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ABSTRACT
We define semi-valid input coverage (SVCov), the first cov-
erage criterion for fuzz testing. Our criterion is applicable
whenever the valid inputs can be defined by a finite set of
constraints. SVCov measures to what extent the tests cover
the domain of semi-valid inputs, where an input is semi-valid
if and only if it satisfies all the constraints but one.

We demonstrate SVCov’s practical value in a case study
on fuzz testing the Internet Key Exchange protocol (IKE).
Our study shows that it is feasible to precisely define and
efficiently measure SVCov. Moreover, SVCov provides es-
sential information for improving the effectiveness of fuzz
testing and enhancing fuzz-testing tools and libraries. In
particular, by increasing coverage under SVCov, we have
discovered a previously unknown vulnerability in a mature
IKE implementation.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; D.2.5 [Software
Engineering]: Testing and Debugging

General Terms
Security, Reliability

Keywords
fuzz testing, coverage criteria, security testing
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1. INTRODUCTION
Coverage criteria are an integral part of testing practice [12]

and quality assurance standards [26]. Measuring a test set’s
coverage with respect to a given criterion is relevant for ex-
posing failures in the system under test (SUT): low coverage
hints that tests are missing and suggests how to improve the
test set. Existing coverage criteria are however ill-suited for
measuring the coverage of fuzz testing. In particular, they
do not measure what fuzz testing is all about, namely exe-
cuting the SUT with semi-valid inputs.
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In this paper, we propose a coverage criterion for fuzz
testing. Before explaining why a coverage criterion specific
to fuzz testing is needed, and what the characteristics of
our proposed criterion are, we briefly recall the principles of
fuzz testing. There is no formal definition of fuzz testing,
and indeed the boundary between fuzz testing and other
testing techniques is not sharp. Fuzz testing is however com-
monly understood as executing the SUT with inputs that are
not foreseen by the SUT’s specification. The SUT is then
checked for the presence of generally undesired behaviors,
such as memory access violations; see [19, 32].

The inputs used for fuzz testing must be semi-valid [22],
i.e. inputs that are not valid according to the specification,
but not entirely invalid either. This is admittedly a vague
definition. The point is that most often entirely-invalid in-
puts are filtered out by input parsers, and therefore do not
exercise the software beyond the parser code. For instance,
a program intended to work with jpeg files is unlikely to
accept a pdf file. The program is however likely to accept
modified jpeg files where a bit has been flipped, and in the
course of its execution throw an exception. In this example,
the modified jpeg file is a semi-valid input, whereas pdf files
are not. In this paper, we build upon the notion of semi-valid
inputs to define a coverage criterion for fuzz testing.

We define the semi-valid input coverage criterion, abbre-
viated as SVCov. Our criterion is applicable whenever the
valid inputs can be defined by a finite set of constraints.
For instance, the valid inputs for a software implementing
a communication protocol are exactly those that satisfy all
the constraints defined in the protocol’s specification. We
define a semi-valid input as any input that satisfies all the
constraints but one. A test set T is deemed thorough accord-
ing to SVCov if and only if, for each constraint c, the set T
contains at least one test that violates c and simultaneously
satisfies all the other constraints.

We remark that a myriad of coverage criteria for testing
have been defined and evaluated in the literature, see e.g. [7,
36]. Many of the existing criteria are applicable to fuzz
testing too. For example, there is empirical evidence that
increasing statement coverage increases the effectiveness of
fuzz testing in terms of discovering faults [32]. The existing
criteria measure the coverage of a set of fuzz tests in terms of
the number of statements executed by the tests, etc. They
do not measure, however, to what extent the SUT is exer-
cised with semi-valid inputs. A test set that contains only
valid inputs may, for example, execute all the code state-
ments in the SUT; nevertheless, testing the SUT with such
a test set is clearly not an instance of thorough fuzz test-



ing. In contrast to the existing criteria, SVCov measures
to what extent tests cover the domain of semi-valid inputs
and hence reflects the definition of fuzz testing more closely
than other criteria. We do not see SVCov as a substitute
for the existing criteria. Instead, as with any other software
metric, SVCov complements and balances other applicable
criteria, cf. [5].

Contributions. We propose SVCov, the first coverage cri-
terion for fuzz testing. To show its practical value, we inves-
tigate SVCov with respect to three central requirements:

R1 Feasibility: One must be able to (1) precisely define the
semi-valid inputs of the SUT from real-world specifica-
tions in a reasonable amount of time and (2) efficiently
measure SVCov.

R2 Relevance to coverage: Measuring SVCov must provide
the tester with meaningful information on how to im-
prove a test set’s coverage.

R3 Relevance to discovering faults: Increasing SVCov of
a test set results in discovering additional faults in the
SUT, if any exists.

To judge whether SVCov satisfies these requirements, we
conducted a case study on fuzz testing the Internet Key Ex-
change protocol (IKE). Fuzz testing security protocols such
as IKE is a recognized challenge [32] because security pro-
tocols are stateful, they have complex input structures, and
they use encryption. The challenging nature of fuzz testing
IKE implementations, and the scale of IKE specifications
(including three RFCs [25, 17, 13]), make IKE a representa-
tive candidate for our study.

Our experiments with IKE confirm that it is indeed feasi-
ble to precisely define the set of semi-valid inputs by extract-
ing constraints from real-world protocol standards, which in
the case of IKE span a number of RFCs. Moreover, the
time needed to check the satisfiability of the constraints for
a test (used to measure SVCov) is on average two orders
of magnitude smaller than the time needed to execute the
test. The overhead of measuring SVCov during testing is
therefore negligible.

We measured SVCov and analyzed the results to find out
why some semi-valid inputs were missing in the tests. The
analysis pointed at a number of subtle problems with our
fuzz-testing setup and provided us with essential information
for improving the coverage of the tests. Concretely, we dis-
covered (1) implementation bugs in SecFuzz [34], the fuzz-
testing tool used in the study, (2) imprecision in SecFuzz’s
fuzz operators, and (3) redundancy in the constraints that
we had extracted from IKE’s RFCs. SVCov also pointed
at missing valid inputs, which are critical for SecFuzz’s ef-
fectiveness and, in general, for mutation-based fuzz-testing
techniques (further details are given in § 3.4.3). Fixing these
problems significantly improved the tests’ coverage.

