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IN THE UNITED STATES DISTRICT COURT  

FOR THE EASTERN DISTRICT OF MICHIGAN 

SOUTHERN DIVISION 

 

CONCERNED PASTORS FOR SOCIAL 

ACTION, et al., 

  

  Plaintiffs, 

 v. 

 

NICK A. KHOURI, et al., 

 

  Defendants. 

  

 

 

 

 

 

 

 

 

/ 

 

 

Case No. 16-10277 

 

Hon. David M. Lawson 

 

Mag. J. Stephanie Dawkins Davis 

 

DECLARATION OF ERIC M. SCHWARTZ, Ph.D. 

I, Eric M. Schwartz, declare as follows: 

1. I am an Assistant Professor of Marketing and Arnold M. and Linda T. 

Jacob Faculty Fellow at the Ross School of Business of the University of 

Michigan. I hold a Ph.D. in Marketing from the Wharton School of the University 

of Pennsylvania, and a B.A. in Mathematics and Hispanic Studies from the 

University of Pennsylvania. 

2.  I am an applied statistician. My research interests include predicting 

customer behavior using statistical machine learning models, Bayesian data 

analysis and econometrics, adaptive sampling, and reinforcement learning. 

3. My curriculum vitae is attached as Exhibit A to this Declaration. 

4. In 2016, I built a statistical model to predict the locations of lead and 

galvanized steel water service lines in Flint, Michigan, in collaboration with my 
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colleague, Jacob D. Abernethy, currently an Assistant Professor of Computer 

Science at the Georgia Institute of Technology’s School of Computing, who was at 

the time an Assistant Professor of Computer Science at University of Michigan. 

We built the model with the assistance of several undergraduate and graduate 

students in the Michigan Data Science Team of the University of Michigan.  

5. In 2016 and 2017, Dr. Abernethy and I worked in collaboration with 

the Flint Action and Sustainability Team (FAST) Start Program, under the 

direction of Brig. Gen. (ret.) Michael McDaniel. During that time, we regularly 

provided the City with lists of addresses in Flint that our model predicted were 

most likely to have lead or galvanized steel service lines. It is my understanding 

that the FAST Start Program used our predictions to inform its decision-making 

about where to conduct hydro-excavations1 and service line replacements in 2016 

and 2017.  

6. In 2017, I wrote a paper with Dr. Abernethy and our team of (now 

former) University Michigan students that describes our work developing the 

model for Flint. A version of this paper, titled “ActiveRemediation: The Search for 

Lead Pipes in Flint, Michigan,” was published on June 10, 2018, in the 

                                                            
1 A hydro-excavation involves “a high-pressure jet of water used to loosen soil 

and a powerful vacuum hose that sucks the loosened material into a holding tank,” 

which allows workers to dig a small hole and observe the service line material 

underground. See Exhibit B at 5. 
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Proceedings of the 24th ACM SIGKDD Conference on Knowledge Discovery and 

Data, a peer-reviewed data science and machine learning publication outlet, and is 

attached as Exhibit B to this Declaration.2  

 

Communications with the City of Flint in 2016-2017 and Original Model 

(Using 2016 Data) 

 

7. In March 2016, in collaboration with University of Michigan-Flint, 

Dr. Abernethy and I started working on a project to develop a mobile app and 

website that would allow Flint residents to determine the risk of lead-contaminated 

water in their homes. 

8. In June, after Dr. Abernethy and I learned that no one knew precisely 

how many homes in Flint had lead or galvanized steel service lines, or where those 

service lines were located, we started another project to help Flint residents learn 

the materials of their service lines, and to help the FAST Start Program find and 

remove all of Flint’s lead and galvanized steel service lines. 

9. As part of this project, we received data from the City on 55,893 

homes in Flint, including addresses, parcel identifiers, property values, home age, 

                                                            
2 An earlier version of the paper, titled “On the Search for Lead Pipes in Flint: 

An Algorithmic Approach to Remediation of Water Utilities,” was posted online in 

November 2017, see https://goo.gl/qmkSLU, and http://faculty.chicagobooth.edu/

workshops/marketing/pdf/Winter%202018/Schwartz_etal_flint_sl_main_2018021

6.pdf. The 2018 version of the paper is also available for free online at 

https://arxiv.org/abs/1806.10692.  
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and information concerning what the City’s records said, if anything, about each 

home’s service line material.  

10. Dr. Abernethy and I also considered a digitized map of the City’s 

service line records created by Professor Martin Kaufman and a group of students 

from the Geographic Information Systems (GIS) Center at the University of 

Michigan-Flint. It is my understanding that in early 2016, Professor Kaufman 

received from the City almost 200 pages of hand-drawn maps last updated in 1982 

that had annotations indicating the service line material at certain homes. Professor 

Kaufman’s team created the digitized map by looking at each of the hand-drawn 

maps, finding the annotations indicating service line material, and typing those 

annotations into a spreadsheet associated with the address. It is my understanding 

that the resulting map was filed in this case as Exhibit 14 to the June 21, 2018, 

Declaration of Dimple Chaudhary (ECF No. 166-2).3 

11. In June 2016, Dr. Abernethy and I met with General McDaniel, who 

at the time managed the FAST Start Program. Dr. Abernethy and I agreed, on a pro 

                                                            
3 Because this map is based on a small subset of historical data, the map’s 

estimate of total lead service lines in Flint (4,000 to 8,000) grossly underestimates 

the total number of likely lead and galvanized steel service lines in the City. See 

infra Paragraph 15. Indeed, Professor Kaufman acknowledged that thousands of 

parcels in the hand-drawn maps had no information about service line composition. 

See UM-Flint News, New UM-Flint Research Shows Location of Lead Pipes in 

Flint (Feb. 22, 2016), https://news.umflint.edu/2016/02/22/new-um-flint-research-

shows-location-of-lead-pipes-in-flint/. 
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bono basis, to build a predictive model to help identify the locations of lead and 

galvanized steel service lines in Flint. Our goals were to help the City estimate the 

total number and locations of lead and galvanized steel service lines in Flint, 

thereby helping the City minimize unnecessary excavation work and maximize 

replacement of lead and galvanized steel service lines in Flint. 

12. We created our predictive model during the summer of 2016. The 

model works by generating a probability (between 0 and 1) that a lead or 

galvanized steel service line is present at each home in Flint based on information 

about that home, including its address, age, assessed value, the zoning of the 

property, the type of fire hydrant closest to the home, and old City records of the 

home’s service line composition (if available). A list of this data appears in our 

paper (Exhibit B at 3, tbl.1 & Section 2.1). The model was designed to incorporate 

new information, including the results of excavations, on an ongoing basis, to 

improve the accuracy of its predictions and guide decision-making at future stages.  

13. Beginning in August 2016, Dr. Abernethy and I started using our 

model to provide General McDaniel and the FAST Start Program with lists of 

addresses that the model predicted had the highest chance of having lead or 

galvanized steel service lines. It is my understanding that the City used these lists 

to make decisions about where to conduct traditional excavations during the initial 

phases of the FAST Start Program, which took place between September and 
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December 2016. Approximately 90% of the traditional excavations the City 

conducted during those months uncovered lead or galvanized steel service lines.  

14. After we received data from the City’s traditional excavations, service 

line replacements, and hydro-excavations through the fall of 2016, Dr. Abernethy 

and I updated our predictions and were able to make more confident statements 

about the locations and total number of lead and galvanized steel lines in the City.  

15. Together with the City and the FAST Start Program, we released a 

short report on November 1, 2016, that estimated that between 20,600 and 37,100 

homes in Flint were served by lead or galvanized steel lines out of the 55,893 total 

addresses in Flint. This report is attached as Exhibit C. At that time, we could not 

provide a more precise estimate due to the limited number of physically verified 

service lines, as well as uncertainty about the accuracy of the City’s historical 

records. We also did not have reliable information about which homes in the City 

had active water accounts, and so our estimate was based on the total number of 

homes in the City, both with and without active water accounts (55,893).  

16. We continued to assist General McDaniel and the FAST Start 

Program throughout most of 2017. For instance, we created interactive maps based 

on our model and excavation data that we received from General McDaniel. The 

maps provided predictions of the locations of lead and galvanized steel service 

lines throughout the City. We updated these maps when we received new 
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excavation data from the City and shared them with General McDaniel on a regular 

basis. We also provided General McDaniel with spreadsheets and maps of 

recommended homes for the City to excavate, based on our model. It is my 

understanding that the City used the information we provided to inform its 

decisions about where to conduct hydro-excavations during Phases III and IV of 

the FAST Start Program in 2017. 

17. As part of our involvement with the FAST Start Program, in May 

2017, the City provided us with scanned images of approximately 140,000 

handwritten index cards containing information on the historical work records 

from the City’s Water Department. Many (but not all) of these index cards 

contained information about service line composition at specific homes. Dr. 

Abernethy and I sent those index-card images to be digitally transcribed on a pro 

bono basis by a company called Captricity. In September 2017, Captricity provided 

us and the City with spreadsheets reflecting the digitized data for approximately 

50,000 of the index cards.  

 

Communications with the City in 2018 and Updated Model Results (Using 

2016-2017 Data) 

 

18. Our regular communications with the City largely ended when the 

City hired AECOM to oversee the FAST Start Program.  

19. On December 4, 2017, Dr. Abernethy and I spoke with officials from 
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AECOM, the FAST Start Program, and MDEQ to explain our collaboration with 

the FAST Start Program and make plans for 2018. I had several follow-up 

communications with AECOM throughout that month. We provided AECOM staff 

with detailed information about our predictive model, including a link to our paper 

(see supra note 2) and the estimated cost savings from using our model and 

proposed approach. We also provided AECOM with an interactive map of up-to-

date data (as of December 2017) on the composition of service lines discovered 

through hydro-excavations and service line replacements completed during 2016 

and 2017.  

20. We had expected to continue to collaborate with AECOM on the use 

of our model to help the City locate individual homes and groups of homes in 

neighborhoods likely to have lead or galvanized steel service lines. However, since 

our initial communications in December 2017, AECOM has largely not responded 

to our calls and emails offering assistance.  

21. On January 2, 2018, I emailed Alan Wong, the FAST Start Program 

Manager, to schedule a phone call to discuss how we could continue to use our 

model to assist the FAST Start Program. Mr. Wong did not respond. I sent 

additional emails to Mr. Wong on January 3, February 12, March 1, and May 1. In 

the May 1 email, I stated that Dr. Abernethy and I would like to discuss strategies 

for selecting homes for hydro-excavation during Phase V of the FAST Start 
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Program. Mr. Wong did not respond to any of these emails.   

22. On February 23, I wrote an email to Steven Branch at the City 

Administrator’s Office, and the same day, Dr. Abernethy and I had a telephone 

conversation with Mr. Branch discussing our past involvement with the FAST 

Start Program and how to best continue that work with AECOM, including by 

providing them with our predictive model and updating the model’s predictions.    

23. On March 1 and March 9, I wrote emails to Mr. Branch to follow up 

on our discussion about the City’s potential use of our model during Phase V of the 

FAST Start Program. Mr. Branch did not respond to these emails. 

24. On May 7, 2018, Dr. Abernethy and I emailed Mr. Wong, and later 

that day, we had a phone conservation with Mr. Wong about AECOM and the 

City’s potential use of our predictive model for Phase V of the FAST Start 

Program. Mr. Wong told us that he would put us in touch with Constantine Kontos, 

an AECOM staff member who specializes in data analysis and works on the FAST 

Start Program.  

25. Dr. Abernethy and I connected with Mr. Kontos and, on May 24, 

2018, we provided him with the results of our updated model that incorporated 

data from the excavations conducted by the City as of December 2017. This 

included a list of all 55,000 addresses in Flint, with the probability of finding a lead 

or galvanized steel service line at each address. He told us that he was not sure how 
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AECOM was going to use these updated results but stated that he would follow up 

with us regarding potential collaboration with AECOM. We did not receive a 

follow-up email from Mr. Kontos.  

26. On May 31, 2018, I emailed Mr. Kontos and Mr. Wong requesting 

updated information on the hydro-excavations conducted so far in 2018. I informed 

AECOM that we could incorporate these updated results into our model to make 

the predictions more accurate than the predictions that we had previously provided. 

Mr. Kontos did not respond to my email. A few weeks later, on June 18, 2018, I 

emailed Mr. Kontos again and asked whether AECOM had found our updated 

model results useful and how AECOM had used them.  

27. Also in the spring of 2018, we were coordinating phone calls between 

Capricity (the company that had volunteered to digitize the more than 100,000 

index-card records), AECOM, and the City to discuss how AECOM could use 

Captricity’s work. As of February 2018, Captricity had processed approximately 

80,000 of the index-card records and made them available to the FAST Start 

Program. By June 22, Captricity had completed the digitization work for 

approximately 95,000 index cards and had sent all processed and transcribed 

records to us and AECOM’s FAST Start staff. I do not know whether or how the 

City is using the data from the index cards it received from Captricity.  

