.  

One also calculates total BCR by county: 

 

Equation A-75 

K.21. AGGREGATION TO STATE LEVEL 

The first two digits of the 5-digit county FIPS code uniquely identify the state, so repeat EquationsEquation 

A-75 throughEquation A-77 aggregating benefits and costs for each unique combination of 2-digit state 

FIPS code, aggregate occupancy class (RES or NRES), and each Ie value above 1.0, e.g., z ∈ {1.25, 1.5, 2.0, 

… 8.0}. Also calculate statewide aggregate BCR as 

 

Equation A-76 

 

Equation A-77 
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Equation A-78 

K.22. IEMAX IE VALUE 

The analyst is interested in the point of diminishing returns: the level of Ie at which an increase in Ie raises 

costs more than it raises benefits. This refers to that value as the IEMax Ie. Let:  

i = index to Ie values: i = 0 refers to Ie = 1.0, i = 1 refers to Ie = 1.25, i = 2 refers to Ie = 1.5, etc.  

Ie,i = Ie value associated with index i 

Bi = statewide benefit associated with the ith value of Ie. For example, B3 denotes the statewide 

benefit associated with Ie = 2.0.  

Ci = statewide cost associated with the ith value of Ie. 

 

Equation A-79 

 

Equation A-80 

 

Equation A-81 

Equation A-81 gives the IEMax value of Ie. 

K.23. SENSITIVITY TESTS 

1. Discount rate = 3% 

This is one of two standard discount rates used by the OMB: 

rRES = rNRES = 0.03 

2. Discount rate = 7%, the other OMB discount rate: 

rRES = rNRES = 0.07 

3. Collapse probability at MCER = 2% 
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Perhaps, in contrast with the evidence in FEMA P-695 (Federal Emergency Management Agency 2009c) 

discussed in Porter (2015), the average collapse probability of new buildings subjected to MCER shaking is 

as low as Pc = 0.02 (R. Hamburger written communication, Jun 9, 2017). The lower collapse probability at 

MCER would affect the collapse fragility function and everything that depends on collapse fragility, 

especially number of collapsed buildings, number of red-tagged buildings, and number of yellow-tagged 

buildings. 

These are recalculated by changing the median collapse capacity values in Section K.1.10, then by 

recalculating everything that comes after. This uses the definitions of CS and R offered in Section K.1.10, and 

denoted by β the standard deviation of the natural logarithm of collapse capacity. Luco et al. (2007) use β 

= 0.8. One can estimate the median capacities of EquationsEquation A-29 andEquation A-30 by 

substituting these quantities into: 

θ = 1.5  CS  R  exp(-Φ-1(Pc)  β) 

Equation A-82 

Which would imply the following alternatives to EquationsEquation A-29 and Equation A-30: 

  for low-rise buildings (1-3 stories) 

Equation A-83 

  for mid- and high-rise buildings (4+ stories) 

Equation A-84 
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Appendix L. Reserved for Later Use 
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Appendix M. Evolution of Seismic Design Base 

Shear in Model Building Codes 

M.1. INTRODUCTION 

How have building codes improved earthquake resilience of buildings over time? Is the history of building-

code development one of monotonic increase in building strength, or have newer buildings gotten 

stronger, then weaker, then stronger than their predecessors? How have stiffness requirements changed? 

How does the evolution of resilience vary geographically, between buildings of different heights, seismic 

force resisting systems, and site conditions? 

Several authors have examined many of these questions. For example, Beavers (2002) reviewed the 

theoretical developments and the developing forms of seismic design base shear over time. He touched 

on the impact of notable earthquakes on code provisions, and explained several paradigm shifts: the 

introduction of load and resistance factor design, probabilistic seismic hazard analysis, the MCE, and other 

theoretical considerations that manifested themselves in the seismic design provisions. Line (2006) 

reviewed the development of design procedures using wood structural panels over the period spanned by 

the 1955 UBC and the 2006 IBC, showing increases between 75% and 190%. As informative as these works 

are, the project team set out to quantify the evolution of design base shear and stiffness more exhaustively 

for various seismic environments, building types, building heights, and site conditions. 