We discovered that the tests that are missing in the first
experiment are important; in the second experiment, we
found a previously unknown vulnerability in a popular, sta-
ble implementation of IKE. The discovered vulnerability is
security-relevant: an attacker can exploit the vulnerability
to subvert IKE. We have communicated the vulnerability
to the software vendor.

Summing up, our case study provides evidence that mea-
suring SVCov is feasible, and it can be used to improve the

quality of the fuzz-testing tools and libraries in general and
the coverage of test sets in particular. Moreover, increas-
ing SVCov of our test set uncovered a severe previously
unknown security vulnerability. Overall, our initial expe-
riences with SVCov are very encouraging; see § 5 for our
future work.

A word on terminology. By testing we mean executing
the SUT and checking its behavior for failures. Failures are
manifestations of faults, which are the result of human er-
rors in constructing the SUT; cf. [14]. Vulnerabilities are
security-relevant faults, which are exploitable by attackers.
Each test (also known as test case, or test input) is a pair
of input and expected output. In the context of fuzz test-
ing, test inputs are those that are not foreseen by the SUT’s
specification. That is, the specification does not prescribe
expected outputs for the inputs used for fuzz testing; hence,
it cannot be used as a test oracle. Test oracles used in fuzz
testing therefore typically check for generally undesired be-
haviors. In other words, expected outputs for all test inputs
are the same, e.g. no memory access violations occur.

The purpose of testing is to discover faults in the SUT. A
set of tests is adequate if and only if it exposes all the SUT’s
faults. This definition of adequacy, although to the point,
is of little practical value since the entire set of faults in the
SUT is not known (otherwise, no testing would be needed).
The adequacy of test sets therefore cannot be measured ac-
cording to this definition. In particular, in the troubling case
where a test set reveals no failures, we cannot decide whether
the SUT is fault-free, or the test set is simply inadequate.

A set of tests is deemed thorough according to a given
coverage criterion if and only if it achieve full (100%) cov-
erage. We remark that the relation between thoroughness
and adequacy is tenuous: test sets that are not thorough are
likely to miss important tests, although not every thorough
test set is adequate.

Outline of the paper. The remainder of this paper is
organized as follows. In § 2 we formally define SVCov and
describe how to instantiate and use it. In § 3 we demonstrate
the practical value of SVCov in a case study on fuzz testing
IKE. We review related coverage criteria and compare them
to SVCov in § 4. Finally, in § 5 we conclude the paper and
discuss our future work.

2. SEMI-VALID INPUT COVERAGE
We briefly describe the notion of coverage for testing. Af-

terwards we introduce SVCov, our criterion for fuzz testing,
and we describe how to instantiate and use SVCov.

2.1 Coverage Criteria Axioms
Numerous coverage criteria for testing have been defined

and studied in the literature, see e.g. [7, 36, 20]. Coverage
criteria are used to measure the progress of testing with
respect to the criterion at hand and to decide when testing
can be stopped or, occasionally, to automatically generate
and prune test sets. One however must be careful not to
over-fit tests to coverage criteria as this may result in less
effective tests [27, 30].

A coverage criterion must satisfy a number of basic ax-
ioms: the empty test set must be assigned zero coverage
and a test set’s coverage must never decrease when the test
set is enlarged. Furthermore, to exclude the trivial criterion
that uniformly assigns zero to every test set, one requires



that for any coverage criterion there is at least one thor-
ough test set. These requirements are often stated by the
axioms of inadequacy of the empty set, monotonicity, and
applicability in the literature; see e.g. [35, 36].

Fuzz testing exercises the SUT with semi-valid inputs. We
therefore add the following axiom for coverage criteria for
fuzz testing:

Fuzz-testing coverage axiom: A test set that only con-
sists of valid inputs achieves zero coverage.

This axiom states that a test set does not fuzz-test the SUT
unless invalid inputs belong to the set. Any test set con-
taining only valid inputs must therefore be assigned zero
coverage when it comes to fuzz testing.

It is easy to check that various coverage criteria based on
the SUT’s model and program structure (such as statement
coverage, branch coverage, transition coverage, decision cov-
erage, etc.) fail to conform to the fuzz-testing coverage
axiom. Similarly, coverage criteria based on input domain
partitions and their boundary values do not explicitly distin-
guish between valid, semi-valid, and entirely-invalid inputs
(we define these terms shortly). They also do not conform
to the fuzz-testing coverage axiom. This is not surprising as
the existing coverage criteria are not tailored to fuzz testing.
Below, we introduce a coverage criterion for fuzz testing that
conforms to the fuzz-testing coverage axiom.

2.2 SVCov Coverage
We define a coverage criterion for fuzz testing. The defini-

tions in this section are abstract: we do not specify the input
domains, how constraints are characterized, etc. In § 3, we
give concrete examples of all the concepts defined here.

Let I be the infinite set of all possible inputs. We do not
further specify I: inputs can be character strings, sequences
of communication messages, jpeg files, etc. An input con-
straint c is a subset of the possible inputs, i.e. c ⊆ I. An
input i satisfies the constraint c iff i ∈ c; otherwise, we say
that i violates c. We assume that a finite nonempty set S
of constraints is given such that S defines the set of valid
inputs for the SUT at hand. The set of valid inputs, de-
noted Ivalid, is then the largest set of inputs that satisfies all
the constraints in S. Formally,

Ivalid =
⋂
c∈S

c .

Input i is an invalid input iff i 6∈ Ivalid. An invalid input
therefore violates at least one constraint in S. Invalid in-
puts that violate exactly one constraint are called semi-
valid inputs. Semi-valid inputs are considered to be par-
ticularly effective for fuzz testing because they are likely to
pass through the SUT’s input validation filters [32]. We
discuss alternative definitions for semi-valid inputs in § 5.

To each constraint c ∈ S, we associate a set σc of semi-
valid inputs, defined as

σc = {i ∈ I | i 6∈ c ∧ ∀c′ ∈ S \ {c}. i ∈ c′} .

The set of semi-valid inputs is the union of all such σc:

Isemi-valid =
⋃
c∈S

σc .

The set I \ (Ivalid∪Isemi-valid) consists of what we call entirely-
invalid inputs in § 1. Figure 1 shows an example where S

consists of three constraints. The constraints collectively de-
fine the set of valid inputs, and associated to each constraint
we define a set of semi-valid inputs.