28. On July 10, 2018, Mr. Kontos informed Dr. Abernethy and me that he 
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thought it would be helpful to update our predictive model with excavation results 

from 2018 but stated: “[T]hat is a conversation to be had with the City in regards to 

sharing information and direction on future planning as I am currently sharing my 

opinion.” I sent a follow-up email to Mr. Kontos seeking clarification, but I did not 

receive a response. 

29. After I did not hear back from Mr. Kontos, I contacted the City and 

spoke with the City’s press officer, Candice Mushatt, who requested that I email 

her information regarding our communications with AECOM. I emailed this 

information to Ms. Mushatt on July 13, 2018, and left her a voicemail on July 19, 

2018. Ms. Mushatt did not respond to my email or voicemail.   

30. Neither Dr. Abernethy nor I have had any further communications 

with AECOM or the City regarding our predictive model. I do not know if or how 

our model is currently being used by AECOM as part of the FAST Start Program. 

Because the City has not provided us with any updated data on the results of 

excavations conducted in 2018, we stopped updating our model in December 2017. 

31. In August 2018, I learned from the press that AECOM had used our 

model results to create a map (based on excavation results as of December 2017, 

which we sent to AECOM in May 2018), which Mr. Wong attached to his 

declaration in support of the City’s July 12, 2018 filing in this case (ECF 

No. 172-3).  
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32. Mr. Wong states in his declaration that he is “not aware of any 

algorithm that has been developed to reliably predict the composition of buried 

infrastructure that has been installed over 5 to 10 decades.” However, as we 

explained to Mr. Wong in December 2017 and May 2018, our model was 

developed exactly for that purpose, and I had provided him and other AECOM 

staff with our paper via email, detailing how the predictive model worked and how 

it could be used for making the City’s excavations more cost effective. 

33. As described in our paper (Exhibit B), our model accurately estimates 

how likely it is for a given home in Flint to have a lead or galvanized steel service 

line. Our model has an Area Under the Receiver Operating Characteristic 

(AUROC) score of nearly 0.94, which means that, if you considered a home with a 

lead or galvanized steel service and a randomly chosen home and asked our model 

to tell you which one is which, our model would be correct 94% of the time. In 

contrast, a random guess would be correct only 50% of the time. 

34. We found that the most informative home features for predicting the 

presence of a lead or galvanized steel service line are its age, value, and location. 

Homes that were built before about 1950 and those that are lower in value are more 

likely to contain lead service lines. The historical City records were also a useful 

predictor when combined with other factors. Information concerning the nearest 

fire-hydrant type was not a useful predictor of the presence of lead and galvanized 
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steel service lines. Further, while homes likely to contain lead and galvanized steel 

service lines are geographically scattered across the City, there were larger clusters 

of high-probability homes in specific neighborhoods. 

 

Communications with Plaintiffs’ Counsel  

35. On August 29, 2018, Dr. Abernethy and I spoke with Plaintiffs’ 

counsel about the filings recently submitted in this case and, in particular, the map 

attached as Exhibit 5 to Mr. Wong’s declaration, which states that it depicts the 

results of our model.  

36. Plaintiffs’ counsel asked whether we could run our model with the 

updated results from the City’s 2018 excavations. We stated we had asked the City 

for this updated information but had not received it. We told Plaintiffs’ counsel 

that we could update the model predictions if we had that updated data.  

37. Plaintiffs’ counsel also informed us that the Settlement Agreement in 

this case requires the City to conduct excavations at homes that had active water 

accounts as of the date the Agreement was executed, as opposed to at all homes in 

Flint. They requested that, when running our model, we consider only homes with 

active water accounts.  

38. Plaintiffs’ counsel provided us with the documents listed in Exhibit D 

to this Declaration, which included information on the results of the City’s 

excavations so far in 2018, and a list of active water accounts they had received 
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from the City.   

 

Updated Model Results (Using 2016-2018 Data) 

 

39. Dr. Abernethy and I ran our model with the new excavation data we 

received from Plaintiffs to estimate the total number of eligible homes4 in Flint 

with lead and galvanized steel service lines as of March 28, 2017.  

Projected total number of eligible homes in Flint with lead and 

galvanized steel service lines as of March 28, 2017 

 

40. As discussed above in Paragraph 12, our predictive model works by 

assigning a probability (between 0 and 1) of having a lead or galvanized steel 

service line to every home in Flint. Using these probabilities, I applied two 

different statistical methods to project the likely number of lead and galvanized 

steel service lines at eligible homes in Flint.  

41. Method 1. Under the first method, I calculated the projected number 

of lead and galvanized steel service lines at eligible homes in Flint by adding up 

the individual probabilities assigned to each eligible home in the City that had not 

been excavated as of August 15, 2018, adding this sum to the 6779 lead and 

                                                            
4 I understand that the term “eligible household,” for purposes of the Settlement 

Agreement, means a household that had an active water account as of March 28, 

2017. See Settlement Agmt. ¶ 11, ECF No. 147-1. The earliest list of homes with 

active water accounts Plaintiffs received from the City was a list of such accounts 

as of July 6, 2017. Accordingly, I have used that list as the list of eligible 

households for purposes of this Declaration.  
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galvanized steel service lines the City had previously discovered using 

excavations, and then subtracting the 752 lead and galvanized steel service lines 

that the City replaced as of March 28, 2017.5 Using this method, our model 

predicts that, as of March 28, 2017, there were 10,836 lead and galvanized steel 

service lines at eligible homes in Flint. Our model predicts that, as of August 15, 

2018, there were 4809 remaining, unexcavated lead and galvanized steel service 

lines at eligible homes in Flint. The 4809 figure reflects the model’s total predicted 

number of lead and galvanized steel service lines at eligible households as of 

March 28, 2017 (10,836), minus the number of service line replacements 

completed between that date and the “City of Flint’s Paragraph 30 Evaluation” 

(Paragraph 30 Report) that was submitted by the City in February 2018 (6027). 

42. I also calculated a 95% confidence interval of 10,716 to 10,969 for the 

predicted total number of lead and galvanized steel service lines in Flint eligible 

households as of March 28, 2017 (10,836). A confidence interval is an estimated 

                                                            
5 Based on the 2016-2018 excavation data I received from the City and 

Plaintiffs, our data shows that the City replaced 6779 lead and galvanized steel 

service lines as of August 15, 2018. However, this number is slightly different 

from the 6839 service line replacements reported by the City in Mr. Wong’s 

August 3, 2018, declaration. Aug. 3, 2018 Wong Decl. ¶ 9, ECF No. 181-1. This 

difference exists largely because our model requires a “parcel identification 

number” for each home, but not all of the addresses in the data provided to us have 

corresponding parcel identifiers. The 2016-2018 excavation data we received 

included 30,957 addresses. We were able to match 28,414 of these addresses to 

parcel identification numbers, but we were unable to incorporate the remaining 

2543 addresses (about 8% of the total) into our analysis.  
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range of values likely to contain the true value for a given parameter. Thus, by 

reporting a 95% confidence interval around the predicted number of lead and 

galvanized steel service lines at eligible homes, I am stating that, after rerunning 

the model 100 times on random variations of the same dataset, my calculations 

indicate that in 95 out of the 100 variations, the predicted number of lead and 

galvanized steel service lines lies within this range. 

43. Method 2. Under the second method, I calculated the projected 

number of lead and galvanized steel service lines at eligible homes by setting a 

specific probability “threshold” for considering a particular home’s likelihood of 

having a lead or galvanized steel service line. Under this method, I added up the 

total number of eligible homes with yet-to-be-excavated service lines as of August 

15, 2018, with a probability of having a lead or galvanized steel service line that 

equals or exceeds that threshold. I added this sum to the 6779 lead and galvanized 

steel service lines already discovered by the City as of August 15, 2018.  

44.  To project the number of lead and galvanized steel service lines at 

eligible homes in Flint, I first set the probability threshold at 0.3. In other words, I 

added up all the eligible homes that our model assigned at least a 30% probability 

of having a lead or galvanized steel service line. I then set the probability threshold 

at 0.1 and added up all the eligible homes that our model assigned at least a 10% 
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probability of having a lead or galvanized steel service line.6  

45. Using the 0.3 threshold, our model predicts that, as of March 28, 

2017, there were 10,991 lead and galvanized steel service lines at eligible homes in 

Flint, and as of August 15, 2018, there were 4964 remaining unexcavated lead and 

galvanized steel service lines at eligible homes in Flint.  

46. Using the 0.1 threshold, our model predicts that, as of March 28, 

2017, there were 12,146 lead and galvanized steel service lines at eligible homes in 

Flint, and as of August 15, 2018, there were 6119 remaining unexcavated lead and 

galvanized steel service lines at eligible homes in Flint. 

47. To test the accuracy and reliability of the predictions described in 

Paragraphs 41 to 46 above, I conducted what is known as model validation. I split 

the data in two parts: I used a randomly selected subset of 75% of all homes 

already excavated to predict the materials of the other 25% of homes already 

excavated, and then I compared the predictions to the actual data. I repeated this 

process 100 times using different random splits. For the 25% of data not used to 

generate predictions, the model has an AUROC score of 0.94, on average across 

100 different splits. This indicates that the model is accurate at predicting the 

                                                            
6 We used thresholds of 0.3 and 0.1 to make our projections health-protective. If 

Flint’s goal is to uncover and replace all of the City’s hazardous service lines, then 

if there is a 30%—or even a 10%—chance that the service line is hazardous, it may 

be appropriate from a policy perspective to excavate that service line to determine 

whether it needs to be replaced. 
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materials of service lines in Flint. 

Projected costs of completing 18,000 excavations and replacing all lead 

and galvanized steel service lines  

 

48. As discussed in Paragraph 41, using Method 1 (which adds the 

individual probabilities for all homes), our model predicts that, as of February 

2018, there were 4809 remaining lead and galvanized steel service lines at eligible 

homes in Flint.  

49. Based on the City’s Paragraph 30 Report, I understand that the City 

had completed 8843 excavations as of February 2018. See Paragraph 30 Report 2, 

ECF No. 172-4. Assuming the City is required to complete 18,000 total 

excavations under the Settlement Agreement, then as of February 2018, I 

understand that it was required to conduct an additional 9157 excavations (18,000 

minus 8843 = 9157),7 and complete service line replacements at those homes at 

which it uncovered a lead or galvanized steel service line. Settlement Agmt. ¶¶ 9-

10. I calculated the costs of completing this remaining work, under three scenarios 

based on different cost-related assumptions. 

50. For each scenario described below, I assumed that the City will 

prioritize its excavations at those addresses most likely to have lead or galvanized 

                                                            
7 The Paragraph 30 Report states that the City must complete 9173 excavations 

to reach a total of 18,000. Paragraph 30 Report 3. This appears to be based on a 

subtraction error (18,000 – 8843 = 9157, not 9173). 
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steel service lines. I also assumed that, through the remaining 9157 excavations, 

the City will uncover and replace all remaining 4809 lead and galvanized steel 

service lines.  

51. Scenario 1. In Scenario 1, I used the following cost projections 

provided in the City’s Paragraph 30 Report:8   

• Cost of one service line replacement: $4985 

• Cost of one hydro-excavation: $285 

• Cost of one traditional excavation: $2605 

• Cost of one site restoration9: $1725 

• Total cost of 2018-2019 administrative and management: 

$9,297,508 

 

I also assumed, based on the cost calculations in the Paragraph 30 Report, that at 

an address where contractors conduct a traditional excavation and a service line 

replacement, there will be no cost efficiencies. In other words, I assumed that if a 

traditional excavation and a service line replacement are both required at a 

particular address, the cost will be $7590 ($4985 + $2605). Finally, I assumed in 

Scenario 1 that the City will use only traditional excavations, which I understand to 

be the City’s current practice. See Oct. 1, 2018, Tallman Decl. Exs. D, E.  

52. Based on the assumptions described in Paragraphs 49 through 51, I 

                                                            
8 Where the Report projected different costs for a particular item in 2018 and 

2019, I used the average of the two projections.  

9 Site restoration involves restoring the area disrupted by an excavation or 

service line replacement, including filling the hole dug during an excavation or 

service line replacement with soil, cement, or other material.  
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calculated that in Scenario 1 the City will need $72,920,183 to complete the 

remaining 9157 excavations and 4809 service line replacements. Adding this total 

to the $37.25 million the City spent of the Settlement Agreement funding prior to 

February 2018, see Paragraph 30 Report 3, yields a total cost of $110,170,183 for 

all 18,000 excavations and service line replacements.  