Model building codes of the 20th Century in the United States include the UBC (International Conference 

of Building Officials 1927 et seq.), the NBC (BOCA 1950 et seq.), a document simply called Building Code 

(National Board of Fire Underwriters 1905 et seq.), and the SBC (SBCCI 1946 et seq.). At the beginning of 

the 21st Century, NFPA (2002 et seq.) produced the Building Construction and Safety Code, shortly after the 

International Code Council (2000a, b et seq.) created the IBC and IRC in 2000, which merged the three so-

called legacy codes (UBC, NBC, and SBC).  

The UBC and IBC have dominated construction in the WUS where most of the country’s earthquake risk 

originates. This appendix looks at one aspect of seismic design provisions in the UBC and IBC: design base 

shear, which here refers to the lateral strength of a new building to resist earthquake loads as a fraction of 

the building’s weight. The appendix presents time series of seismic design base shear, meaning estimates 

versus time of the minimum lateral strength of a new building built to comply with successive editions of 

the UBC and IBC. 

Seismic design procedures have appeared in model building codes since the 1927 edition of the UBC. 

They have grown in length and complexity, in several general ways: 

1. By accounting for regional seismicity through the use of zone maps. 
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2. By accounting for local differences in seismicity, first through the introduction of near-source terms 

and then through seismic microzonation, via several iterations of maps of rare shaking, maps 

produced the U.S. Geological Survey NSHMP and its predecessors. 

3. By accounting for resonance of the building with earthquake ground motion, first through number 

of stories, and later via height and lateral force resisting system. 

4. By accounting for the ductility capacity of the building’s lateral force resisting system, with a gradually 

expanding list of systems, each with its own estimate of ductility capacity. 

5. By accounting for the societal importance of a building through an earthquake importance factor I, 

later denoted Ie. 

6. By accounting for the amplification of ground motion associated with lower shear wave velocity in 

surficial soil versus rock. 

7. By changing from ASD to load and resistance factor design.  

8. By changing from no explicit reliability goal, to one of low probability of life-threatening damage 

under shaking with a factor of 2,500-year shaking (as expressed in the reliability index underlying 

seismic design using load and resistance factor design), to low probability of collapse during the 

building’s design life (as proposed by Luco et al. 2007).  

9. By controlling displacement, again using a parameter that depends on lateral force resisting system. 

M.2. MAJOR DEVELOPMENTS IN UBC AND IBC BASE SHEAR 

REQUIREMENTS 

One can illustrate the evolution of the model codes’ seismic design provisions by plotting time series of 

important parameters. Many design aspects have evolved over time, such as those listed in Section 3.3.3. 

Among the more interesting of these is design base shear, to which ASCE 7-16 refers as seismic response 

coefficient, Cs, a dimensionsless parameter. To better understand how codes have gradually evolved over 

time, one can create time series of Cs for different building types, heights, site conditions, and geographic 

locations. Without recapping every equation, table, and parameter value relevant to Cs, the project team 

estimated such time series, accounting for the following innovations of seismic design requirements for 

various buildings as they would have been designed for particular locations in downtown San Francisco, 

Portland, Oregon, and Seattle. This analysis focused primarily on the design base shear. The analysis 

categorized buildings using current FEMA model building types (W1, W2, etc.), height categories (low-rise, 

mid-rise, and high-rise), and NEHRP site classifications (B, C, D, and E). 

The editions of the UBC included: 1927 (first version), 1930, 1935, 1937, and then every three years 

thereafter until the last edition in 1997. The IBC has adhered to a three-year development cycle since its 

inception in 2000. The following brief history notes only significant changes related to design base shear. It 

does not deal with the adoption of model codes by states, cities, or local jurisdictions, nor with the degree 

to which different jurisdictions have enforced those codes. 
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1927 Uniform Building Code 

1. The building code states its intent: “The design of buildings for earthquake shocks is a moot question 

but the following provisions will provide adequate additional strength when applied in the design of 

buildings or structures.” 