Ivalid

σc2

c2
c1

c3

I

Figure 1: An example of valid and semi-valid inputs
defined by {c1, c2, c3}.

A constraint c in S is redundant iff
⋂

c′∈S c
′ =

⋂
c′∈S\{c} c

′.
It is immediate that a constraint c is redundant iff c sub-
sumes the intersection of the constraints in S\{c}; that is⋂

c′∈S\{c} c
′ ⊆ c. Note that for any redundant constraint c,

we have σc = ∅ because if an input i violates c, then i must
violate at least one additional constraint c′, with c′ 6= c. A
set S of constraints is minimal if S does not contain redun-
dant constraints; otherwise S is non-minimal. The set of
valid inputs characterized by a non-minimal set S of con-
straints can be defined by a proper subset of S. We come
back to the notion of non-minimality shortly.

A test set T is a finite set of tests. Each test defines
an input value. We therefore identify each test set T with
a finite subset of I. Recall that we use the words tests,
test cases, and test inputs interchangeably in the context of
fuzz testing. Test t covers the set σc of semi-valid inputs
iff t ∈ σc. For a test set T and a set S of constraints, we
define

CovS(T ) = {c ∈ S | ∃t ∈ T. t ∈ σc} .

Note that CovS(T ) ⊆ S, for any T .
We are now ready to define our semi-valid input coverage

criterion. Below, |X| is the cardinality of the set X.

Definition 1. The semi-valid input coverage criterion,
denoted SVCov, is the function that maps any set S of con-
straints and any test set T to {x ∈ R | 0 ≤ x ≤ 1}, defined
as:

SVCovS(T ) =
|CovS(T )|
|S| .

�

Note that SVCov conforms to the coverage criteria ax-
ioms given in § 2.1. In particular, for any S, we have
SVCovS(∅) = 0, and SVCovS(T1) ≤ SVCovS(T2) when-
ever T1 ⊆ T2. Also, for any minimal set S of constraints we
have SVCovS(T ) = 1 for T = ∪c∈Sσc. More importantly,
for any S and T ⊆ Ivalid we have SVCovS(T ) = 0. There-
fore SVCov indeed conforms to the fuzz-testing coverage
axiom. In fact, valid inputs do not contribute to SVCov:
for any finite T ⊆ I and finite T ′ ⊆ Ivalid, SVCovS(T ) =
SVCovS(T ∪ T ′).

A few remarks are due:

- The definition of SVCov is agnostic to the technique
used to generate tests. The SVCov criterion can,
for example, be used to measure the coverage of fuzz



tests generated using mutation-based techniques, us-
ing grammars, and so forth; see [22, 32].

- The SVCov criterion depends only on the set S of
constraints and the test set T . The SUT’s structure,
e.g. its source code, plays no role. In this sense, SV-
Cov complements the existing criteria that refer to the
SUT’s code or model.

- A test set that is thorough with respect to SVCov may
be inadequate. However we contend that a test set that
is not thorough according to SVCov misses tests that
can reveal faults in the SUT (see below). As discussed
before, this observation is not specific to SVCov: it
applies to all coverage criteria.

- Given a set S of constraints, maximum SVCov cov-
erage is achievable, i.e. there is a test set T such that
SVCovS(T ) = 1, iff S is minimal. This is because if S
contains a redundant constraint c then σc = ∅.

- The amount of information provided by SVCov hinges
upon the constraints in S. For instance, if S is a sin-
gleton, SVCov is rather uninformative because, for
any T , the value of SVCovS(T ) is either 0 or 1, ex-
cluding the values inbetween. In the context of our
case study, we confirm that it is feasible and in fact
straightforward to define a sufficiently detailed set of
constraints for practically-relevant protocols.

We remark that the directed construction of test sets us-
ing the set of constraints to achieve high SVCov is possible.
Depending on the nature of the constraints, test case gener-
ation may be automated, e.g., by negating each constraint,
one at a time, and solving the resulting conjunction of the
negated constraint with the remaining constraints. Directed
test generation is however out of the scope of this paper, and
therefore not further discussed here.

We claim that SVCov satisfies the three requirements
given in § 1, namely feasibility, relevance to coverage, and
relevance to discovering faults. To verify this claim, we have
conducted a case study using the Internet Key Exchange
protocol. In this case study, we have observed that inves-
tigating the causes for low SVCov can reveal problems in
all components related to fuzz testing. By addressing these
issues, we were able to extend our test set with tests that re-
vealed a concrete vulnerability in the SUT. The case study
is presented in § 3.

2.3 Guarded Constraints
We have observed that constraints defining actual sys-

tems often implicitly define applicability conditions, which
the inputs must satisfy. For instance, the constraint “for
any input, the third byte must be the xor of the first two
bytes” is clearly applicable only to inputs of length greater
than three bytes. We give examples of applicability condi-
tions for IKE inputs in our study, presented in § 3. Below
we introduce the notion of guarded constraints in order to
account for applicability conditions.

A guarded constraint is a pair (cg, ct), denoted cg . ct,
where cg and ct are constraints, i.e. cg ⊆ I and ct ⊆ I.
The subscripts g and t stand for guard and target respec-
tively. Intuitively, cg defines the inputs to which the guarded
constraint cg . ct is applicable. An input i vacuously satis-
fies cg . ct iff i 6∈ cg. An input i non-vacuously satisfies

cg . ct iff i ∈ cg ∧ i ∈ ct. An input i violates cg . ct iff
i ∈ cg ∧ i 6∈ ct; that is, i violates the guarded constraint iff
the constraint is applicable to i and i violates ct. A guarded
constraint cg . ct is applicable to all inputs in I iff cg = I.

Note that this definition of guarded constraints refines the
definition of constraints given in § 2.2. That is, a guarded
constraint cg . ct specifies the constraint c defined by the
set (I \ cg) ∪ ct. Therefore, the notion of SVCov and the
definition of σc naturally extend to guarded constraints.

In § 3.4.3, we observe that valid inputs that vacuously sat-
isfy a guarded constraint cg .ct are not useful for generating
semi-valid inputs in σcg.ct . That is, if the valid input i 6∈ cg,
then the mutated i is unlikely to belong to σcg.ct . Ob-
viously, this observation is relevant only to mutation-based
fuzz-testing techniques, such as the one described in our case
study.