53. Scenario 2. I understand that in September 2018, the City provided 

Plaintiffs with revised, updated cost figures for its excavation and service line 

replacement work in 2018. See Tallman Decl. Exs. A, B, C. In Scenario 2, I 

calculated the costs of completing the remaining 9157 excavations and 4809 

service line replacements using these revised cost figures. I assumed that:  

• Cost of one traditional excavation and service line replacement: 

$4197.86 

• Cost of one hydro-excavation: $285 

• Cost of one traditional excavation: $1788.37 

• Cost of one site restoration: $1725 

• Total cost of 2018-2019 administrative and management: 

$9,297,508 

 

In addition, based on the information the City provided to Plaintiffs, I assumed in 

Scenario 2 that there are cost efficiencies when the City conducts both a traditional 

excavation and a service line replacement at a particular address. That is, I 

assumed in Scenario 2 that, the cost of completing both a traditional excavation 

and service line replacement at a particular address is $4197.86.  

54. Finally, I assumed in Scenario 2 that the City will use only traditional 
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excavations, which is what I understand the City’s current practice to be. See 

Tallman Decl. Exs. D, E.  

55. Based on the assumptions described in Paragraphs 49–50 and 53–54, I 

calculated that in Scenario 2 the City will need $53,056,675 to complete the 

remaining 9157 excavations and 4809 service line replacements. Adding this total 

to the $37.25 million the City spent of the Settlement Agreement funding as of 

February 2018, see Paragraph 30 Report 3, yields a total cost of $90,306,675.  

56. Scenario 3. Although the City is currently using only traditional 

excavations, it could instead investigate the service line material at a particular 

address using a hydro-excavation. This was the method used by the City prior to 

June 2018. Hydro-excavations are significantly less expensive than traditional 

excavations.  

57. To better understand the cost savings associated with using hydro-

excavations, in Scenario 3 I calculated the cost of completing the remaining 9157 

excavations and 4809 service line replacements using the assumptions in Scenario 

2, but with the revised assumption that the City will use hydro-excavations where 

possible in lieu of a traditional excavation. In Scenario 3, I assumed that the City 

will conduct hydro-excavations at 81% of the addresses it investigates, and will 

conduct traditional excavations at the remaining 19% of addresses (the percentages 
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reported in the City’s Paragraph 30 Report).10  

58. In Scenario 3, based on the assumptions outlined in Paragraphs 49–50 

and 53–54, my calculations show that it will cost the City $42,796,900 to complete 

the remaining 9157 excavations and 4809 service line replacements. Comparing 

this figure to the projected cost in Scenario 2 shows that using hydro-excavations is 

associated with a cost savings of $10,259,775.  

 

Analysis of locations of the City’s excavations in 2018 as of August 15 

 

59. I also analyzed the City’s excavation data to understand trends in 

addresses it has selected for excavations in 2018. For each of Flint’s nine wards, I 

calculated:  

• the total number of eligible homes that were not yet excavated as 

of December 31, 2017;  

• the predicted number of lead and galvanized steel service lines at 

eligible homes using our model (only using excavation data I had 

obtained as of December 2017);   

• the predicted “hit rate” (considering only eligible households); 

• the number of excavations the City conducted in 2018 as of August 

15;  

• the number of lead and galvanized steel service lines the City 

found in 2018 as of August 15; and  

• the City’s observed “hit rate” for excavations conducted in 2018 as 

of August 15.  

 

                                                            
10 I applied this assumption (81% hydro-excavations, 19% traditional 

excavations) both to the excavations at the 4809 homes where a lead or galvanized 

steel service line will be found, and to the excavations at the remaining 4348 

homes where a non-lead service line will be found. 
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A table showing these values for all nine wards is attached to this Declaration as 

Exhibit E.   

60. The results of my analysis show that, at an aggregate level, the City is 

not conducting excavations at homes that are most likely to have a hazardous (lead 

or galvanized steel) service line.  

61. For example, as of December 2017, there were 20,135 total remaining 

eligible homes at which the City had not yet conducted excavations. Of those 

homes, the model predicted that there were 632211 remaining lead and galvanized 

steel service lines (rounded to the nearest whole number). See Table 1 below. 

62. If the City conducted excavations randomly at the remaining eligible 

homes in 2018, I would have expected its observed hit rate to be 31.4% (6322 

divided by 20,135 = 0.314). However, as of August 15, the City’s observed hit rate 

                                                            
11 This prediction (6322 remaining lead and galvanized steel service lines) was 

the model’s prediction as of the end of 2017, using only 2016 and 2017 data. For 

purposes of the model’s most up-to-date predictions for the total remaining lead 

and galvanized steel service lines at eligible homes in Flint (see Paragraphs 39 to 

41 above), I updated the model to reflect the City’s excavation results through 

August 2018. This affected the overall prediction of the remaining lead and 

galvanized steel service lines in Flint both because (i) the City had uncovered and 

replaced nearly 750 hazardous service lines in 2018 as of August 15, and (ii) the 

City’s additional 3774 excavations conducted in 2018 affected the model’s 

predictions (i.e., the model “learned” from the results of the 2018 excavations). 

Nevertheless, the relative rank ordering of wards by number of expected hazardous 

service lines at eligible homes not yet excavated using the most up-to-date August 

2018 predictions is largely unchanged from the December 2017 predictions.  
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in 2018 was 19.7%.12  

63. Considering Ward 5 is illustrative. Ward 5 is the ward that our model 

predicted to have the largest number of remaining lead and galvanized steel service 

lines as of December 2017, but it is the ward where the City conducted the fewest 

number of excavations in 2018. As of August 15, the City had conducted a total of 

3774 excavations throughout the City in 2018. Although the model predicted that 

there were more than 1100 lead and galvanized steel service lines remaining in 

Ward 5 at the beginning of 2018, the City conducted only 163 excavations in that 

ward (4.5% of the total excavations conducted in 2018). For those 163 excavations, 

the City’s hit rate was 95.7%.  

64. In contrast, based on excavations conducted as of December 2017, our 

model predicted that Ward 4 was the ward with the fewest remaining lead and 

galvanized steel service lines. But the city conducted 702 excavations in Ward 4 

(18.6% of the total excavations conducted in 2018), making it the second most 

visited ward in 2018. For those excavations, the City’s hit rate was 2.4%. 

                                                            
12 Our model’s analysis of the data I received from Plaintiffs shows that the 

City’s 2018 observed hit rate (as of August 15) was 19.7%. This figure differs 

from the 2018 observed hit rate reported by Mr. Wong in his August 3, 2018 

declaration submitted in this case (16.5%). Aug. 3, 2018 Wong Decl. ¶ 10. This 

discrepancy could be due to the cut-off date in August for including excavations. It 

could also have resulted from the issue relating to parcel identifiers described in 

note 5 above.   
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Table 1: Analysis of 2018 Excavations as of August 15 

Ward 

Total number 

of eligible 

homes not yet 

excavated, 

12/31/2017 

Predicted 

number of 

hazardous 

service lines 

among eligible 

homes not yet 

excavated, 

12/31/2017 

Predicted hit 

rate among 

homes not yet 

excavated, 

12/31/2017 

Total 

number of 

homes 

excavated, 

1/1/2018 - 

8/15/2018 

Observed 

number of 

hazardous 

service lines 

identified, 

1/1/18 - 

8/15/18 

Observed 

hit rate, 

1/1/2018 - 

8/15/2018 

5 1454 1163 80% 163 156 95.7% 

4 2433 411 17% 702 17 2.4% 

All 20,135 6322 31.4% 3774 742 19.7% 

 

65. If the City does not prioritize its excavations towards those homes 

where the likelihood of finding a lead or galvanized steel service line is high, it 

will likely complete 18,000 excavations without having located hundreds of lead 

and galvanized steel service lines at eligible homes in Flint. If the City continues 

with its current approach, it will also waste money by conducting thousands of 

excavations at homes served by full copper service lines.  
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I declare under penalty of perjury that the foregoing is true and correct to the best 

of my knowledge and belief. 

 

Dated:  October 1, 2018 

____________________________ 

Eric M. Schwartz, Ph.D. 
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ERIC M. SCHWARTZ 

September 2018 

Ross School of Business 
University of Michigan 
701 Tappan Street 
Office R5472 
Ann Arbor, MI 48109-1234

 

 

Academic employment 

 
Assistant Professor of Marketing, Ross School of Business, University of Michigan, July 2013-present 
Arnold M. and Linda T. Jacob Faculty Fellow, July 2018-present 

 

Education 

 
Ph.D. Marketing, Wharton School, University of Pennsylvania, May 2013 
B.A. Mathematics and Spanish, College of Arts and Sciences, University of Pennsylvania, May 2008 

 

Research interests 

 

Substantive: adaptive marketing experiments, digital advertising, dynamic pricing, customer 
acquisition and lifetime value, media consumption, public policy 
 
Methodological: statistical machine learning, Bayesian data analysis and econometrics, adaptive 
sampling, multi-armed bandit, active learning, reinforcement learning, and dynamic programming 

 

Published or forthcoming papers  

   
Misra, Kanishka, Eric M. Schwartz, Jacob Abernethy* (2018), “Dynamic Online Pricing with 

Limited Information Using Multi-Armed Bandit Experiments,” Marketing Science, forthcoming. 
https://goo.gl/mxJ8Rh. *First two authors listed alphabetically. 

 

Schwartz, Eric M., Eric T. Bradlow, Peter S. Fader (2017), “Customer Acquisition via Display 
Advertising Using Multi-Armed Bandit Experiments,” Marketing Science, 36 (4), 500-522. 
https://goo.gl/Ly7Bdv  
- Winner of the 2017 John D. C. Little Award for best marketing paper in Marketing Science, 
Management Science, and other INFORMS journals 

 

Schwartz, Eric M., Eric T. Bradlow, Peter S. Fader (2014), “Model Selection Using Database 
Characteristics: Developing a Classification Tree for Longitudinal Incidence Data,” Marketing 
Science, 33 (2), 188-205. https://goo.gl/Wsk2yL 

 

Berger, Jonah, and Eric M. Schwartz (2011), “What Drives Immediate and Ongoing Word of 
Mouth?” Journal of Marketing Research, 48 (5), 869-880. https://goo.gl/WBt7te 

 
Working papers  

 

Under review or targeted at peer-reviewed publications 
 

Aribarg, Anocha, Eric M. Schwartz (2018), “Consumer Responses to Native Advertising,” Available 
on SSRN, https://goo.gl/Fx7nhg. 
- Status: Under 2nd round Revision at Journal of Marketing Research *Authors listed 
alphabetically. 

 

ericmsch@umich.edu  
ericmichaelschwartz.com  
ssrn.com/author=1192670  
http://goo.gl/sAEQ8x  
734-936-5042 (office) 
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Schwartz, Eric M., Jacob Abernethy (2018) “Active Learning for Sequential Household-level 
Targeting: An Application to Find Lead Pipes in Water Infrastructure”  
- Status: Preparing to submit to Marketing Science. 

 

Schwartz, Eric M., Kenneth Fairchild, Bryan Orme, Alexander Zaitzeff (2018), “Active Learning for 
Ranking and Selecting Best Arms: Idea Screening with Bandit MaxDiff”  
- Status: Preparing to submit to Journal of Marketing Research 

   

 

Work in progress  

 
Data analysis and/or writing has begun  
 

“Binge Viewing: Ad-Supported Streaming Video” with Puneet Manchanda and Prashant Rajaram 
- Status: Analysis in progress. 
 
“Online Advertising to Generate Leads with Randomized Controlled Experiments : Recruiting for 

the Detroit Police Department,” with Michael Braun and Hye Jin Yoon  
- Status: Data collection in progress.  
 
“Sequential Allocation for Customer Acquisition” with Liangbin Yang and S. Fader (2015) 
https://goo.gl/Z6xOC7. 
- Status: Manuscript completed.  

 

Peer Reviewed Conference Proceedings 

 
Abernethy, Jacob, Alex Chojacki, Arya Farahi, Eric M. Schwartz, Jared Webb* (2018). 

ActiveRemediation: The Search for Lead Pipes in Flint, Michigan. KDD 2018, Proceedings of 
SIGKDD Conference on Knowledge Discovery and Data Mining, London, England, U.K. 
Available on Arxiv http://bit.ly/flint-lead-pipes *Alphabetical order. 
- Winner of Best Student Paper Award, Applied Data Science, KDD 2018 (One of two awards 
out of 500 submissions)  

 
 
Alex Chojnaki, Chengyu Dai, Arya Farahi, Guangsha Shi, Jared Webb, Daniel T. Zhang, 

Abernethy, Jacob, Eric Schwartz* (2017) “A Data Science Approach to Understanding 
Residential Water Contamination in Flint.” KDD 2017, Proceedings of SIGKDD Conference 
on Knowledge Discovery and Data Mining, Halifax, NS, Canada. Available on Arxiv, 
https://goo.gl/EaGfmh.*Students first, then faculty; alphabetical order. 