2. Most buildings in cities “located within an area subject to earthquake shocks” are required to have 

lateral strength to resist earthquake of either 0.075 or 0.1 times building weight, depending on soil 

bearing capacity (4000 pounds per square foot of bearing capacity being the division), with a 50% 

increase in allowable stress for combined seismic and gravity loading. Building weight is taken as its 

dead load, i.e., the weight of the building’s fixed components. Building weight also includes live loads 

(the estimated weight of occupants and movable contents) if they exceed 50 pounds per square foot, 

for example the weight of books in a library.  

3. Allowable stress in seismic loading is increased 50% for steel and 33% for other materials, with other 

constraints for masonry and for thick reinforced-concrete walls. 

1930 Uniform Building Code: no significant changes. 

1935 Uniform Building Code 

4. Intent changed: “To make buildings earthquake-resistive.” 

5. Extends requirements to more buildings.  

6. Accounts for regional seismicity, through a zone factor with a zone map covering western states. 

Design base shear drops for zones with lower zone factors, such as Portand and Seattle. 

7. Changes building weight W to dead load plus 50% of live load, except warehouses, where the weight 

is dead load plus 100% of the live load. 

8. Introduces the formula F = C  W, where F is the required lateral strength and C is a function of soils 

and location. Location is parameterized with three zones.  

9. Changes allowable stress increase to 33% for seismic loads. Design base shear for steel buildings 

increases as a consequence. 

1937 to 1946 Uniform Building Codes: no significant changes. 

1949 Uniform Building Code 

10. Four seismic zones rather than three (0, 1, 2, and 3), with zone 0 for no seismic requirements. 

Introduces a new seismic zone map, drawn by the United States Coast and Geodetic Survey 

(precursor to the USGS), covering contiguous 48 states.  

11. In the formula F = C  W, C becomes a function of story height (decreasing with increasing height), 

no consideration of soils, and W is now only dead load, except warehouses, where it includes 100% 

of the live load. The change regarding height causes design base shear of low-, mid-, and high-rise 

buildings to diverge. 

1952 to 1958 Uniform Building Code: no significant changes. 
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1961 Uniform Building Code 

12. Statement of intent no longer appears. 

13. New parameter Z accounts for the seismic zone, whose map is unchanged.  

14. New parameter K varies with lateral force resisting system, of which there are five. As a consequence, 

design base shear for moment frames drops by a factor of 0.67, for example, and for box systems it 

rises by a factor of 1.33.  

15. The equation for C changes, and accounts for the fundamental building period, which itself is 

estimated as a function of building height and plan depth.  

16. Introduces new formula V = Z  K  C  W. V denotes design base shear. W denotes building weight, 

which is taken as dead load only, except for warehouses where it includes 25% of live load. 

1964 Uniform Building Code 

17. Adds tanks to lateral force resisting systems, for a total of 6 systems. 

18. Introduces new ductility requirements for moment-resisting frames. 

1967 Uniform Building Code 

19. Introduces new maximum value for coefficient C ≤ 0.1. 

1970 Uniform Building Code 

20. Introduces a new zone map covering all 50 states and with contours that do not attempt to conform 

to political boundaries or meridians. 

1973 Uniform Building Code: no significant changes. 

1976 Uniform Building Code 

21. Introduces new occupancy importance factor I with three possible values: 1, 1.25, and 1.5. 

22. Introduces new equation for period as a function of lateral force resisting system, still with 6 systems 

and slight changes in some parameter values. 

23. Eliminates default period for 1- and 2-story buildings. 

24. Introduces new equation for C as a function of building period, and new maximum value for C = 0.12.  

25. Introduces new soil term S, denoted as a “numerical coefficient for site-structure resonance” and 

defined in terms of building period and characteristic site period TS, which one establishes from 

geotechnical data. Absent data to establish TS, S is taken as S = 1.5, which causes design base shear 

to rise relative to 1973. 