2.4 Measuring and Using SVCov
In this section we turn to the practical aspects of SV-

Cov. We first describe how to measure SVCov and then
we discuss the factors that typically affect SVCov.

The first step to measuring SVCov is to specify the set S
of constraints that collectively define the SUT’s valid in-
puts. Let T be the set of tests that are executed against the
SUT. For each test in T , one checks how many constraints
are violated by the test. If exactly one constraint is vio-
lated by a test, then the violated constraint is added to the
set CovS(T ). Finally, one calculates SVCovS(T ) as in Defi-
nition 1. Algorithm 1 gives pseudo-code for this procedure.

Algorithm 1 Measuring SVCov

Input. A nonempty set S of constraints. A set T of tests.
Output. SVCovS(T ).

Cov← {}
for all t ∈ T do

if |{c ∈ S | t 6∈ c}| = 1 then
Cov← Cov ∪ {c ∈ S | t 6∈ c}

end if
end for
return |Cov|/|S|

Algorithm 1 requires that each constraint c in S is a recur-
sive set: for each test t it must be decidable whether t ∈ c.
Constraints are in practice often infinite sets (see § 3), and
are therefore defined using their characteristic functions.
That is, for each c ∈ S there exists a computable function χc

where χc(t) = 1 if t ∈ c and χc(t) = 0 otherwise. The char-
acteristic functions typically parse t and return 1 if t meets
certain conditions. For instance, the characteristic function
for the (artificial) constraint “for any input, the third byte
must be the xor of the first two bytes”would parse the input,
calculate the xor of the first two bytes and then compare the
result with the third byte. If they are equal, then the func-
tion would return 1, and 0 otherwise. Procedural examples
of characteristic functions are given in § 3.

After measuring SVCov for a set T of tests, with respect
to a set S of constraints, the tester may decide that the
coverage achieved by T is low. This decision in general de-
pends on the risk analysis of the SUT, the time and resources
available to the tester, etc. The tester must investigate the
reasons for low SVCov to increase T ’s coverage. We have



identified, through our case study, a number of factors that
affect SVCov:

(1) Implementation bugs in the fuzz-testing tool and impre-
cise fuzz operators.

Suppose that to violate a given constraint, a certain bit
in a field must be set to zero, while the fuzz operators
can only replace all field’s bits with zeros. In this case,
the fuzz operators are imprecise for the task at hand if
replacing the remaining bits with zeros leads to violating
additional constraints. We give concrete examples of
imprecision of fuzz operators in § 3.

To address this problem, the tester must fix the fuzz-
testing tool and improve its fuzz operators.

(2) Non-minimal set of constraints.

It is evident that if a constraint c is redundant, then the
constraint cannot be uniquely violated simply because
σc = ∅; see § 2.2.

To address this problem, the tester must analyze the
constraints in S and avoid any redundancies by rewriting
or removing constraints.

(3) Vacuous valid inputs.

We have observed that the tests created by mutating
valid inputs that vacuously satisfy the constraints in S
are likely to result in a low SVCov. We come back to
this observation in § 3.4.3.

To address this problem, the tester must modify the
algorithm/program that generates the valid inputs. As
mentioned before, this factor is relevant only to mutation-
based fuzz-testing techniques.

(4) Time.

It is possible that fuzz testing can uniquely violate a
constraint c, but the tests do not cover σc because fuzz
testing is stopped prematurely.

To address this problem, the tester must take more time
to fuzz-test the SUT.

How, and to what extent, the tester should address these
issues depends on the available time and resources. The
tester may decide to address (some of) the issues, and repeat
fuzz testing the SUT.

SVCov versus the set of violated constraints. In order
to have a reference point for measuring SVCov, we define a
metric, dubbed Violated, that measures the total number
of violated constraints. Formally, given a set S of constraints
and a test set T , Violated is defined as

ViolatedS(T ) =
|{c ∈ S | ∃t ∈ T. t 6∈ c}|

|S| .

Note that Violated counts all the constraints that are vi-
olated by T , while SVCov refers to the number of uniquely
violated constraints (see § 2.2). Therefore, if a test t ∈ T
violates two constraints in S simultaneously, then both con-
straints are counted in Violated, but neither is counted
in SVCov. Obviously, for any S and T , ViolatedS(T ) is
larger than SVCovS(T ).

The comparison of Violated to SVCov can be used as
a guide for finding the reasons for low SVCov. The gap be-
tween Violated and SVCov suggests that either the fuzz

operators are imprecise, i.e. they “degrade” the valid inputs
to the extent that multiple constraints are violated, or that S
is non-minimal; see factors (1) and (2) above. The con-
straints that are never violated suggest that either the valid
inputs are vacuous (see § 2.3), or that some semi-valid in-
puts are never generated due to time outs; see factors (3)
and (4) above.

The algorithm for computing Violated is similar to Al-
gorithm 1 and hence omitted here.

3. SVCov FOR FUZZ TESTING IKE
The purpose of our case study is to investigate the feasi-

bility and the benefits of measuring SVCov. Our SUT is
OpenSwan [23], which is a mature open-source implemen-
tation of the Internet Key Exchange protocol (IKE). Imple-
mentations of security protocols, such as IKE, are known to
be challenging to fuzz-test [32] because they have complex
input structures, they use encryption, and they are stateful.

The rest of this section is organized as follows: in § 3.1
we describe our experimental setup, where we provide back-
ground on SecFuzz, the fuzz-testing tool used in the study.
In § 3.2 we give the process and the heuristics we have used
to extract constraints for IKE, along with a number of con-
crete examples. There we also discuss how SVCov accounts
for IKE’s stateful nature. We have used the constraints to
measure SVCov of the tests generated by SecFuzz, and we
summarize the results in § 3.3. We discuss the causes for
low SVCov in § 3.4. In § 3.5 we present our improvements
and report on a previously unknown vulnerability.

3.1 Experimental Setup
For our experiments we use SecFuzz [34], the tool we

have previously developed for fuzz testing security protocol
implementations. SecFuzz uses a concrete protocol imple-
mentation to generate valid inputs; we refer to this imple-
mentation as the opposite endpoint. SecFuzz mutates the
valid inputs using a set of fuzz operators, and then the mu-
tated inputs are sent to the SUT. The SUT’s behaviors
during testing are checked for failures.