 

Published conference proceedings 

 
Abernethy, Jacob, Cyrus Anderson, Chengyu Dai, Arya Farahi, Linh Nguyen, Adam Rauh, Eric 

Schwartz, Wenbo Shen, Guangsha Shi, Jonathan Stroud, Xinyu Tan, Jared Webb, Sheng 
Yang* (2016), “Flint Water Crisis: Data-Driven Risk Assessment Via Residential Water 
Testing” in proceedings of Bloomberg Conference Data for Good Exchange, NY, NY. 
https://goo.gl/rBHaIb. *alphabetical order  

 
Abernethy, Jacob, Cyrus Anderson, Alex Chojnacki, Chengyu Dai, John Dryden, Eric M. 

Schwartz, Wenbo Shen, Jonathan Stroud, Laura Wendlandt, Sheng Yang, Daniel Zhang* 
(2016), “Data Science in Service of Performing Arts: Applying Machine Learning to 
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Predicting Audience Preferences,” in proceedings of Bloomberg Conference Data for Good 
Exchange, NY, NY. https://goo.gl/GdM0DV. *alphabetical order  
- In collaboration with University Musical Society, University of Michigan 

 
Fairchild, Kenneth, Bryan Orme, Eric M. Schwartz (2015), “Bandit Adaptive MaxDiff Designs 

for Huge Number of Items,” Proceedings of 2015 Sawtooth Software Conference, 105-117. 
https://goo.gl/5iql87. 

 
Research seminars, invited talks, competitive conferences 

 
Economics of Advertising Workshop, Columbia (July 2018) 
Notre Dame Mendoza Marketing (April 2018) 
UT Dallas Bass FORMS, Presenter (March 2018) 
Emory Goizueta Marketing (March 2018) 
UT Dallas Marketing (February 2018) 
Chicago Booth Marketing (February 2018) 
Michigan, School of Information Seminar (October 2017) 
Carnegie Mellon Tepper (September 2017) 
Erasmus University, Rotterdam School of Management (April 2017) 
UT Dallas Bass FORMS, Discussant (March 2017) 
Hosmer-Hall Seminar, Michigan Ross (January 2017)  
Management Science Workshop, Chile (January 2017) 
Quantitative Marketing and Economics (October 2016) 
Michigan, School of Public Health (September 2016) 
Michigan, Computer Science Engineering Faculty Seminar (September 2016) 
Dartmouth, Tuck Marketing Camp (June 2016) 
Texas A&M Marketing (April 2016) 
Marketing in Israel 15 Conference (December 2015) 
NYU Conference on Big Data and Marketing Analytics (October 2015) 
Hosmer-Hall Seminar, Michigan Ross (March 2015) 
Temple, Fox Global Center for Big Data and Mobile Analytics (November 2014) 
Microsoft Research, Seattle (June 2014) 
Cornell Johnson Marketing (February 2014) 
Electronic Arts, Redwood City (February 2014) 
Google Play, Mountain View (February 2014) 
Stanford GSB Marketing (January 2014) 
London Business School (November 2012) 
INSEAD (November 2012) 
University of Michigan (November 2012) 
UCLA (October 2012) 
NYU (October 2012) 
Carnegie Mellon (October 2012) 
Northwestern (October 2012) 
Yale (October 2012) 
Boston University (October 2012) 
Emory (September 2012) 
University of Pittsburgh (September 2012) 
University of Washington (September 2012) 
Rotterdam School of Management / Erasmus School of Economics (January 2012) 

 Tilburg University (January 2012) 
Marketing in Israel 11 Conference (December 2011) 
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Other talks and conference presentations 

  

LEAD Summer Institute, Michigan Ross (July 2018) 
Marketing Science Conference, Philadelphia (June 2018) 

- Machine Learning in Marketing, Special Track, Co-organizer 
American Marketing Association Conference, New Orleans (February 2018) 
Marketing Science Conference, Los Angeles (June 2017)  

- Machine Learning in Marketing, Special Track, Co-organizer 
Customer Analytics in Retail Marketing, Los Angeles (May 2017) 
Michigan Student Symposium for Interdisciplinary Statistical Sciences, Keynote (March 2017) 

 Quicken Loans Data Science, MIDAS Collaboration (January 2017) 
Water @ Michigan Conference (January 2017) 
Artificial Intelligence Lab, Michigan (October 2016) 
Customer Analytics in Retail Marketing, New York (October 2016) 
SPARK Machine Learning Workshop, Ann Arbor (October 2016) 
Kickstart Computer Science, Ann Arbor (September 2016) 
Bloomberg Data for Good Exchange (Presenter and Panelist), New York (September 2016) 
Big Data Summer Institute Symposium, Ann Arbor (July 2016) 
SPARK Workshop for Startups, Ann Arbor (March 2016) 
INFORMS Annual Meeting, Philadelphia (November 2015), session co-organizer 
Marketing Science Conference, Baltimore (June 2015) 
Sawtooth Software Conference, Orlando (March 2015) 
American Marketing Association Conference, San Antonio (February 2015)  
Joint Statistical Meetings, Montreal (August 2013), Session Organizer 
ART Forum, Chicago (June 2013) 
Capital One, Webinar (June 2013) 
Marketing Science Conference, Boston (June 2012) 
Wharton Customer Analytics Initiative, Webinar with Elea Feit (September 2012)  
Marketing Science Conference, Houston (June 2011) 
Marketing Science Conference, Cologne (June 2010) 
Jay H. Baker Retailing Initiative Board Meeting (November 2009)  
Marketing Science Conference, Ann Arbor (June 2009) 

 

Awards, grants, and honors 

 
Marketing Science Institute Young Scholar (2019) 
Arnold M. and Linda T. Jacob Faculty Award for Junior Faculty Research, Michigan Ross (2018-19) 
KDD Best Student Paper Award, Applied Data Science (2018) 
John D. C. Little Award for Best Marketing Paper (2017) 
MCubed Grant ($60,000) with Laura Balzano and Al Hero (2016) 
20 in Their 20s, Crain’s Business Detroit (2016) 
Top 25 Reviewer for Marketing Science (2015) 
Golden Apple Teaching Award Nominee, University of Michigan (2014, 2015) 
MSI Clayton Dissertation Proposal Competition, Honorable Mention (2012)  
ISMS Doctoral Dissertation Proposal Competition, Sheth Winner (2012) 
AMA-Sheth Foundation Doctoral Consortium, Fellow (2011) 
Workshop on Quantitative Marketing and Structural Econometrics, Fellow (2010) 
Russell Ackoff Award for Doctoral Student Research, Recipient (2009-12) 
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Jay H. Baker Retailing Initiative Research Grant, Recipient (2009) 
Lauder CIBER Grant, Recipient (2009) 
University of Pennsylvania Class of 1939 Fellowship, Recipient (2008-2009) 
INFORMS Marketing Science Doctoral Consortium, Fellow (2009,2010,2011,2012) 
Wharton Doctoral Fellowship, Recipient (2008-12) 
Summa Cum Laude, Dean’s List, University of Pennsylvania, GPA: 3.9/4.0 (2004-08) 
Benjamin Franklin Scholar, University of Pennsylvania (2004-08) 

 
Media coverage 

 
Data Science for Flint Water Crisis 

 
   

December 2016 – Wrote report for City of Flint Mayor’s Office, reported/cited in  
Detroit News, MLive, WNEM (TV), Wikipedia 
  
September-October 2016 - Wrote article in The Conversation (with Jacob Abernethy), 8 
September 2016 reported/reposted in Scientific American, Business Insider, Associated Press, 
USA Today, Government & Technology, Detroit Free Press (1, 2, 3, and 4) 
Huron Daily Tribune, RawStory, Ross Thought in Action, 
Civics Analytics on Medium,  

 
May 2016 - Announcement for Google funding research and app development, joint with U-M 
Flint and Engineering, 3 May 2016 reported in Chicago Tribune, Tech Crunch, Gizmodo, The 
Hill, Detroit Free Press, MLive, Michigan Radio, The University Record, Michigan Engineering 
News 

 
Quoted in “Is Detroit ready for more soccer?“ Detroit Free Press, 5 July 2016. 
 
Profile in 20 in their 20s, Crain’s Business Detroit, 23 May 2016    

   
Profile in Dividend, Michigan Ross, Fall 2015 
 
Model Selection Using Database Characteristics: Developing a Classification Tree for Longitudinal 
Incidence Data  

– Featured in Ross Thought in Action (November 2013)  
– Featured in Knowledge@Wharton (August 2012)  
 

What Drives Immediate and Ongoing Word of Mouth 

– Featured in book Contagious (2013) 
– Featured in Insights from MSI (Fall 2010), formerly MSI Working Paper [10-105] 
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http://www.scientificamerican.com/article/the-conversation-understanding-flint-s-remaining-water-crisis-risks/
http://www.businessinsider.com/cost-of-flint-water-crisis-big-data-algorithms-2016-9
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http://www.govtech.com/data/How-Big-Data-and-Algorithms-are-Slashing-the-Cost-of-Fixing-Flints-Water-Crisis.html
http://www.freep.com/story/news/local/michigan/flint-water-crisis/2016/09/08/study-flint-lead-contamination-goes-beyond-service-pipes/89994636/
http://www.freep.com/story/news/local/michigan/flint-water-crisis/2016/09/08/deq-target-flint-faucets/89998022/
http://www.freep.com/story/news/local/michigan/flint-water-crisis/2016/09/11/flint-water-improves-details-scarce-how-crisis-can-end/89545656/
http://www.freep.com/story/news/local/michigan/flint-water-crisis/2016/09/28/more-than-half-flint-homes-could-have-lead-lines-report-shows/91225284/
http://www.michigansthumb.com/news/article/How-big-data-and-algorithms-are-slashing-the-cost-9209564.php
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http://www.chicagotribune.com/bluesky/originals/ct-google-flint-water-data-bsi-20160503-story.html
https://techcrunch.com/2016/05/03/google-org-announces-250000-in-grants-for-the-flint-michigan-water-crisis/
file:///C:/Users/ericmsch/Dropbox/CV/gizmodo.com/google-is-helping-flint-prioritize-which-lead-pipes-nee-1774517926
http://thehill.com/policy/technology/278492-google-gives-250k-to-flint-crisis
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ABSTRACT

We detail our ongoing work in Flint, Michigan to detect pipes made
of lead and other hazardous metals. After elevated levels of lead
were detected in residents’ drinking water, followed by an increase
in blood lead levels in area children, the state and federal govern-
ments directed over $125 million to replace water service lines, the
pipes connecting each home to the water system. In the absence of
accurate records, and with the high cost of determining buried pipe
materials, we put forth a number of predictive and procedural tools
to aid in the search and removal of lead infrastructure. Alongside
these statistical and machine learning approaches, we describe our
interactions with government officials in recommending homes
for both inspection and replacement, with a focus on the statisti-
cal model that adapts to incoming information. Finally, in light of
discussions about increased spending on infrastructure develop-
ment by the federal government, we explore how our approach
generalizes beyond Flint to other municipalities nationwide.

CCS CONCEPTS

• Information systems→Data analytics; •Machine learning

→ Applied computing;

KEYWORDS

Water Infrastructure; Flint Water Crisis; Risk Assessment; Machine
Learning; Active Learning; Public Policy
ACM Reference Format:

Jacob Abernethy, Alex Chojnacki, Arya Farahi, Eric Schwartz, and Jared
Webb. 2018. ActiveRemediation: The Search for Lead Pipes in Flint, Michigan.
In KDD ’18: The 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, August 19–23, 2018, London, United Kingdom.ACM,
New York, NY, USA, Article 4, 10 pages. https://doi.org/10.1145/3219819.
3219896

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3219896

1 INTRODUCTION

The story of the Flint Water Crisis is long and has many facets,
involving government failures, public health challenges, and social
and economic justice. As Flint struggled financially after the 2008
housing crisis, the state of Michigan installed emergency managers
to implement several cost saving measures. One of these actions
was to switch Flint’s drinking water source from the Detroit system
to the local Flint river in April 2014. The new water had different
chemical characteristics which were overlooked by water officials.
Of course many water systems have lead pipes, but these pipes are
typically coated with layers of deposits, and the water is treated ap-
propriately in order to prevent corrosion and the leaching of heavy
metals. City officials failed to follow such necessary procedures, the
pipes began to corrode, Flint’s drinking water started to give off
a different color and smell [11], and Flint residents were exposed
to elevated levels of lead for nearly two years before the problems
received proper attention. In August 2015 environmental engineers
raised alarm bells about contaminated water1 [21], not long after a
pediatrician observed a jump in the number of Flint children with
high blood lead levels2[14], and by January 2016 the Flint Water
Crisis was international news.