26. Introduces new maximum value of the product C  S ≤ 0.14. 

27. New map with five rather than four zones: 0, 1, 2, 3, and 4 and corresponding values of coefficient Z. 

28. New equation for design base shear: : V = Z  I  K  C  S  W.  

29. Introduces new interstory drift ratio limit of 0.5%. 
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1979 and 1982 Uniform Building Codes: no significant changes. 

1985 Uniform Building Code 

30. Introduces new categorization of soil term S with associated values for S1, S2, and S3. 

31. Introduces seventh lateral force resisting system: 1- to 3-story wood box system. 

1988 Uniform Building Code 

32. Introduces new zone map. No more zone 0, new zones 2A and 2B, and a new table of zone factor 

Z, now with 5 zones: 1, 2A, 2B, 3, and 4.  

33. Introduces new importance factors with no more I = 1.5. Maximum I value is 1.25. 

34. Accounts for ductility capacity; new Rw table with 29 lateral force resisting systems. The maximum 

value of Rw is 12 for concrete or steel special moment-resisting frames and dual systems with concrete 

shearwalls and special moment-resisting space frames. Concrete shearwalls also have a fairly high Rw 

of 8, versus their previous status in 1985 as a box system with an above-unity value of K (and therefore 

higher rather than lower design bas shear). The design base shear of these building types drop 

dramatically. (Note that R. Lynn, in written communication on October 12, 2018, points out that “when 

I was on BSSC [the Building Seismic Safety Council], the validity of the R factors was extensively 

debated with regard both to understanding and validity of use.”) 

35. Introduces new coefficient C equation.  

36. Introduces new period T equation.  

37. No more use of K.  

38. No more use of building depth D. 

39. New equation for design base shear: V = (Z  I  C/Rw)  W. 

40. New drift limits that account for Rw; 0.4% limit on interstory drift ratio for buildings taller than 65 ft. 

1991 Uniform Building Code: no significant changes. 

1994 Uniform Building Code 

41. Zonation map changes, especially for Oregon and much of Washington, which causes design base 

shear values in Portland, for example, to rise significantly. 

1997 Uniform Building Code 

42. New statement of purpose: “The purpose of the earthquake provisions herein is primarily to safeguard 

against major structural failures and loss of life, not to limit damage or maintain function.” 

43. Introduces strength design to the seismic design equations. 

44. Introduces new soil classification with 6 categories SA through SF. 

45. Introduces new treatment of near-source effects requiring info about source type and distance. 

46. Introduces new term Na for near-source effects in constant-acceleration portion of the idealized 

response spectrum. 
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47. Introduces new term Nv for near-source effects in constant-velocity portion of the idealized response 

spectrum. 

48. Introduces new table of Rw with 43 lateral force resisting systems, with changes in values of Rw. Lower 

maximum of 8.5. Some building systems change Rw radically, such as steel light frame, whose Rw 

drops from 7 to 2.8, with consequent jump in Cs.  

49. New drift limits for estimated inelastic response displacement: 2.5% for buildings with period less than 

0.7 sec, 2.0% for buildings with period in excess of 0.7 sec. These drift ratios are calculated as 0.7  R 

 Δs, where Δs denotes the elastic response displacement. Inelastic response displacements are 

generally consistent with the 1994 UBC. 

2000 International Building Code 

50. Statement of intent: “[T]o establish the minimum requirements to safeguard the public health, safety 

and general welfare through structural strength, means of egress facilities, stability, sanitation, 

adequate light and ventilation, energy conservation, and safety to life and property from fire and 

other hazards attributed to the built environment.”  

51. Rather than large geographic seismic zones, adopts microzonation with maps of MCE shaking on 

rock using short-period and 1-second damped elastic spectral acceleration, denoted by SS and S1. 

MCE shaking has 2% exceedance probability in 50 years. 

52. Introduces new soil type F. 

53. Introduces new nomenclature for soil types A through F rather than SA through SE. 

54. Introduces new terms to account for site amplification in the constant-acceleration portion of the 

idealized response spectrum (Fa) and in the constant-velocity portion of the idealized response 

spectrum (Fv) related to 1997 UBC’s Ca and Cv but as functions of SS and S1 rather than zone. 