SecFuzz

SUT

writes to

read by

Opposite
endpoint

Log file

Dynamic
analysis

Figure 2: Experimental Setup. Messages sent to

the SUT pass through SecFuzz. The opposite endpoint

shares cryptographic information (e.g. keys and algo-

rithms) with SecFuzz using a log file.

As shown in Figure 2, the SUT is one of the endpoints
participating in the security protocol and the opposite end-
point is the other endpoint. For example, if the SUT is the
protocol’s initiator (often called Alice), then the opposite
endpoint is the responder (often called Bob). Note that the
two endpoints need not belong to the same software imple-
mentation of the protocol.



Table 1: SecFuzz’s fuzz operators.

Category Fuzz operator

Fuzz messages Insert a well-formed message

Fuzz payloads Insert a random payload

Duplicate a randomly chosen payload

Remove a randomly chosen payload

Fuzz fields Set to a random number

Set to zero

Append random bytes

Modify a random byte

Set to the empty string

Insert string termination

We configure the communication environment to route the
messages destined for the SUT through SecFuzz. The op-
posite endpoint therefore generates and passes valid inputs
to the fuzzer. The role of SecFuzz is to mutate the messages
and forward them to the SUT. However, SecFuzz does not
directly work with the messages it receives because they are
normally encrypted. Indeed, mutating encrypted messages
most certainly results in garbage, i.e. data the SUT would
drop outright. We therefore have the opposite endpoint
share its cryptographic information (e.g. keys, encryption
and decryption libraries) with SecFuzz using a log file to
allow SecFuzz to decrypt messages before mutating them.
A detailed description of SecFuzz can be found in [34].

The SUT in our case study is the IKE responder imple-
mentation in OpenSwan v2.6.35 [23]. OpenSwan is a stable
open-source Internet Protocol Security (IPsec) implemen-
tation, available for many major enterprise Linux distribu-
tions. OpenSwan is written in C and has 629,173 lines of
code. The SUT is executed within a dynamic analysis tool,
Memcheck [18], which serves as our test oracle. Memcheck
is a memory error detector for C and C++ binary programs
based on Valgrind [21]. It detects a wide range of memory
errors such as use of undefined variables, invalid memory
access, incorrect heap memory management, memory leaks,
and others. Memory error detectors are widely adopted as
test oracles for fuzz testing (see, e.g., [8, 12, 32]) because
memory faults are security critical and often exploitable by
attackers [33].

We used OpenSwan’s initiator as the SUT’s opposite end-
point for generating inputs. The inputs generated in a pro-
tocol run depend on the opposite endpoint’s configuration
files; these files refer to different protocol setups. To ensure
that the opposite endpoint uses a range of different configu-
rations, we let the opposite endpoint execute multiple times
using different configuration files, which we automatically
generate.

An input to a security protocol implementation, such as
our test subject OpenSwan, is the sequence of messages
exchanged during a protocol run. Each message typically
consists of multiple payloads, where each payload consists
of multiple fields. The protocol standard specifies how the
fields’ bits are interpreted. The layered structure of the in-
puts to protocol implementations allows SecFuzz to mutate
the inputs at different levels of abstraction. SecFuzz’s fuzz
operators are described in Table 1. We remark that a mes-

Table 2: Sample Constraints Extracted from IKE-
related RFCs.

ID Description

c1 The first aggressive mode message must contain a
key exchange payload.

c2 If a message contains a proposal payload, then the
proposal payload’s next-payload field must be set
to 2 or 0.

c3 The length field correctly identifies the payload’s
length.

sage often has dependencies across its fields. For example, a
string field with variable length may have a dedicated field
indicating the string’s length. Similarly, payloads often have
a field indicating the type of the next payload in the message.
The messages are often preprocessed by packet filters upon
reception and messages with inconsistent fields are dropped.
To ensure that not all mutated messages are dropped, Sec-
Fuzz may choose to update the dependent fields after apply-
ing a field/payload fuzz operator; see [34] for further details.

3.2 IKE Constraints
IKE is a widely deployed security protocol used to es-

tablish security associations between two endpoints. A se-
curity association (SA) is a set of cryptographic attributes
(e.g. encryption algorithms and hash functions) and a secu-
rity policy used to protect information. IKE uses the In-
ternet Security Association and Key Management Protocol
(ISAKMP), which is a framework for authentication and key
exchange [17]. The ISAKMP specification defines the pay-
load formats (e.g. proposal, key exchange, and identification
payloads) used within IKE. IKE proceeds in two phases.
The first phase has two different modes, main and aggressive
mode, both of which set up a security association between
the endpoints. The negotiated SA establishes a secure chan-
nel for further communication between the endpoints. The
purpose of the second phase, called quick mode, is to set up
an SA on behalf of another service, such as IPsec. After
completing phase two, the two endpoints may exchange ad-
ditional messages, e.g. to check whether the other endpoint
is alive. These messages are specified as information mode
exchanges. The IKE protocol has multiple versions speci-
fied in several RFC documents. For our case study we use
IKEv1 specified in [13].

To measure SVCov for a set of IKE fuzz tests, we first
must specify, using IKE’s RFC documents, the set of con-
straints that define IKE’s valid inputs. For this purpose, in
addition to IKEv1 (RFC2409 [13]), we use IKE-relevant sub-
sets of the ISAKMP protocol (RFC2408 [17]) and also the
Internet IP Security Domain of Interpretation for ISAKMP
(RFC2407 [25]). RFC documents are informal and often
lengthy, for example RFC2408 is 86 pages. We use the stan-
dard keywords must, must not, and required, as heuristics
to analyze IKE’s RFCs. These keywords not only point
at the important sentences in the specifications, but also
they most often have an unambiguous interpretation, which
makes them good candidates for specifying constraints. Ex-
amples of IKE constraints are given in Table 2. Constraint c2,
for instance, is quoted from RFC2408.

Using the straightforward process described above, we ex-
tracted 217 IKE constraints from the aforementioned RFCs.



class C002(object):
...
def check(self, msg, prev_msgs):

if msg[Payload.Proposal] is None:
return VACUOUS

if msg[Payload.Proposal].next_payload not in [0,2]:
return FALSE

return TRUE

Figure 3: Encoding of constraint c2, from Table 2,
in Python.