As attention to the problem was growing, government officials
at all levels got involved in managing the damage and pushing
recovery efforts. In looking for the primary source of lead in Flint’s
water distribution, attention turned to Flint’s water service lines, the
pipes that connect homes to the city water system. These service
lines are hypothesized to be the prime contributor to lead water
contamination across the United States [20]. Service lines, therefore,
became a top priority for the City of Flint in February 2016. The
Michigan state legislature eventually appropriated $27M towards
the expensive process of replacing these lines at large scale; later the
U.S. Congress allocated another nearly $100M towards the recovery
effort. The group directed to execute the replacement program was
called Flint Fast Action and Sustainability program (FAST Start),
and their task was to remove as many hazardous service lines as
possible up to funding levels.

The primary obstacle that the FAST Start team has faced through-
out their work is uncertainty about the locations of lead or galva-
nized pipes. Although the U.S. Environmental Protection Agency
requires cities to maintain an active inventory of lead service line
locations, Flint failed to do so. Service line materials are in theory

1Prior work by the authors involved estimation of water lead contamination [1].
2For further analysis of blood lead levels, see [19]

ar
X

iv
:1

80
6.

10
69

2v
2 

 [
cs

.L
G

] 
 1

7 
A

ug
 2

01
8

Case 2:16-cv-10277-DML-SDD   ECF No. 203-4   filed 10/01/18    PageID.10281    Page 37 of
 56

https://doi.org/10.1145/3219819.3219896
https://doi.org/10.1145/3219819.3219896
https://doi.org/10.1145/3219819.3219896


documented during original construction or renovation, but in prac-
tice these records are often incomplete or lost. Most importantly,
because the information is buried underground, it is costly to de-
termine the material composition of even a single pipe. Digging
up an entire water service line pipe under a resident’s yard costs
thousands of dollars. City officials were uncertain about the total
number of hazardous service lines in the city, with estimates rang-
ing from a few thousand to tens of thousands. Uncertainty about
the service line material for individual homes has dramatic cost
implications, as construction crews will end up excavating pipes
that do not need to be replaced. These questions—how many pipes
need to be replaced and which home’s pipes need remediation—are
at the core of the work in this paper.

Beginning in 2016, our team began collaborating directly with
Flint city officials, analyzing the available data to provide statis-
tical and algorithmic support to guide decision making and data
collection, focusing primarily on the work of the FAST Start pipe re-
placement efforts. By assembling a rich suite of datasets, including
thousands of water samples, information on pipe materials, and city
records, we have been able to accurately estimate the locations of
homes needing service line replacement, as well as those with safe
pipes, in order to target recovery resources more effectively. Specif-
ically, we have combined statistical models with active learning
methods that sequentially seek out homes with hazardous water
infrastructure. Along the way we have developed web-based and
mobile applications for coordination among government offices,
contractors, and residents. Over time, the number of homes’ service
lines inspected and replaced has increased, as seen in Figure 1.

In the present paper, we detail the challenges faced by decision-
makers in Flint, and describe our nearly two years of work to sup-
port their efforts. With the understanding that many municipalities
across the US and the world will need to undertake similar steps, we
propose a generic framework which we call ActiveRemediation,
that lays out a data driven approach to efficiently replace hazardous
water infrastructure at large scale. We describe our implementa-
tion of ActiveRemediation in Flint, and describe the empirical
performance and potential for cost savings. To our knowledge, this
is the first attempt to predict the pipe materials house-by-house
throughout a water system using incomplete data and also the first
to propose a statistical method for adaptively selecting homes for
inspection to replace hazardous materials in the most cost effec-
tive manner. This work illustrates a holistic, data-driven approach
which can be replicated in other cities, thereby enhancing water
infrastructure renovation effort with data-driven approaches.

Key Results. Among our main results, we emphasize that our
predictive model is empirically accurate for estimating whether
a Flint home’s pipes are safe/unsafe, with an AUROC score of
nearly 0.92, and a true positive rate of 97%. Since our approach
involves a sequential protocol that manages the selection of homes
for inspection and replacement based on our statistical model, we
are also able to compare the model’s total remediation cost to that
of the existing protocol of officials. ActiveRemediation reduces
the costly error rate (fraction of unnecessary replacements) to 2%,
lowering the effective cost of each replacement by 10% and yielding
about $10M in potential savings.

Methodology. Let us now give a birds-eye view of our method-
ological template. ActiveRemediation manages the inspection

Figure 1: Progress of the replacement program. By March of 2016, only 36

homes had undergone replacement (top left); by December 2016, a total of 762

homes either been inspected or fully replaced (top right); as of September of

2017, this had grown to a total of 6,506 homes (bottom). Homes labeled green

were selected for replacement but were deemed safe after copper lines were

discovered by contractors.

and replacement of water service lines across a city, with the long-
term objective of replacing the largest number of hazardous pipes
in a city under a limited budget. The formal in-depth exposition of
this framework will be given in Section 3.

Algorithm 1 ActiveRemediation
1: Input: parcel data, available labeled homes
2: for decision period t = 1, . . . ,T : do
3: Predict hazardous/safe material via StatisticalModel
4: if Budget remaining then querying StatisticalModel,
5: Generate inspections via InspectionDecisionRule
6: Generate replacements via ReplacementDecisionRule
7: Input observed data to StatisticalModel

Since the process of identifying and replacing these lines around
a city is naturally sequential, the decisions and observations made
earlier in the process ought to guide decisions made at future stages.
With this in mind, our framework continuously maintains three
subroutines that are updated as data arrives. Following the outline
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Date Description
2016 Feb. Attributes for all 55k parcels provided by the City of Flint
2016 Feb. SL records digitized by M. Kaufman at UM Flint GIS
2016 March Pilot Program, 36 homes visited, 33 SLs replaced
2016 June Michigan DEQ provides SL private-portion inspections dataset
2016 Sept. Phase One begins, contractors use our mobile data collection app
2016 Oct. Fast Start begins hydrovac inspections to verify some home SLs
2016 Oct. Congress appropriated $100M in WIIN Act.
2016 Dec. Fast Start & authors release report: 20-30k replacements needed
2017 March Federal court orders 18k homes to receive SL replacement by 2019
2017 Sept. Fast Start replaced 4,419 hazardous service lines so far, identifying

composition of a total of 6,506 homes.

Table 1: Timeline of service line data availability

in Algorithm 1, the first of these is a StatisticalModel, that gen-
erates probabilistic estimates of the material type of both the public
and private portion of each home’s service lines. The input of this
model is property data, water test results, historical records, and
observed service line materials. The second subroutine is Inspec-
tionDecisionRule, the decision procedure that that generates a
(randomized) set of homes for inspection. This should be viewed as
an active learning protocol, with the goal of “focused exploration.”
The third routine, ReplacementDecisionRule, makes decisions as
to which homes should receive line replacements; for reasons we
discuss below, we typically assume that ReplacementDecision-
Rule is a greedy algorithm.

Roadmap. This paper is structured as follows. We begin in Sec-
tion 2 by laying out the datasets available to us, with the story given
chronologically to describe the shifting narrative as information
emerged. We then explain the ActiveRemediation framework in
greater detail in Section 3, and sketch out the statistical model mixed
with the prediction, inspection, and decision-making framework. In
Section 4 we employ ActiveRemediation on the data available in
Flint, to show the empirical performance of our proposed methods
in an actual environment, as well as in a simulated environment
leveraged from Flint’s data. We finish by detailing the potential for
significant cost savings using our approach.

2 EMERGING DATA STORY OF FLINT’S PIPES

We now describe the various sources of data and the timeline during
which these became available. This is summarized in Table 1 and
more precise chronology is given throughout this section. More
details will be available in the full version of this work.

2.1 Pre-crisis Information – Through mid-2015

In this section, we explain the relevant datasets that had been
collected and maintained prior to the water crisis. This information,
as we discovered later, was limited in both depth and quality.

2.1.1 Parcel Data. The city of Flint generously provided us with
a dataset describing each of the 55,893 parcels in the city. These
data include a unique identifier for each parcel and a set of columns
describing City-recorded attributes of each home, such as the prop-
erty owner, address, value, and building characteristics. A complete
list of the parcel features is discussed in our previous work [7]. The
distributions of the age of homes and their estimated values (Figure
2) tell an important story about the kinds of properties in Flint.

Figure 2: From city parcel data, distribution of home construction by year

(left) and building value by dollar (right). The majority of the housing stock

in Flint was built when it was a major automobile manufacturing hub, before

current regulations about lead infrastructure were in place. Flint has experi-

enced significant economic decline in recent years, leading to depressed real

estate prices.

2.1.2 City Records of Service Lines. Initially, Flint struggled to
produce any record of the materials in the city’s service lines. Even-
tually, officials discovered a set of over 100,000 index cards in the
basement of the water department3 (see top of Figure 3). As part of
a pro bono collaboration, the handwritten records have been digi-
tized by Captricity.com and provided to the City of Flint.4 Around
the same time, a set of hand-annotated maps were discovered that
contained markings for each parcel that specified a record of each
home’s service line (bottom of Figure 3). The map data was digi-
tized by a group of students from the GIS Center at the University
of Michigan-Flint lead by the director Prof. Martin Kaufman [10].
Many of the entries in the city’s records list two materials for a
given record, such as “Copper/Lead,” but they do not specify the
precise meaning of the multiple labels. However, our latest evi-
dence suggests that, at least in the typical case, the double records
were intended to specify that the second label (“Lead” in “Cop-
per/Lead”) indicates the public service line material (water main
to curb stop), and the first label describes the private service line
(curb stop to home), while an entry that is simply given as “Copper”
may refer to both sections or only one. Lastly, there are a number
of entries in the records that say “Copper/?” for the service line
material, indicating missing information for the service line on the
original handwritten records. Many other records are simply blank,
recorded as “Unknown/Other.”

2.2 Peak of Crisis & Replacement Pilot

In the wake of the crisis the State of Michigan began to discuss
plans for lead abatement in Flint. It had become clear to lawmakers
in Michigan that they would need to invest in a large-scale removal
of lead pipes from the city. To begin, FAST Start initiated a pilot
phase, with the goal of replacing the service lines of a small set
of residences. Flint’s Mayor and the FAST Start team awarded a
contract to Rowe Engineering to replace pipes at 36 homes around
the city. They selected these homes based on risk factors including
the presence of high water lead levels, pregnant women, and chil-
dren younger than 6 years old. Nearly all of the homes, 33 of 36,
had some hazardous material (lead or galvanized) in one or both

3http://www.npr.org/2016/02/01/465150617/flint-begins-the-long-process-of-fixing-
its-water-problem
4We would like to thank Captricity, especially their machine learning team, Michael
Zamora,Michael Zamora, David Shewfelt, and Kayla Pak formaking the data accessible.
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Figure 3: City officials located a set of over 100,000 handwritten index cards

(top) with recorded work information dating back over 100 years, and anno-

tated maps with data on home SLs (bottom). Red circles added to emphasize

markings denoting material types.

portions of the service lines, while only 3 were safe. Therefore, the
number of homes with physical verifications of both service line
portions through September 2016 was only 36 out of over 55,000
homes. A map showing the progress of replacement in Flint can be
found in Figure 1.

Verified SL Materials (Public-Private)
City Records C-C C-G L-C L-G L-L Other All
Copper 1115 10 258 84 13 9 1489
Cop./Lead 109 20 816 91 15 25 1076
Galv./Other 113 18 565 1286 81 31 2094
Lead 24 2 29 14 12 3 84
Unknown 152 18 535 1169 118 42 2034

Table 2: Discrepancies between city records of service lines, and materials

verified via inspection or replacement.

Meanwhile, in order to gather reliable information about private
part of the service lines, the Michigan Department of Environmen-
tal Quality (DEQ) directed a team of officials and volunteers from
the local plumbers union to personally inspect a sample of the
homes of Flint residents. The public portion of the service line runs
entirely under the street and sidewalk, while the private portion
runs directly into the basement of the residents’ home. Thus, the
private portion can be inspected without any digging. The DEQ
inspectors submitted their inspection results. As of June of 2016,

the department had collected a data from over 3,000 home inspec-
tions. We consider this data to be reliable, since it was curated by
DEQ officials who provided it to our team. This dataset allowed
us to partially evaluate the reliability of the city records discussed
in Section 2.1. It is important to note that the comparison is not
“apples to apples,” as the DEQ inspections were private-portion only
whereas the labels in the city records did not specify which portion
of the line was indicated. We report the confusion matrix between
DEQ inspection data and city records in Table 2. The comparison
suggests that, while the records were correlated with ground truth,
the discrepancies were substantial.