55. Expands table lateral force resisting systems to 73 systems. Some system Rw values change 

significantly, for example steel light frame, whose Rw changes from 2.8 to 6.0, with consequent drop 

in Cs.  

56. Maximum earthquake importance factor I back up to 1.5. 

57. New equation for deflection at any height, based on deflection determined by elastic analysis, 

amplified the ratio of a new parameter Cd to the earthquake importance factor. Parameter Cd varies 

with the seismic force resisting system. Drift limits generally consistent with 1997 UBC. 

2003 International Building Code 

58. Introduces new period equation.  

59. Equation for base shear coefficient Cs now explicitly by reference to ASCE 7.  

60. Expands table of lateral force resisting systems from 73 to 77, with new prestressed masonry shearwall 

systems and some changes to ductility capacities R. 
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2006 International Building Code 

61. Expands table of lateral force resisting systems to 83 systems, with some changes to ductility capacities 

R. 

2009 International Building Code: no significant changes. 

2012 International Building Code 

62. Introduces risk-targeted seismic design with new maps of MCER in terms of short-period and 1-second 

5% damped elastic spectral acceleration response on rock. Exceedance frequency of MCER is no 

longer uniformly 2% in 50 years, but varies between approximately 0.7 to 1.2 times MCE shaking. The 

adjustment factor accounts for local seismicity and aims to ensure a uniform upper-bound probability 

of collapse of 1% in 50 years.  

63. Expands table of lateral force resisting systems to 85 systems. 

2015 International Building Code: no significant changes. 

2018 International Building Code 

64. Changes tables of Fa and Fv to correct the long-standing disconnect between them and the site 

conditions used for maps of SS and S1, namely soil at the boundary between NEHRP site classes B and 

C (i.e., Vs30 = 760 m/sec). Previous tables of Fa and Fv treated the maps as if they were based on site 

class B.  

65. New national seismic hazard maps. 

M.3. CS TIME SERIES 

Calculation of the time series requires a few assumptions: 

 Design strength is approximately 1.4 times the strength associated with ASD. 

 Story height is 12.5 ft, based on the average from Emporis’ data of 8,110 high-rise buildings that have 

both height and number of stories (Emporis Corporation 2007). 

 Live load, where it matters, is taken as 20 pounds per square foot.  

 Building depth, where it matters, is 50 ft, except for high-rise buildings, which are assumed to be 140 ft 

deep, based on the square root of the average plan area from the Emporis database. 

 Source distance, where it matters (the 1997 UBC), is 10 km.  

 Seismic source type, where it matters (the 1997 UBC), is A. 

 Standard occupancy, meaning Risk Category II in the nomenclature of ASCE 7-16. 

 Low-rise, mid-rise, and high-rise buildings are treated as if 1, 5, and 15 stories, respectively. Average 

number of stories in mid-rise buildings is taken from a survey of 97 mid-rise buildings in Pasadena, Los 

Angeles, San Jose, and San Francisco, as discussed in Cho and Porter (2016). For high-rise, the average 

is taken from the Emporis database. 
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Without recapping every equation, table, and parameter value, which would run to dozens, possibly 

hundreds, of pages, estimated time series of Cs follow. Figure A-4 illustrates how the minimum Cs varies 

over time for low-rise buildings of various FEMA types built in downtown San Francisco, on various soil 

types. Figure A-5 shows how height affects Cs. Figure A-6 shows how the required minimum Cs varies 

over time for low-rise buildings on NEHRP site class C for three locations: San Francisco, California; Seattle, 

Washington; and Portland, Oregon. 
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A: industral woodframe, B: steel moment-resisting frame, C: steel braced frame, D: steel light frame, E: 

steel frame with cast-in-place reinforced concrete shearwalls, F: steel frame with masonry infill (later 

versions assume reinforced masonry). Legend acronyms: SFO means San Francisco; LR, low-rise; B, C, D, 

and E refer to NEHRP site classes. 