The number of constraints per main, aggressive, quick, and
information mode are 82, 68, 55, and 12, respectively. The
time required to extract the constraints was approximately
8 person-hours. The constraints are publicly available.1

Next, the informal constraints we have extracted from
IKE-related RFCs are modeled as guarded constraints. For
instance, constraint c2 (in Table 2) is applicable only to the
inputs that contain a proposal payload. We represent c2
as cg . ct, where cg consists of all the inputs that contain a
proposal payload and ct consists of all the inputs whose pro-
posal payload’s next-payload field is set to 2 or 0. Guards in
the IKE constraints typically check whether the constraint is
applicable to a particular IKE exchange mode (quick, main,
or aggressive mode), or to a specific payload (e.g. SA pay-
load, proposal payload, key exchange payload, etc.), or to a
specific message ordering (e.g. c1 in Table 2).

Note that to fuzz-test stateful SUTs thoroughly, one needs
to generate semi-valid inputs that explore the system in
depth. In the case of IKE, for instance, to fuzz-test the
implementation of the protocol’s second phase (namely, its
quick mode), the first phase of the protocol must be suc-
cessfully completed. Indeed, the guarded constraints that
refer to quick mode are applicable only to the inputs that
successfully complete IKE’s first phase. In order to violate
such a constraint, the test would therefore need to complete
IKE’s first phase, and then violate the constraint’s target.
The notion of SVCov thus accounts for states in IKE: the
tests that do not explore the SUT in depth would not violate
the constraints that refer to quick mode (or any following
mode, for this reason).

To check the constraints automatically, we have encoded
them using Scapy, a Python library for parsing and manip-
ulating messages [28]. Figure 3 shows a sample implementa-
tion. The method check in Figure 3 accepts two arguments:
a message and the sequence of messages preceding the mes-
sage. The second argument is needed because some con-
straints refer to the previously exchanged messages (during
the same protocol run). We have implemented a constraint
checker that takes an IKE test, i.e. a sequence of IKE mes-
sages, and outputs the sets of violated, vacuously satisfied,
and non-vacuously satisfied IKE constraints.

We measured the time required to check the constraints
on a machine with an i7-2600 quad-core processor and 8GB
of RAM. On average, the constraint verifier takes 41 mil-
liseconds to check all 217 constraints for one IKE input,
which is 0.19 milliseconds per constraint. In comparison, it
takes on average 1 second to execute a single test (while run-
ning Memcheck). The overhead of measuring the coverage
is therefore negligible.

1http://www.infsec.ethz.ch/research/software/
secfuzz

We conclude that, in the context of IKE, SVCov meets
requirement R1 given in § 1: it is feasible, in a reasonable
amount of time, to precisely define the set of semi-valid
inputs for any IKE implementation. Moreover, the over-
head for checking satisfiability of the constraints is negligi-
ble. Note that extracting the constraints that define the set
of valid inputs of IKE is a one-off task: the constraints are
neither bound to any particular implementation of IKE, nor
to any specific technique used to (fuzz-)test IKE.

3.3 SVCov Measurements
We used the constraints defined in § 3.2, hereafter referred

to as SIKE, to measure the semi-valid input coverage of 36,000
tests generated using SecFuzz. The measurements pre-
sented below correspond to running SecFuzz for 10 hours.
That is, executing each test requires on average 1 second.

In the graph depicted in Figure 4, the solid line shows
SVCovSIKE (T ), and the dashed line shows ViolatedSIKE (T ),
both as a function of the number of tests executed on the
SUT. The graph shows that initially the tests generated
by SecFuzz rapidly increase SVCov. As expected, the rate
of increase decreases as fuzz testing progresses. This is be-
cause initially the sets σc are not covered and the tests are
very likely to cover them. As more σc are covered by the
tests, the newly generated tests are increasingly likely to fall
into already covered σc and hence they do not increase SV-
Cov.
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Figure 4: SVCov versus Violated.

At the end of the experiment, SVCov is 90 out of the
217 constraints, that is 41%. Moreover 86% of IKE’s con-
straints are violated at least once and therefore 14% of the
constraints in SIKE are never violated. In § 3.4, we explain
why SVCov is low and why there is a large discrepancy
between SVCov and Violated.

We have discovered a critical security vulnerability in the
SUT (OpenSwan’s responder) during this experiment, which
we reported in CVE-2011-4073. The vulnerability is found
with 4,800 tests, on average. We remark that fuzz testing
is inherently random. Therefore, to measure the average
time SecFuzz requires to find the aforementioned vulnera-
bility, we have executed the tests several times.

3.4 Coverage Analysis
In this section, we analyze the coverage achieved in our

experiment, reported in § 3.3. The purpose of the analysis
is to understand why SVCov is low and to find ways to
increase it.



The definition of SVCov depends on the set SIKE of con-
straints and on the test set. In turn, the test set generated
by SecFuzz depends on the set of valid inputs provided by
the opposite endpoint and the set of fuzz operators imple-
mented in SecFuzz. Therefore, three factors affect SVCov:
(1) the set of fuzz operators implemented in SecFuzz, (2)
the set of constraints SIKE, and (3) the set of valid inputs.
Below, we discuss the issues related to each of these factors
that we have found. Naturally, the time we allocated for
fuzz testing IKE also plays a role.

3.4.1 Implementation Bugs in SecFuzz and Impre-
cise Fuzz Operators

As mentioned above, there is a large gap between SVCov
and Violated in the experiment. The fuzz operators of
SecFuzz could be the reason: the operators “degrade” the
valid inputs to the extent that the mutated inputs cannot
uniquely violate certain constraints in SIKE. Guided by the
constraints that were violated, but not uniquely, in the ex-
periment, we have manually investigated the fuzz operators
of SecFuzz, and discovered several problems:

Scapy Library: A given IKE payload specifies encryption
attributes, which SecFuzz cannot modify as it relies
on Scapy. Consequently, if a constraint requires that
this payload specifies a particular encryption attribute,
then SecFuzz cannot generate tests that uniquely vi-
olate the constraint. This is a limitation SecFuzz in-
herits from the Scapy library.

Insert Payload Operator: Due to its randomness, Sec-
Fuzz’s insert payload fuzz operator does not always in-
sert payloads that are well-formed according to IKE.
For instance, in order to violate the IKE constraint
“a message that contains a security association payload
must not contain any identification payloads,” Sec-
Fuzz’s insert payload operator must be used. How-
ever, the inserted identification payload is with an over-
whelming probability ill-formed. Therefore, the con-
straint is unlikely to be uniquely violated by the tests
generated using SecFuzz.