2.3 Large-Scale Replacement, Mid-2016 to Now

Our group at the University of Michigan began engaging with the
FAST Start team in the summer of 2016. One of the critical decisions
the team needed to make was the selection of homes that would
be recommended for service line replacement. According to the
FAST Start payment agreements, contractors receive roughly half
($2500) the cost of a full replacement ($5,000) for excavated homes
with copper on both public and private portions, due to removing
concrete, refilling concrete, machine use, and labor. The choice
of homes was deemed critically important, as the excavation of
a home’s service line that discovers a “safe” (e.g., copper) pipe is
effectively wasted money, aside from the benefit of learning of the
pipe’s true material. Our work has focused on minimizing such
unnecessary excavations, using the tools we describe below.

2.3.1 Early Replacement Activity and Findings (Fall 2016). By
summer 2016, FAST Start had selected a set of 200 homes for re-
placement, scheduled to begin August, 31st. This selection is called
Phase One. Like the Pilot Phase, their criteria included the presence
of high water lead levels, pregnant women, children under six years
old, as well as veterans and the elderly. In the present section, we
describe how we helped facilitate data collection for Phase One,
and how the results forced us to rethink our objectives and adjust
our models.

By late September 2016, the early data from the service line re-
placement program began to arrive, and the rate of lead and other
hazardous pipes discovered was alarming; 96% (165/171) of excava-
tions revealed lead in the public portion of the line. These findings
differed significantly from the city records, which had previously
indicated that among those homes only 40% would contain lead in
either portion. As data from Phase One arrived it was becomingly
increasingly clear that likely over 20,000 homes have unsafe pipes
serving their water – dramatically higher than earlier estimates.
Critically, as these discoveries were being made, a debate was tak-
ing place in the U.S. Congress discussing the possibility of more
than $100M in funding for the Flint’s recovery efforts.

With the debate in the Congress ongoing, our team decided to put
out an informal report to raise the alarm about the extent of the lead
issue, and several news outlets reported on our findings [e.g. 5, 8].
This effort lead to a formal report in November of 2016 that provided
a more precise estimate of the number of lead replacements likely
to be needed [18], which was provided to the city’s mayor, the
DEQ, and the U.S. Environmental Protection Agency. Our report,
based on comparing the city records and the data gathered from
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contractors, suggested that the number of needed replacements
would be between 20,600 and 37,100. The large range accounts for
the inherent uncertainty in data collection and model assumptions,
as well as the question of occupancy. One challenge that is specific
to Flint is the fact that around one third of the city’s homes are not
occupied, a rate that is the highest in the country5.

2.3.2 Contractor Data Collection Application. With thousands
of homes scheduled to have their water service lines excavated by
multiple contractors, the collection and management of the data
generated by this large-scale effort would prove to be a logistical
challenge. While initially there was a plan in place to collect data
via paper forms that would later get transferred to a spreadsheet,
it was increasingly clear that digitally recording information, and
storing it centrally, would be a more effective strategy and less
prone to error.

Figure 4: Mobile and web app, developed by the authors, to gather replace-

ment data from contractors on-site.

Our team volunteered to facilitate the data collection efforts. In
the fall of 2016, we developed a web and mobile application with
various access levels. The latest version of this app is a custom-built
web application using Python and the web framework using Flask.
The users, on-site contractors as well as DEQ and Fast Start offi-
cials, are asked to select homes and to fill in essential information
about service line work accomplished at each site. This informa-
tion includes the excavated pipe materials, lengths, dates, and data
on the home’s residents. The output of the form appears in real-
time in a live database with mapping capabilities. We adopted a
tiered permissions structure with password-protected information
to maintain the privacy of the data. The app continues to be used as
of this writing for tracking progress for the public and for paying
contractors for completed work.

2.3.3 Hydrovac Digging: Inspection without Replacement. The
foremost challenge of a large-scale service line replacement pro-
gram is the uncertainty about which homes possess safe service
lines and which homes have lines made of hazardous materials. As
of the summer of 2016, the only concrete verified data on pipe mate-
rials across the city consisted of the 36 data points provided by the
Rowe engineering. By the end of Phase One, this number increased
to about 250 homes. At this point, the excavation of pipes at a single
home would cost anywhere from $2,500-5,000, a prohibitively high
5https://www.reuters.com/article/us-flint-vacancies-idUSKCN0VK08L

cost for data collection. At the same time, the available replacement
data consisted of cherry-picked homes: houses were selected for
line replacement if they were presumed to have an overwhelming
likelihood of lead. These addresses and were highly concentrated
in only three neighborhoods (see Figure 1) and provided nothing
close to a representative sample of the broader city. We therefore
realized, and emphasized to members of FAST Start, that the effort
required a cheaper, quicker, and more statistically sound method to
gather data.

Figure 5: Using a hydrovac truck for inspection, requires a large truck and

crew (left) and exposes the pipe material underground (right).

After a lengthy discussion with water infrastructure experts and
contractors, a new alternative emerged: hydrovac inspections. A
hydro-vacuum truck, or simply a hydrovac (see Figure 5), has two
main components: a high-pressure jet of water used to loosen soil
and a powerful vacuum hose that sucks the loosened material into a
holding tank. The hydrovac technique allows workers to dig a small
hole quickly and then inspect whatever is observed underground.
It is ideal for determining service line materials, as it can dig at
the location of the home’s curb box (connects the home’s service
line at the property line to the water main), and observe the pipe
materials for both the public and private portions of the service line.
The cost can be as low as $250 per inspection and often does not
require prior approval from residents, as the digging site is mostly
confined to city property. One limitation is that the hydrovac can
only dig through the soil, and not through driveway or sidewalk
pavement. This limitation led to unsuccessful excavations 20%-25%
of the time, according to the hydrovac engineers.

The selection of homes for hydrovac inspection was one of the
primary contributions of our team to FAST Start’s efforts, and we
were given wide discretion for “sampling” homes. This reflects the
political and logistical challenges of service line replacement, as
full excavation of service lines required a much longer process
with oversight by the city council. We would emphasize that, in
the following section where we describe our sequential decision
protocols, our primary focus was on the model and inspection
subroutines, and we assume the replacements are made using a
simple greedy strategy.

3 PREDICTION & DECISION FRAMEWORK

In this section, we formally define the sequential decision-making
problem for a city, in our case the city of Flint, seeking to remove
all of the lead service lines from its homes under the following
conditions: (i) for almost all homes, the service line materials of
homes are unknown; (ii) there is a method of inspection to collect
information; (iii) it is costly to excavate service lines that do not
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need to be replaced; and (iv) there is a fixed budget for replacement
and inspection.

There are N total homes in the city, and it is unknown which
homes need new service lines. We let the unknown label for home i
beyi ∈ {0, 1}, taking on the value 1 if the home needs a replacement
and 0 otherwise. Note that a home needs replacement if either the
public or private portion of the service line is hazardous. We also
have information about each home, denoted by a vector xi , with
m features, that describe it (see Section 2). We want to learn the
label yi given xi , for each i = 1, . . . ,N . We divide the procedure
to find out these labels into two steps: first, a statistical model
for prediction (StatisticalModel); and second, an algorithm that
decides which homes to observe next (InspectionDecisionRule).

There is another decision rule, ReplacementDecisionRule, that
determines which pipes to replace next. ReplacementDecision-
Rule is a greedy algorithm. That is this algorithm recommends
that the replacement crew should go to the homes with the highest
probabilities of having hazardous pipes. Given that, our Inspec-
tionDecisionRule is focused on learning, and ReplacementDeci-
sionRule uses that learning to reduce costs.

3.1 StatisticalModel

In this section, we describe StatisticalModel, which assign a
probability that a service line contains hazardous materials. Statis-
ticalModel is a novel combination of predictive modeling using
machine learning and Bayesian data analysis. First, a machine learn-
ing prediction model gives a prediction for the public and private
portion of each home’s service line using known features. These
predictions then become the parameters to prior distributions in a
hierarchical Bayesian model designed to correct some of the limita-
tions to the machine learning model.

3.1.1 Machine Learning Layer. The machine learning layer of
StatisticalModel outputs a probability of having a hazardous
service line material for each home for which the material is un-
known. Specifically, this layer gives a prediction, ŷi,k = fθ (Xi,k ),
the probability that service line portion k for home i is hazardous,
and Xi,k is a vector of features, described in Section 2.1. After ex-
amining several models empirically (see Section 4.1) we chose the
machine learning layer, fθ (), to be XGBoost, a boosted ensemble of
classification trees [6].

3.1.2 Hierarchical Bayesian Spatial Model Layer. One limitation
of classification algorithms is how they handle unobserved vari-
ables, which may be correlated with the outcome. We address this
limitation with a hierarchical Bayesian spatial model. This accounts
for unobserved heterogeneity related to geographic location and
similiarity of homes, which is used in hierarchical spatial models
with conditional autoregressive structure [12, 13, 15, 16]. Empiri-
cally, each geographic region across the city (e.g., voting precincts)
has a different number of observed service lines. While a city-level
(pooled) model ignores precinct differences and a separate (un-
pooled) model for each precinct is limited by small sample sizes or
even no observations, our full hierarchical (partially pooled) model
strikes a balance with shrinkage. Precincts with little information
will have their parameters pulled towards the city-wide distribution.
Details of the Bayesian model, and how these are combined with

Table 3: Summary of notation

Notation Explanation
X observable feature space for each parcel/home

xi ,yi observable features for home i , label for home i
ht /rt indicates “home i inspected/replaced at t?”
yht /yrt indicates “learned i’s’ label via inspect./replace?”
Qit indicates “learned i’s label at t?”
qit indicates “already know i’s label at t?”

ch ,Cr+,Cr− cost of inspect., successful SLR, & failed SLR
Ut ,Lt set of labeled/unlabeled data at t

the machine learning layer, are explained further in the full version
of the paper.

3.2 InspectionDecisionRule

Now we describe InspectionDecisionRule, which utilizes active
learning [2, 3, 17] to efficiently allocate scarce resources to find and
replace hazardous service lines. In general, a decision-maker may
choose any active learning algorithm for inspection. In this work,
we implement a version of Importance Weighted Active Learning
(IWAL).

3.2.1 Active Learning Setup: Inspection and Replacement. We
begin by describing the problem of efficiently locating and replacing
hazardous pipes in a pool-based active learning framework (see
Algorithm 2). Consider a budget of B total queries and a pool P =
{x1, . . . ,xn } of unlabeled homes. Then at each time period t the
algorithm will produce a probability vector ϕt = (ϕ1,t , . . . ,ϕn,t )
that gives the probability that any home i is chosen at t .

Contractors can determine thematerial of a service line via either
hydrovac inspection or service line replacement. When home i is
chosen for hydrovac inspection at time t , we denote ht = i . When
the service line for home i is replaced at time t , we denote rt = i .
Once inspected or replaced, yi is known for all subsequent rounds
t , t + 1, . . . and pi,k becomes 1 or 0, and we define qi,t = 1 if home
i has been observed through round t . nht and nrt are the number
of hydrovac and replacement visits, respectively. The number of
successful replacements is denoted as nr+t (true positives) and the
number of unnecessary replacements as nr−t (false positives).

We initially set U0 = P, and let Ut =
{
xi |qi,t = 0

}
be the set

of homes whose service line material is unknown at time t , and
Lt be the set of homes with known service line materials. Finally,
the budget also allows for a fixed number of inspections d for each
period. The problem is how to select these d homes with unknown
labels at each period t to maximize information gained.

3.2.2 Simple Active Learning Heuristics: Uniform and Greedy. We
first propose several benchmark strategies for selecting homes for
inspection. This family of algorithms randomly alternate between
random exploration of the unobserved data and greedy inspection of
the highest-predicted hazardous homes. As we see in Table 4, these
decision rules differ in the costs they incur.

• HVI uniform (egreedy(1.0)): Select homes uniformly at ran-
dom from the pool of those with unknown service lines.
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Algorithm 2 ActiveRemediation for MultiEpochReplacement
sequentially selects homes for both inspection and for replacement
each epoch, incorporating ideas from both active learning and
multi-armed bandits.
1: Input: parameters B, N , T
2: Input: initial observed data
3: for t = 1, ..., T : do
4: Update: p̂t (θ ) ← StatisticalModel pt (θ, Lt−1)
5: Inspect: ht ← InspectionDecisionRule ϕh(θ )
6: Observe labels: yh

t
7: Update: p̂t (θ ) ← StatisticalModel pt (θ, {Lt−1, yh

t })
8: Replace: rt ← ReplacementDecisionRule ϕr(θ )
9: Observe labels: yr

t
10: Update:Ut ← {Ut } \ {ht , rt }, Lt ← {Lt } ∪ {ht , rt }
11: TotalCostst ← TotalCostst−1 + (ch + 1r+(cr+) + 1

r−
(cr−))

12: if TotalCostst ≤ B check budget then continue
13: else stop
14: HitRaterT ← nr+

T /(n
r+
T + n

r−
T )

15: EffectiveCostT = TotalCostsT /nr+
T

• HVI greedy (egreedy(0.0)) Select the homes most likely to
have hazardous service lines, based on current model esti-
mates.
• HVI ε-greedy (egreedy(ε)): For a 1− ε fraction of the inspec-
tions, select greedily, that is select homes for HVI based on
the highest predicted likelihood of danger. For the remaining
ε fraction, select homes uniformly at random for HVI. We
experiment with values ε = {0.1, 0.3, 0.5}. Also, we note that
HVI uniform andHVI greedy are special cases, with ε set
to 1.0 and 0.0, respectively.