Figure A-4: Cs time series for San Francisco site, low-rise construction, various NEHRP site classes. 

A B  

C D  

E F  
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G: reinforced concrete moment frame, H: reinforced concrete shearwall, I: reinforced concrete frame with 

masonry infill; newer versions assume reinforced masonry infill, J: tiltup concrete, K: precast concrete frame, 

L: reinforced masonry shearwall with flexible diaphragms. Legend acronyms: SFO means San Francisco; LR, 

low-rise; B, C, D, and E refer to NEHRP site classes. 

Figure A-4 (cont.): Cs time series for San Francisco site, low-rise construction, various NEHRP site classes. 

G H  

I  J  

K L  



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   609 
 

 

 
M: reinforced masonry shearwall with rigid diaphragms. Legend acronyms: SFO means San Francisco; LR, 

low-rise; B, C, D, and E refer to NEHRP site classes. 

Figure A-4 (cont.): Cs time series for San Francisco site, low-rise construction, various NEHRP site classes. 

 

M  
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A: steel moment-resisting frame, B: steel braced frame, C: steel frame with cast-in-place reinforced 

concrete shearwalls, D: steel frame with masonry infill (later versions assume reinforced masonry), E: 

reinforced concrete moment frame, F: reinforced concrete shearwall. Legend acronyms: SFO means San 

Francisco; LR, low-rise; MR, mid-rise; HR, high-rise; C refers to the NEHRP site class. 

Figure A-5: Cs time series for San Francisco site, NEHRP site class C, various heights. 
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G: reinforced concrete frame with masonry infill; newer versions assume reinforced masonry infill, H: 

precast concrete frame, I: reinforced masonry shearwall with flexible diaphragms, J: reinforced masonry 

shearwall with rigid diaphragms. Legend acronyms: SFO means San Francisco; LR, low-rise; MR, mid-rise; 

HR, high-rise; C refers to the NEHRP site class. 

Figure A-5 (cont.): Cs time series for San Francisco site, NEHRP site class C, various heights. 
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A: industral woodframe, B: steel moment-resisting frame, C: steel braced frame, D: steel light frame, E: 

steel frame with cast-in-place reinforced concrete shearwalls, F: steel frame with masonry infill (later 

versions assume reinforced masonry). Legend acronyms: POR means Portland, Oregon; SEA Seattle, 

Washington; SFO San Francisco, California. LR, low-rise; C, NEHRP site class. 

Figure A-6: Cs time series for various locations, low-rise construction, NEHRP site class C. 
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G: reinforced concrete moment frame, H: reinforced concrete shearwall, I: reinforced concrete frame with 

masonry infill; newer versions assume reinforced masonry infill, J: tiltup concrete, K: precast concrete frame, 

L: reinforced masonry shearwall with flexible diaphragms. POR means Portland, Oregon; SEA, Seattle; SFO, 

San Francisco; LR, low-rise; C, NEHRP site class. 

Figure A-6 (cont.): Cs time series for various locations, low-rise construction, NEHRP site class C. 
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M: reinforced masonry shearwall with rigid diaphragms. Legend acronyms: POR means Portland, Oregon; 

SEA, Seattle; SFO, San Francisco; LR, low-rise; C, NEHRP site class. 

Figure A-6 (cont.): Cs time series for various locations, low-rise construction, NEHRP site class C. 

M.4. OBSERVATIONS AND CONCLUSIONS 

The project team’s analysis quantifies the design base as it has evolved over the life of the UBC (1927 

through 1997) and the IBC (2000 through 2018). Design base shear in these model codes has not 

monotonically increased over time, although the general trend has been toward ever-stronger buildings. 