Implementation Bugs: We have identified a number of
implementation bugs in SecFuzz. For instance, for
some operators, the random numbers that can be placed
in a field are limited to positive integers smaller than
100, while to violate some IKE constraints SecFuzz
must insert numbers greater than 100.

Overall, using SVCov as a guide, we pinpointed a number
of subtle problems in SecFuzz’s fuzz operators. In principle,
some of these problems could have been found by testing
the fuzz operators (and, the fuzz operator tester needs to
be tested too). However, testing the operators is limited to
revealing bugs in their implementation and cannot discover
missing fuzz operators or issues with their precision.

3.4.2 Non-minimal Set of Constraints
For any constraint c, σc obviously cannot be covered if it

is empty; see § 2.2. By analyzing the constraints in SIKE, we
have found one constraint c where σc = ∅. The constraint c
states that: The ID field in the first round messages must
be set to zero. This constraint subsumes the intersection of
the following two constraints:

• cp: The first round messages must contain the key ex-
change payload.

• cq: The ID field must be set to zero in messages con-
taining the key exchange payload.

If c is violated, then the message is a first round message
and the ID field is not set to zero. However, if the message
does not contain a key exchange payload, it violates cp; if it
does contain a key exchange payload, then it violates cq.

We did not remove c from SIKE, so that a fair comparison
can be made between the first experiment and our second
experiment, discussed in § 3.5. Note that the overlapping
constraints discussed above are not a problem of SIKE per
se: they indicate that the corresponding phrases in the RFCs
are redundant.

3.4.3 Vacuous Valid Inputs
We noticed that the valid inputs that vacuously satisfy a

guarded constraint cg . ct are ill-suited for generating semi-
valid inputs that belong to σcg.ct . Suppose that the con-
straint is vacuously satisfied by an input i, i.e. i 6∈ cg. Let
us write î for the mutated input that SecFuzz sends to the
SUT. In order for î to belong to σcg.ct , the SecFuzz’s fuzz
operators should“enhance”i to satisfy cg and simultaneously
they should “degrade” i to violate ct. This is clearly beyond
the purpose of the fuzz operators. Indeed, in our case study,
79% of the constraints σcg.ct are always uniquely violated
by tests generated using valid inputs that satisfy cg.

As an indicator for the valid inputs’ quality we can there-
fore measure the number of constraints that are vacuously
satisfied by all the valid inputs. Note that we measure the
vacuity of the valid inputs, i.e. the ones created by the op-
posite endpoint; we do not measure the vacuity of the tests,
i.e. the mutated inputs SecFuzz sends to the SUT. We
found that 22 constraints (10%) are vacuously satisfied by
all the valid inputs. This indicates that there are missing
valid inputs in our experiment.

Missing Valid Inputs. 18 of the 22 constraints are vacu-
ously satisfied because the inputs generated by the opposite
endpoint have a fixed ordering of the payloads in the mes-
sage. For instance, the key exchange payload, which carries
the data to generate a session key, is never placed as the last
payload in the message. According to IKE’s specification,
there are however no ordering restrictions for the payloads
in IKE messages (with a few exceptions for the messages ex-
changed in quick mode). However, the opposite endpoint’s
implementation (OpenSwan’s initiator) orders the payloads
deterministically, which causes 18 constraints to be always
vacuously satisfied.

The other 4 constraints are vacuously satisfied because
the endpoints always use their IPv4 addresses for identifica-
tion. Consequently, constraints similar to: An identification
payload of type IPv6 must specify a valid IPv6 address, are
always vacuously satisfied. Recall that the generated valid
inputs depend on the configuration files used to initialize the
opposite endpoint (see § 3.1). We noted that in our experi-
ment there were no configuration files that specify identifica-
tion types different from IPv4. For example, there were no
configuration files for IPv6 and ASN.1 X.500 Distinguished
Name.

To generate valid inputs that do not vacuously satisfy the
constraints in SIKE, we have implemented a message pre-
processor that shuffles the payloads in the message before



handing them to SecFuzz, and we have created additional
configuration files for the opposite endpoint to generate valid
inputs using different identification types. These modifica-
tions are indeed sufficient: no constraints are vacuously sat-
isfied by the valid inputs, after the improvements.

3.4.4 Coverage Analysis Summary
We have carefully analyzed the results of the experiment.

The analysis, guided by SVCov, led to a number of signif-
icant improvements in SecFuzz, its fuzz operators, and its
pre-processing libraries. Moreover, it helped us to discover
a redundancy in the RFCs themselves. Indeed, SVCov pro-
vided us with the means to pinpoint the aforementioned
problems, and guided us in their repair. We conclude this
discussion by pointing out that requirement R2, given in § 1,
is met in the context of fuzz testing IKE. In the next section,
we see how these improvements translate to more effective
fuzz testing of IKE with higher SVCov.

3.5 Measuring SVCov After Improvements
We have repeated the experiment of fuzz testing IKE after

addressing the implementation bugs in SecFuzz (with the
exception of the insert payload fuzz operator in SecFuzz
because its repair is nontrivial) and the problem of missing
valid inputs. We then measured SVCov as before, depicted
in Figure 5. The new measurements show that SVCov is
increased from 41% to 89%. That is, 193 out of the 217
constraints have been uniquely violated. Note that the in-
crease in SVCov is not due to enlarging the test set: in both
experiments we have 36,000 tests.
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Figure 5: SVCov versus Violated: Second Experi-
ment.

In terms of Violated, 216 of the 217 constraints are vi-
olated by the tests. Therefore, 23 constraints are violated,
but not uniquely. For 11 of these constraints, the reason
for always violating them along with additional constraints
is the limited precision of the insert payload fuzz operator.
One constraint cannot be uniquely violated because of a re-
dundancy in SIKE; see § 3.4.2. The corresponding semi-valid
inputs for the remaining constraints were not generated due
to timeout: we stopped the experiment after 10 hours.