3.2.3 Importance Weighted Active Learning. We propose an al-
gorithm that takes in the current beliefs about whether each home
has hazardous pipe material, and outputs a decision of which homes
should be inspected next period. This proposal is a variant of the
Importance Weighted Active Learning (IWAL) algorithm [4]. The
key idea behind IWAL is to sample unlabelled data from a biased
distribution, with more weighted placed on examples with greater
uncertainty, and then after obtaining the desired labels to incor-
porate the new date on the next iteration of model training. Our
implementation of this approach takes the part of InspectionDe-
cisionRule which is core to Algorithm 2. A full explanation of our
IWAL implementation will be available in the full version of the
paper.

3.2.4 Analyzing Costs. There are two categories of costs in-
curred in Algorithm 2: hydrovac inspections and replacement visits.
Hydrovac inspections always cost the same amount and are de-
noted ch. Service line replacement costs, however, depend on what
is actually in the ground. If contractors excavate a service line that
does not need be replaced, we still incur a cost cr− for labor and
equipment, even though no replacement occurred. On the other
hand, if contractors uncover a line that needs to be replaced then
the direct cost of replacement is cr+.

But effective cost per successful replacement is greater than its
direct cost, and we define formally it as TotalCosts/nr+, where

TotalCosts = chnh + cr+nr+ + cr−nr−

Homes visited by rule
Hydrovac Inspection Replacement Visit (Cost) Uniform None 10%
Finds Safety → not needed ($250) 230 0 23
Finds Danger → replaces Danger ($5,250) 770 0 77
None → finds Safety ($2,500) 0 230 207
None → replaces Danger ($5,000) 0 770 693

Effective Cost per Successful Replacement: $5,325 $5,747 $5,705
Table 4: Average effective cost per successful replacement varies by simple

InspectionDecisionRule, shown by 1,000 home visits.

(See Algorithm 2). In Flint, hydrovac inspection costs are sum-
marized in Table 4. We note that the effective cost of a successful
replacement is driven by two factors: the model accuracy (HitRater)
and the ratio of their costs, cr−/ch. Since unnecessary replacement
visits can be avoided by prior inspection with a hydrovac, these
two metrics, which naturally vary by city, will be critical guides to
applying this approach to other cities.

4 AN EMPIRICAL ANALYSIS IN FLINT

In our empirical analysis, we use the data of the confirmed ser-
vice line material from the 6,505 homes identified and replaced
by Flint FAST Start, as of September 30, 2017 collected via our
data collection app. This data is combined with our supplemen-
tary datasets describing homes (Section 2) and we train a suite of
classification models to predict the presence of hazardous service
line materials for a given home, and the predictive power of each
model is measured on hold-out sets of homes (Section 4.1). After
selecting a strong empirical model, we utilize the model predictions
in our decision-making algorithms, which recommend those homes
which will be most informative for inspection, and also those most
likely containing hazardous service line materials for replacement
(Section 4.2).

We emphasize that our methods and models were utilized by
FAST Start officials for the management of the hydrovac process,
and during the early days of the efforts we were given discretion
over which homes would receive inspections. We used this freedom
to select statistically representative samples, as well as targeted in-
spections on homes of interest. In practice, our modeling efforts had
less impact on the choice of replacement homes, as these decisions
carried greater political and logistical challenges.

4.1 Classification Algorithm Performance

Selecting a robust, precise, unbiased, and properly calibrated classifi-
cation algorithm is key for our proposed active learning framework.
Ultimately, the selected decision-making algorithm requires both ac-
curate and well-calibrated probability estimates when selecting the
next round of homes to investigate. To select such a classification
model, we employ several machine learning model and compare
them across various performance metrics. These metrics include
the Area Under Receiver Operating Characteristic curve (AUROC),
learning curves, and confusion matrices (including accuracy and
precision). Using these scores, we find that tree-based methods are
the most successful and robust category of models for this data. In
particular, the model for gradient boosted trees implemented in the
package XGBoost exhibits the strongest performance with a fewest
data points.
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4.1.1 ROC and Learning Curves. The overall accuracy of the
best performing XGBoost model, based on a holdout set of 1,606
homes (25% of available data), is 91.6%, with a false-positive rate
of 3% and false-negative rate of 27%. The homes falling in the top
81% of predicted probabilities are classified as having hazardous
service lines. The ROC curves and AUROC scores show XGBoost’s
superior performance with an AUROC score of 0.939 on average
in a range of [0.925, 0.951], Figure 6 and 7). While the ROC curves
show a single run of each model, the AUROC scores are shown as
distributions of 100 bootstrapped samples obtained using a strati-
fied cross-validation strategy with 75%/25% of the data randomly
selected for training/validation. We further examine AUROC scores
using learning curves (Figure 8), using random subsets of data to
illustrate diminishing returns of additional data on model perfor-
mance using AUROC. We also introduce, temporal learning curves.
These temporal learning curves reflect the exact order of data col-
lection in 2016-17, and they show the AUROC as we re-estimate
the model every two-week period to predict the danger for all re-
maining not-yet-visited homes. We finally ensure that the model’s
predicted probabilities, which we use to quantify our prediction
uncertainty, are indeed well-calibrated probabilities. 6

Figure 6: ROC curves measuring predictions of XGBoost, RandomForest, and

lasso logistic regression on a random holdout set of all available data.

4.1.2 Risk factors. Now that we have a robust predictive model,
we can look at which features of a home and its surrounding neigh-
borhood are the most predictive feature in identifying homes with
hazardous service lines. But we are cautious to not make any causal
claims from this analysis. We obtain the feature importance values7
produced by each model by training with 20 bootstrapped samples
of the data and reported the average feature importance values.
The most informative home features relate to its age, value, and
location, suggesting that the context (place and time) in which the
home was built, as expected, is strongly correlated with service line
material. For instance, homes built during and before World War II
6While not shown here, we also considered ExtraTrees, AdaBoost (with decision tree
classifier), and Ridge Regression (regularized with L2 loss), but performance was lower
than the three presented. Full details on hyperparameter optimization will be available
in the full version.
7We calculate feature importance by weight, which is the normalized frequency with
which a feature appears in a tree amongst the ensemble.

Figure 7: Empirical distributions of AUROC scores of classifiers over several

runs on randomholdout sets. BothXGBoost andRandomForest showmarked

performance improvement over lasso logistic regression, and XGBoost gives

marginal improvement on RandomForest.

Figure 8: Temporal Learning curves for classification of hazardous service

line materials. XGBoost consistently outperforms the other classifiers, espe-

cially at the beginning of the timeline when there is less data available.

and those that are lower in value are more likely to contain lead
in their public service line. Two additional features were the city
records and the DEQ private SL inspection reports. Each was shown
to be a noisy but useful predictor, as indicated earlier in Table 2.

4.2 ActiveRemediation: Evaluation

We now discuss our implementation of the ActiveRemediation
framework applied to the particular case of Flint’s large-scale pipe
replacement program.With over $100M in investment, Flint is a per-
fect testbed to compare the performance of our proposed methods
(developed in Section 3.2) with the actual empirical performance of
the work of FAST Start thus far. Our goal is to show a high potential
for savings by minimizing the number of unnecessary replacement
visits, thus replacing more hazardous lines under the same budget.

4.2.1 Experimental testbed, and potential biases. Any experi-
mental framework needs a quality dataset, with known labels for
a large sample which we can evaluate our procedure. Fortunately
for the City of Flint, where contractors have been working for over
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18 months, we have a total of 6,506 observations of service line
materials. A natural choice for an experimental environment, which
we call ActualFlint, is to use the set of observed homes in Flint
as a template for the overall city, i.e. a municipality with precisely
6,506 homes whose service line material we can query as needed.

A major challenge of relying solely on observed data is that
the actual home selection process is biased, in both the hydrovac
inspections and the line replacements. While a certain fraction
of the home selection was random, it was often reasonably arbi-
trary due to political and logistical constraints. For instance, many
of the homes selected for service line replacement were chosen
to maximize lead discovery. To assess the effect of sample bias,
we developed an experimental environment, SimulatedFlint, in
which we suppose Flint contains only those properties not in the
observed dataset. For this dataset, labels are assigned based on the
labeled hold-out data. With observed data as training, we used a
K-Nearest-Neighbors (KNN) classifier to estimate a probability for
each unknown home, and then sampled a Bernoulli random vari-
able – "safe"/"unsafe" – to assign labels. This randomized dataset
has lower potential selection bias concerns. In the reported results
below, we focus on ActualFlint, but we note that results from
SimulatedFlint were nearly equivalent.

4.2.2 Backtesting Simulation on ActualFlint. We quantify the
cost savings from implementing our algorithm by comparing the
sequential selection of homes from the proposed decision rules to
what the Flint FAST Start initiative actually did in 2016-17. The
goal is to stretch the allocated funds to remove hazardous pipes
from as many homes as possible. One source of inefficiency in
spending is unnecessary service line replacement (SLR) visits (the
false-positive error rate). Therefore, our key performance metric is
the SLR hit rate, i.e. the percentage of homes visited for replacement
that required replacement.

The proposed approach greatly improves the hit rate. Our key
finding from the simulation shows that we predict a reduced rate of
costly unnecessary replacements visits from 18.8% (actual) to 2.0%
(proposed). Figure 9 illustrates the direct comparison of hit rates
for our proposed approach, IWAL(0.7), based on our ActualFlint
simulation, compared to Flint FAST Start.

Second, the cost savings are substantial. The proposed algorithm,
with a higher hit rate, increases the number of homes that receive
service line replacements for the same number of visits. This, in turn,
reduces the effective cost of a successful service line replacement.
The effective cost includes both the direct costs of successful re-
placement visit and the average costs incurred by exploring homes
from hydrovac inspections or unnecessary replacement visits. Hav-
ing access to the exact same set of 6,505 homes actually observed,
we find that the algorithm on average saves an additional 10.7%
in funds per successful replacement (see Table 5). Across 18,000
total planned service line replacements, this would extend to an
expected savings of about $11M out of current spending. In terms
of the overall removal of lead pipes, this is approximately equiva-
lent to 2,100 additional homes in the city that would receive safe
water lines. These estimates are made using the current costs in
Flint, where hydrovac inspection costs ch = $250, unnecessary
replacement costs cr− = $2, 500, and successful replacement costs
cr+ = $5, 000.

Actual Proposed Algorithm .

Mean Range
For every 1 successful replacement:

Effective cost $5,818 $5,196 ($5,186 to $5,208)
Predicted savings ($) – $621.7 ($610.4 to $632.4)
Predicted savings (%) – 10.7% (10.5% to 10.9%)

For every 1,000 successful replacements, the savings generate:
Extra inspections – 94 (92 to 96)
Extra replacements – 120 (117 to 122)

For 18,000 successful replacement:
Predicted savings ($ in millions) – $11.18m ($10.99m to $11.39m)

Table 5: Cost savings. The proposed method lowers the effective cost per suc-

cessful service line replacement, saving $621.7 per home (10.7%), enough to

remove lead from an additional 2,000 homes on the same budget.

Figure 9: Tracking hit rates over time, the proposed IWAL algorithm (blue;

mean = 98.0%) outperform actual (green; mean = 81.2%; thick line is smoothed

plot)

The proposed approach outperforms a competitive set of natu-
ral benchmark strategies. Instead of only comparing our proposed
method to what actually occurred, we also consider a range of alter-
native methods. In particular, greedy (egreedy with 0% exploration)
inspects the highest rate of hazardous homes inspected (HVI hitrate
91%), and uniform (egreedy with 100% exploration) inspects the low-
est (63%). But IWAL does better with a more principled approach,
selecting homes that are likely to be most informative, with risk
probabilities near 70%. Figure 10 shows how IWAL and two greedy
heuristics differ. Higher HVI hit rate is not better; instead, it is the
choice of which homes to explore with inspection that matters. The
uncertainty in performace of each algorithm comes from sampling
variation from running 25 independent simulated experiments. We
prefer IWAL to alternatives because it has greater savings and is
less sensitive to tuning parameters.