After 1949, differences between seismic force resisting systems strongly affected Cs. At some points in time, 

Cs values for different building types differed by more than 3 times for the same location, height, and site 

class. Time series for low-rise and mid-rise buildings tended to experience greater increases over time than 

do those of high-rise buildings. The Portland and Seattle time series showed larger increases over time 

than those of San Francisco. Portland and Seattle time series dropped significantly with the introduction of 

seismic zones in 1935, but then tended to converge with San Francisco in 1997. Compared with the effects 

of building type, height, and geographic location, NEHRP site class tended to make only a modest 

difference, at least in San Francisco. 

The project team characterized the gradual, long-term increase in strength in an approximate way by 

fitting trendlines to individual time series, or in a more-approximate way by calculating an equally 

weighted average of all the time series shown here and fitting a trendline to it (Figure A-7). The trendline 

suggests a long-term average annual increase in design base shear of approximately 4% per 3-year code 

cycle, or approximately 50% per 30 years, with no obvious sign of slowing. Combinations of building type, 

soil, and height are not equally likely, so this rate of growth is only notional, but still interesting. 

Since the 1976 UBC introduced drift limits, they have remained largely constant, even as design base shear 

increased, indicating that required stiffness has increased in proportion with design base shear. Thus, as 

M  
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design base shear increased at a rate of 50% per 30 years, so has stiffness. The project team concluded 

that buildings that meet current I-Codes, or at least the 2018 IBC, are substantially stronger, stiffer, and 

more resilient than those built to older codes, and that in general, code development for seismic design 

has made society much safer and more resilient, probably in a cost-effective way. 

This appendix addresses neither the adoption of model building codes by local jurisdictions, nor code 

enforcement, nor the skill or understanding local practitioners have brought to practice. All of these issues 

would affect the actual resilience the code has provided over time and between jurisdictions. 

 

Figure A-7: The long-term trend in design base shear suggests 4% increase per 3-year code cycle, or 50% 

per 30 years. With constant drift limits, stiffness has increased in proportion. 
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Appendix N. Where Required Seismic Design 

Strength Exceeds Required Wind 

Strength 

In what U.S. locations do seismic design requirements of the 2018 International Building Code exceed 

those of wind design, as far as building strength is concerned? The question mostly applies to buildings 

whose structural material is reinforced masonry, steel, or reinforced concrete—i.e., materials other than 

wood. According to unpublished calculations by the project team using the Hazus building inventory, the 

FEMA model building type other than wood (i.e., other than FEMA types W1 and W2) with the greatest 

aggregate floor area is reinforced masonry with flexible diaphragms (FEMA type RM1). Based on the 

project team’s general familiarity with U.S. construction, the most common height of a U.S. building is 1 

story tall. One can therefore simplify the question by calculating the wind and seismic force on a 1-story 

RM1 building, and determining in which locations the seismic lateral load exceeds wind and vice versa. 

In the following analysis, ASCE 7-16, as well as all parameters, tables, and equations, refer to American 

Society of Civil Engineers (2017), unless noted otherwise. The analysis examines a 1-story, Risk-Category II 

RM1 building 50 ft long by 30 ft wide in the central United States, in exposure category B (generally 

suburban) surroundings. For example, consider Cullman County, Alabama, census tract 01043965500, near 

34.01N -86.91E. (US Census Bureau, 2018). 

Calculate design base shear for seismic loading as a factor of SS: 

Cs = 2/3  Fa  SS  W / (R  Ie) 

Weight W 

Masonry walls: 160 ft  12 ft  0.67 ft  150 pcf = 200 kip 

Roof: 1500 sf  10 psf = 15 kip 

Other: say 15 kip 

Total weight ≈ 230 kip  

Ie = 1.0 

R = 3.5 (intermediate reinforced masonry shear walls) 

Cs = 2/3  SMS/(3.5  1.0)  230 kip 

  = 43.8 kip  SMS 

The maps of SS and S1 in ASCE 7-16 appear to date from 2012, according to U.S. Geological Survey 

(2012). The values at 34.01, -86.91 are SS = 0.2553g, S1 = 11.22g. According to OpenSHA’s Site data 

app (Field et al. 2005), Vs30 = 355 m/sec, which translates to NEHRP site class D (180 m/sec ≤ Vs30 

< 360 m/sec). According to ASCE 7-16 Table 11.4-1 by linear interpolation of SS between 0.25 and 

0.50, Fa = 1.592. Then  
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SMS = Fa  SS = 1.59  0.26g = 0.41g.  