A Vulnerability. The purpose of fuzz testing is to find
faults in the SUT, rather than increasing SVCov per se.
In the experiment conducted after improving SecFuzz, we
discovered a previously unknown security vulnerability in
OpenSwan’s responder. The vulnerability was found with

34,000 tests on average, and it concerns an invalid read in
the responder when an aggressive mode message is received
with an ID payload that refers to the ASN.1 X.500 Distin-
guished Name. When the field storing the identity is omit-
ted, OpenSwan accesses unallocated memory. Unallocated
memory accesses are dangerous as they can, with a high
likelihood, be exploited by attackers [33]. We have commu-
nicated the details of this vulnerability to the OpenSwan
development team.

The test exposing the problem is generated by the set to
the empty field fuzz operator. The valid input required to
generate the test case is an aggressive mode message with
an ID payload using distinguished names. The reason the
vulnerability was not discovered in our previous experiment
is that the valid input needed to create the test was not
generated by the opposite endpoint; see § 3.4.3.

The vulnerability is revealed by a test input that uniquely
violates a constraint in SIKE. This provides evidence sup-
porting requirement R3: increasing fuzz-testing coverage in
terms of SVCov exposes more faults in the SUT.

3.6 Threats to Validity
In our case study, we used a security protocol implemen-

tation as our test subject. We can therefore draw only lim-
ited conclusions on the feasibility of defining a rich set of
constraints for other kinds of test subjects. We believe how-
ever that it is feasible to define constraints for any software
system for which there exists a sufficiently precise or formal
specification. This is the case for any software implementing
standards (for example PDF viewers and HTTP services),
software developed following design-by-contract methodol-
ogy (APIs), software developed using a model-driven ap-
proach, and so forth.

We have used a mutation-based fuzz-testing tool, Sec-
Fuzz, for fuzz testing our test subject. As noted in § 2.2,
SVCov is agnostic to the technique used to generate tests
and therefore the usefulness of SVCov extends to other fuzz-
testing techniques. The test oracle used in our case study
is Valgrind’s Memcheck. Memory error detectors such as
Memcheck are widely used in fuzz testing; cf. [8, 12]. This
observation mitigates the threats to the external validity of
our study.

4. RELATED WORK
We are not aware of any existing coverage criterion specific

to fuzz testing. Below, we compare SVCov to the coverage
criteria that have been applied to fuzz testing. We are in
agreement with Myers et al. that to generate robust test
sets one must use multiple coverage criteria to balance their
individual weaknesses [20]. That is, we see SVCov as a
complementary coverage criterion to the existing ones.

Program-based coverage criteria such as statement, deci-
sion, and condition coverage (e.g. see [7, 20, 36]) have been
used to measure the thoroughness of fuzz tests. Examples
include [4, 10, 31]. In contrast to these metrics, SVCov
is agnostic to the program structure; it measures to what
extent tests cover the domain of semi-valid inputs.

Input-based coverage criteria defined using input domain
partitions and their boundary values have also been studied
in the literature; see, e.g., [20, 36]. These criteria are similar
to SVCov as they also measure coverage based on the in-
puts as opposed to the SUT’s internal structure. However,
the existing input-based criteria do not account for semi-



valid inputs. For example, Kaksonen and Takanen discuss
a coverage metric which reflects what portion of the input
structure has been mutated by fuzz tests [15]. This metric
is input-based, but does not account for semi-valid inputs.
Similarly, Alrahem and Harris partition the input domain
based on the SUT’s specification, and then select fuzz tests
from each partition [2]. The difference between valid, semi-
valid, and entirely-invalid inputs is however not explicit in
their partitions. As another example, Zhu et al. present
data mutation operators for mutating CAMLE model dia-
grams [29]. They define validity constraints for the inputs
and measure how many tests violate the constraints. In con-
trast to SVCov, they do not distinguish between the tests
that violate a unique constraint, and those that violate more
than one constraints. The distinction is essential for fuzz
testing.

Takanen et al. [32] discuss quality assurance metrics for
comparing fuzzers based on (1) their ability to detect known
vulnerabilities, (2) the number of the supported protocols,
and (3) the expected defect count, estimated using a fuzzer’s
historical fault detection success. These metrics are orthog-
onal to SVCov. The authors also suggest using protocol
RFCs to build “negative” fuzz tests. We do not use RFCs
for generating tests; rather, SVCov measures the coverage
of such negative fuzz tests.

Opstad et al. present a comprehensive empirical study on
fuzz testing more than 250 parsers using different tools [24].
Their goal is to find heuristics for deciding when to stop fuzz
testing. They do not define coverage criteria.

Advanced fuzz-testing techniques such as white-box fuzz
testing (e.g. [6, 9, 11, 12]), model-based fuzz testing (e.g. [1,
3, 16]) and mutation-based fuzz testing of cryptographic pro-
tocols [34], are different methods for fuzz testing a software
system. SVCov defines how one can measure the coverage
of test sets generated using such fuzz-testing methods.

5. CONCLUSIONS AND FUTURE WORK
We propose the semi-valid input coverage criterion SV-

Cov for measuring the coverage of fuzz testing. In a case
study on fuzz testing the Internet Key Exchange protocol
(IKE), we show that SVCov is straightforward to measure
and the coverage measurement overhead is negligible. Our
case study also demonstrates that SVCov is informative and
can guide the tester to improve fuzz-testing coverage. More-
over, improvements we have made to fuzz-testing tools and
libraries to increase SVCov, led to discovering a previously
unknown vulnerability in a popular, stable implementation
of IKE.

Overall, our initial experiences with SVCov are very en-
couraging. Next, we plan to extend our experiments to a
larger set of security-related protocols, in order to be able
to draw statistically significant conclusions about the value
of SVCov.

In terms of generalizing SVCov, one can extend the defi-
nition of semi-valid inputs to those that violate up to k out
of n constraints. In this paper, we have focused on k = 1.
Similarly, thorough test sets could be defined as those con-
taining at least j semi-valid inputs per σc, for every con-
straint c. We have focused on j = 1 in this paper. We intend
to investigate the cost-benefit ratio of such extensions in the
context of security protocols.

Although the definition of SVCov is agnostic to the tech-
niques used to generate tests, it would be interesting to ap-

ply SVCov to different fuzz-testing techniques; for exam-
ple, to measure the coverage of tests generated by white-box
fuzzers, or model-based fuzzers. This is an interesting topic
for future research because we expect that the activities re-
quired to increase the SVCov of tests generated by, say, a
white-box fuzzer, is different from the activities described in
this paper.
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