We acknowledge some assumptions in our simulations. First, we
only consider the cost of each job and not the time required for
crews to move between homes, where there may be logistical issues
with redirecting teams around the city. Second, in this analysis
we have treated the ActualFlint as having only 6,506 homes of
which all are visited. This creates an arbitrary finite end point, as
the algorithm runs out of homes with unsafe service lines. To avoid
this effect, the above calculations, figures, and tables are based on
the first 4,500 replacement visits and 2,250 hydrovac inspections.
Of course, to validate this, we would need access to a larger set,
and thus we turn to our larger simulation using a full size of Flint.
Finally, the results are robust to resource allocation schedule and
batch size. We recognize that we used a schedule of SLR and HVI

Case 2:16-cv-10277-DML-SDD   ECF No. 203-4   filed 10/01/18    PageID.10289    Page 45 of
 56



Figure 10: HVI Hit Rates. egreedy(0) tends to over-inspect whereas egreedy(1)

is too conservative. IWAL more effectively optimizes HVI hit rate.

activities different than Flint FAST Start. To disentangle the con-
found between our choice of algorithms and the schedule, we ran
an additional version of the ActualFlint backtest, with the sched-
ule as closely aligned with Flint FAST Start in 2016-17 as possible.
Across alternative scenarios tested the results differed only slightly.

4.2.3 Results from SimulatedFlint. In our second simulation,
we demonstrate the potential value of deploying the algorithm at
scale and characterize the long-term performance of the algorithms.
Via SimulatedFlint we find that the proposed algorithms, with
the aim of replacing hazardous lines from 18,000 homes out of a
simulated city of 48,000 homes, can achieve 11.8% savings relative
to the current rate of spending. The best algorithm using IWAL
yields an average effective cost of $5,133 per successful replacement,
better than $5,818 observed in Flint (Table 5). As a final note, the
proposed algorithms’ SLR hit rates are all above 98.0%.
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Inventory of Service Lines in Flint 
Jacob Abernethy and Eric Schwartz​ (Professors at University of Michigan, Ann Arbor) 
Arya Farahi and Jared Webb​ (PhD students at U-M) 
Nicholas Anderson​ (U.S. National Guard, FastStart), ​Ryan Doyle​ (MDOT, FastStart) 
 
We acknowledge Martin Kaufman and Troy Rosencrants (U-M Flint GIS Center) who initially 
digitized Flint City Records.  

What has been found? 
There are over 55,000 unique parcels of land in Flint with roughly 51,000 residential properties. 
We have physical verification of the complete service line materials for 457 homes.  

● 36 from replacements Rowe pilot; 
● 262 from replacement phases 1 (complete) and 2 (in progress); and  
● 159 from hydrovac program. 

 
Using this data as of November 1, 2016, we summarize what has been found, compare it to 
what the city records suggested, and then estimate the total number of homes with lead 
requiring partial or full service line replacements. 
 

 Truth in Public Service Line: 

Method of discovery Can't tell Copper Lead All 

Hydrovac 72 65 94 231 

Replacement Phase 1 (and 2)* 0 4 257 262 

Rowe 0 6 30 36 

All 72 75 381 529 

*Note: One home in Replacement Phase had a Galvanized public service line. 
 
Among the 457 homes where the service lines were physically verified, there were 381 public 
service service lines made of Lead, 75 Copper, and 1 Galvanized.  
 
The hydrovac teams visited a total of 231 homes. They could not inspect the service lines at 72 
homes for any one of a variety of reasons, such as, the curbstop was under a driveway, or they 
were unable to find curbstop. Rowe Pilot Phase was completed in March 2016. Replacement 
Phase 1 is complete (and excludes the Rowe Pilot Phase). Replacement Phase 2 is underway. 
The data we use throughout this document includes results from the replacements (from Phase 
1, 2, and Rowe Pilot) and hydrovac program.  
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The key decision is whether the home needs Full Replacement (Public and Private portion), 
Partial Replacement (Public or Private portion), or No Replacement. If a service line portion is 
made of Lead or Galvanized (or Tubeloy) we say it requires a replacement. A copper portion 
does not require replacement. 

 
Service Line Replacement Needed/Performed: 

No Partial Full 

70 208 180 

 
The replacement and hydrovac programs show that the vast majority of the concern (lead) is 
typically found in the public portion of the service line. We present the true public service line 
material grouped by each city record type. 
 
 Truth in Public Service Line: 

City Records Can't tell Copper Lead All Replace Rate 

Copper 19 42 16 77 21% 

Copper/Lead 16 9 145 170 85% 

Galvanized/Other* 1 2 98 102 97% 

Lead 8 2 22 32 69% 

Unknown/Other 28 20 100 148 68% 

All 72 75 381 529 72% 

Note: For the one home in Replacement Phase which had a Galvanized public service line but its City Record was 
Galvanized/Other. The City Records come from UM Flint GIS Center data. The row for Lead represents the following 
labels in the City Records: “Lead,” “Lead/Zinc,” “Lead/Tubeloy,” and “Tubeloy.” Copper includes “Copper,” 
“Copper/Zinc.” The Replace Rate is the proportion out of homes that were successfully physically verified.  
 
We report a “Replace Rate,” which is the proportion of homes in any group requiring a Partial or 
Full replacement. Partial Replacement occurs when Lead or Galvanized appears in only the 
Private or Public portion. Full Replacement occurs when Lead or Galvanized appears in both 
portions of the service line.  
 
Looking at the complete description of the Public and Private portions of the service lines 
suggest how many partial replacements and full replacements are needed.  We also provide 
these rates in two ways -- using all data and using only data from the hydrovac program.  
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The following letters will be used in the tables below: 
C-C = Copper-Copper L-C: Lead-Copper 
C-G = Copper-Galvanized L-G: Lead-Galvanized 
C-L = Copper-Lead L-L: Lead-Lead 

L-O: Lead-Other 
 
All homes where public and private lines verified 
 
 Truth in Public-Private service line      

City Records 
Can't 
tell C-C C-G C-L L-C L-G L-L L-O All 

Full 
Replace 

Rate 

Partial 
Replace 

Rate 
Replace 

Rate 

Copper 19 42 0 0 10 4 2 0 77 10% 17% 27% 
Copper/Lead 16 7 0 2 134 9 2 0 170 7% 88% 95% 
Galvanized/Other 1 2 1 0 24 72 2 0 102 73% 25% 98% 
Lead 7 2 0 0 5 3 14 1 32 68% 20% 88% 
Unknown/Other 28 17 2 1 29 48 21 2 148 57% 27% 84% 
All 71 70 3 3 202 136 41 3 529 39% 45% 84% 

Note: One home had a Galvanized/Other record, and actually had Galvanized-Copper, since that is the only case of Galavnized in 
public line, we count it with the Copper-Galvanized. 

 
Homes where public and private lines were verified by hydrovac only 
 Truth in Public-Private service line      

City Records 
Can't 
tell C-C C-G C-L L-C L-G L-L L-O All 

Full 
Replace 

Rate 

Partial 
Replace 

Rate 
Replace 

Rate 

Copper 19 39 0 0 2 3 1 0 64 9% 4% 13% 
Copper/Lead 16 7 0 0 20 1 0 0 44 4% 71% 75% 
Galvanized/Other 1 0 0 0 1 2 0 0 4 67% 33% 100% 
Lead 7 1 0 0 1 0 9 1 19 75% 8% 83% 
Unknown/Other 28 16 1 1 17 19 17 1 100 50% 26% 76% 
All 71 63 1 1 41 25 27 2 231 32% 27% 59% 
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How Much Lead Is There? Estimating the Number of Service Line Replacements Needed 
 
Estimating the number of lead service lines in Flint is still not easy. The service line replacement 
program targets at-risk homes, so it does not give us a representative sample of the 55,000 
parcels in Flint. The hydrovac program samples from a broader group of homes since its 
purpose is to gain information, but still does represent all of Flint.  
 
So how many homes require a Full replacement (private and public portion) or Partial 
replacement?  
 
We estimate this by first calculating the replacement rate by City Record. For example, a home 
with a City Record of “Copper/Lead” has chance of 75% needing a replacement (71% for Partial 
or 4% for Full). Then we take into account how common each City Record is throughout Flint. 
For instance, there are 4,161 Copper/Lead records (7% of Flint). 
 
We use the estimated “Replacement Rate” described above. Using the hydrovac data only 
reflects a lower total number of replacements than using hydrovac and replacement data. We 
will use the rates from the hydrovac only since we know the hydrovac sample is a better 
reflection of all of Flint than the homes that have already received service line replacement. 
 
Using the rates observed in the sample of homes so far, we estimate approximately 
29,100 parcels (about 52% Flint parcels) would require some replacement. Among those, 
about 17,500 would be full replacements and 11,600 would be partial replacements. 
 
We want to provide some uncertainty around this estimate and give the reader an illustration of 
how sensitive this estimate may be to changes in what we understand about the true rate of 
lead corresponding to each City Record. For instance, if you decided to be optimistic that only 
60% of parcels with non-Copper records and 10% of Copper records some lead or galvanized 
service lines, then you would estimate 20,600 parcels required some replacement. 
 

City Record 
Percent of 

City 
Total 

Parcels 
Optimistic 

Assumption 
Hydrovac 

Only 
Replacement 
and Hydrovac 

Pessimistic 
Assumption 

Copper 46% 25843 10% 13% 27% 30% 

Copper/Lead 7% 4161 60% 75% 95% 100% 

Galvanized/Other 22% 12261 60% 100% 98% 100% 

Lead 0% 111 60% 83% 88% 95% 

Unknown/Other 24% 13517 60% 76% 84% 95% 

Total Predicted Number of Replacements 20614.3 29106.4 34398.3 37121.5 

As Percent of All Parcels 36% 52% 61% 66% 

*Note: Lead represents records saying “Lead, Lead/Tubeloy Lead/Zinc Tubeloy Copper/Tubeloy.”  “Replacement 
Rate” is the probability of finding either lead or galvanized in either the private or public service line.  
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It is important to note that since the replacement program made up about 2/3 of our records and 
they were located in three at-risk neighborhoods, it still does not give us a representative 
sample of the 55,000 parcels in Flint.  A large scale hydrovac excavation project is needed to 
determine the true percentage of the lines that are all or partially lead.  It would also allow for a 
more sophisticated estimate using statistical algorithms using all factors that describe parcels 
such as city record of service line, year built, home value, land value, zoning, location, vacancy 
status, home condition, and others.  In addition to determining a much more precise number of 
lead lines, the hydrovac excavation project would provide us with other useful information, such 
as breakdowns by city ward, occupied vs. vacant, age of home, material listed in city records, 
and any other parcel attribute. After receiving guidance on how to define occupied residential 
homes, we will be able to provide these numbers for occupied vs unoccupied residential 
properties.  
  
We will continue to update these results and add additional helpful information as new data is 
submitted. 
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DOCUMENTS PROVIDED BY PLAINTIFFS’ 

COUNSEL IN AUGUST 2018 

 

“Phase IV SLR Completed Addresses (2018).xlsx,” a list of all Phase IV 

replacements completed in 2018 as of August 15, 2018 

 

“Phase V SLR Completed Addresses.xlsx,” a list of all Phase V replacements 

completed as of July 31, 2018 

 

“Phase V SLR Issued Addresses 20180815.xlsx,” a list of all addresses that have 

been issued to their contractors for excavation 

 

“Copy of 2018.08.28 FAST Quarterly Report Data-forUofM.xlsx,” a dataset 

regarding the results from excavations and service line replacements conducted 

between May 15, 2018, and August 14, 2018 

 

“2017-09-21-Att-Active 7-6-17.csv,” a list of active water accounts in Flint as of 

July 6, 2017 

 

“FAST START ACCOUNTS 08-02.18.xlsx,” a list of all active water accounts in 

Flint as of August 2, 2018 
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Analysis of the City of Flint’s Service Line Excavations in 2018 by Ward (as of Aug. 15, 2018) 
 

Ward 

Total number 
of eligible 

homes not yet 
excavated, 
12/31/2017 

Predicted 
number of 
hazardous 

service lines 
among eligible 
homes not yet 

excavated, 
12/31/2017

Predicted hit rate 
among homes 

not yet 
excavated, 
12/31/2017 

Total number of 
homes 

excavated, 
1/1/2018 - 
8/15/2018 

Observed 
number of 
hazardous 

service lines 
identified, 

1/1/18 - 8/15/18

Observed hit 
rate, 1/1/2018 - 

8/15/2018 

5 1454 1162.9 80.0% 163 156 95.7%
8 3551 1134.9 32.0% 455 172 37.8%
7 2291 701.1 30.6% 216 114 52.8%
2 2404 690.1 28.7% 1220 46 3.8%
6 2017 684.7 33.9% 210 52 24.8%
9 1936 607.7 31.4% 230 42 18.3%
3 1418 473.7 33.4% 215 90 41.9%
1 2631 455.3 17.3% 363 53 14.6%
4 2433 411.4 16.9% 702 17 2.4%

All Wards 20,135 6321.8 31.4% 3774 742 19.7% 
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