Cs = 43.8 kip  0.41g  

  = 18.0 kip 

Calculate design base shear for wind loads for U.S. interior 

ATC’s hazard tool (Applied Technology Council, ND) shows this site’s basic windspeed to be V = 

106 mph. See Figure A-8. Also see ASCE 7-16 Fig. 26.5-1B. 

 

Figure A-8: Basic wind speed from ATC hazard tool. 

Wind directionality factor Kd Table 26.6-1.  

Kd = 0.85 

Exposure category Sec 26.7 Roughness B.  

   Exposure B 

Topo factor Kzt Figure 26.8-1.  

K1 = 0 

K2 = 0 

K3 = 0 

Kzt = 1 

Ground elevation factor, Ke; see Section 26.9  

Ke = 1 
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Gust-effect factor, G or Gf; see Section 26.11.  

G = 0.85 

Enclosure classification; see Section 26.12.  

Partially enclosed. 

Internal pressure coefficient, (GCpi); see Section 26.13 and Table 26.13-1.  

GCpi = ± 0.55 

Step 4: Determine velocity pressure exposure coefficient, Kz or Kh; see Table 26.10-1.  

Kh = Kz = 0.57 

Step 5: Determine velocity pressure qz or qh, Equation 26.10-1. 

Windward walls qz 

qz = 0.00256  Kz  Kzt  Kd  Ke  V2 

  = 0.00256  0.57  1  0.85  1  1062 

  = 13.9 psf 

Leeward walls qh 

qh = qz = 13.9 psf 

Step 6: Determine external pressure coefficient, Cp or CN: 

Windward wall Cp = 0.8 

Leeward wall L/B = 30 ft/50 ft, so Cp = -0.5 

Step 7: Calculate wind pressure, p, on each building surface: 

Equation 27.3-1 for rigid and flexible buildings. 

Equation 27.3-1 & Figure 27.3-1 for walls and flat, gable, hip, monoslope, or mansard roofs. 

  Windward wall: 

  qi = qz = 13.9 psf 

  p = q  G  Cp – qi  GCpi 

   = 13.9 psf  0.85  0.8 – 13.9 psf  -0.55 

   = 17.1 psf 

  Leeward wall 

  p = 13.9 psf  0.85  0.5 – 13.9 psf  -0.55  

   =13.6 psf 

Fwind = (17.1 psf + 13.6 psf)  50 ft  12 ft 

  = 18.4 kip 

Conclusion: for V = 106 mph, wind design governs 

44 kip  SMS < Fwind  

18.0 kip < 18.4 kip 



NATURAL HAZARD MITIGATION SAVES:  

 

 

DECEMBER 2019 NATIONAL INSTITUTE OF BUILDING SCIENCES   619 
 

Batch calculations are carried out in several steps: 

1. 2018 census tract geographic centroids are extracted from U.S. Census Bureau (2018) and rounded 

to the near 0.01 degrees of latitude and longitude. 

2. For each centroid, Vs30 is estimated using OpenSHA site data application (Field et al. 2005). 

3. ASCE 7-16 SS and S1 values for each census tract are extracted from U.S. Geological Survey (2012). 

4. ASCE 7-16 Fa and Fv values are calculated for each census tract using ASCE 7-16 Tables 11.4-1 and 

11.4-2, and SMS and SM1 calculated using SS, S1, Fa, and Fv.  

5. County-maximum values of SMS and SM1 are calculated from tracts.  

6. County-maximum basic wind speed are calculated in ArcGIS using ASCE 7-16’s basic wind speed 

maps for risk category II buildings 

7. Wind and seismic forces are calculated for the sample building for each county. Figure A-9 shows the 

result. 

 

Figure A-9: County maximum values of SMS where Cs exceeds Fwind. 
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