
ETH Library

Tighter Proofs for the SIGMA and
TLS 1.3 Key Exchange Protocols

Conference Paper

Author(s):
Davis, Hannah; Günther, Felix

Publication date:
2021

Permanent link:
https://doi.org/10.3929/ethz-b-000452409

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Lecture Notes in Computer Science 12727, https://doi.org/10.1007/978-3-030-78375-4_18

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-8495-6610
https://doi.org/10.3929/ethz-b-000452409
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/978-3-030-78375-4_18
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Tighter Proofs for the SIGMA
and TLS 1.3 Key Exchange Protocols

Hannah Davis1(B) and Felix Günther2(B)

Department of Computer Science & Engineering, UC San Diego, La Jolla, USA
Department of Computer Science, ETH Zürich, Zürich, Switzerland

h3davis@eng.ucsd.edu mail@felixguenther.info

Abstract. We give new, fully-quantitative and concrete bounds that
justify the SIGMA and TLS 1.3 key exchange protocols not just in prin-
ciple, but in practice. By this we mean that, for standardized elliptic
curve group sizes, the overall protocol actually achieves the intended
security level.
Prior work gave reductions of both protocols’ security to the underlying
building blocks that were loose (in the number of users and/or sessions),
so loose that they gave no guarantees for practical parameters. Adapting
techniques by Cohn-Gordon et al. (Crypto 2019), we give reductions
for SIGMA and TLS 1.3 to the strong Diffie–Hellman problem which
are tight, and prove that this problem is as hard as solving discrete
logarithms in the generic group model. Leveraging our tighter bounds,
we meet the protocols’ targeted security levels when instantiated with
standardized curves and improve over prior bounds by up to over 90 bits
of security across a range of real-world parameters.

Keywords: Key exchange, SIGMA, TLS 1.3, security bounds, tightness

1 Introduction

The Transport Layer Security (TLS) protocol [41] is responsible for securing bil-
lions of Internet connections every day. Usage statistics for Google Chrome and
Mozilla Firefox report that 76–98% of all web page accesses are encrypted.1 At
the heart of TLS is an authenticated key exchange (AKE) protocol, the so-called
handshake protocol, responsible for providing the parties (client and server) with
a shared, symmetric key that is fresh, private and authenticated. The ensuing
record layer secures data using this key. The AKE protocol of TLS is based
on the SIGMA (“SIGn-and-MAc”) design of Krawczyk [32] for the Internet Key
Exchange (IKE) protocol [28] of IPsec [31], which generically augments an unau-
thenticated, ephemeral Diffie–Hellman (DH) key exchange with authenticating
signatures and MACs.

Naturally, the SIGMA AKE protocol and its incarnation in TLS have been
the recipients of proofs of security. We contend that these largely justify the
1 https://transparencyreport.google.com/, https://telemetry.mozilla.org/

https://transparencyreport.google.com/
https://telemetry.mozilla.org/

2 Hannah Davis and Felix Günther

AKE protocols in principle, but not in practice, meaning not for the parameters
in actual use and at the desired or expected level of security. Our work takes
steps towards filling this gap.

Qualitative and quantitative bounds. Let us expand on this. The proto-
cols KE we consider are built from a cyclic group G in which some DH problem P
is assumed to be hard, a pseudorandom function PRF and unforgeable signature
and MAC schemes S and M. The target for KE is session-key security with ex-
plicit authentication as originating from [12,10,16]. A proof of security has both
a qualitative and quantitative dimension. Qualitatively, a proof of security for
the AKE protocol KE says that KE meets its target definition assuming the
building blocks meet theirs, where, in either case, meeting the definition means
any poly-time adversary has negligible advantage in violating it.

The quantitative dimension associates to each adversary in the security game
of KE a set of resources r, representing its runtime and attack surface (e.g., the
number of users and executed protocol sessions the adversary has access to). It
then relates the maximum advantage of any r-resource adversary in breaking
KE’s security to likewise advantage functions for the building blocks through an
equation of the (simplified) form

AdvKE(r) ≤ fG · AdvP
G(rG) + fS · AdvEUF-CMA

S (rS) + . . . ,

deriving quantitative factors fX and resources rX for the advantage of each build-
ing block X.

Speaking asymptotically again, when fX and rX are polynomial functions in r,
then AdvKE(r) is negligible whenever all building blocks’ advantages are. Due to
the complexity of key exchange models and the challenging task of combining
the right components in a secure manner, key exchange analyses (including prior
work on SIGMA [17] and TLS 1.3 [22,35,26,24]) indeed often remain abstract
and consider only qualitative, asymptotic security bounds.

Standardized protocols like TLS in contrast have to define concrete choices
for each cryptographic building block. This involves considering reasonable es-
timates for adversarial resources (like runtime t and number of key-exchange
model queries q) and specific instances and parameters for the underlying com-
ponents X. One would hope that key exchange proofs can provide guidance in
making sound choices that result in the desired overall security level. Unfortu-
nately, AKE security bounds regularly are highly non-tight, meaning that fX
and/or rX for some components X are so large that reasonable stand-alone pa-
rameters for X yield vacuous key exchange advantages for practical parameters.
While the asymptotic bound tells us that scaling up the parameters for X (say,
the DDH problem [14]) will at some point result in a secure overall advantage,
this causes efficiency concerns (e.g., doubling elliptic curve DH security parame-
ters means quadrupling the cost for group operations) and hence does not happen
in practice.

We illustrate in Table 1 the effects of the non-tight bounds for SIGMA
and TLS 1.3 when instantiating the protocols with NIST curves secp256r1,

Tighter Proofs for the SIGMA and TLS 1.3 Key Exchange Protocols 3

Adv. resources SIGMA TLS 1.3
t #U #S Curve Target CK [17] Us (Thm. 4) DFGS [24] Us (Thm. 5)

260 220 235 secp256r1 2−68 ≈ 2−61 ≈ 2−116 ≈ 2−64 ≈ 2−116

260 230 255 secp256r1 2−68 ≈ 2−21 ≈ 2−106 ≈ 2−24 ≈ 2−106

260 220 235 x25519 2−68 ≈ 2−57 ≈ 2−112 ≈ 2−60 ≈ 2−112

260 230 255 x25519 2−68 ≈ 2−17 ≈ 2−102 ≈ 2−20 ≈ 2−102

280 220 235 secp256r1 2−48 ≈ 2−21 ≈ 2−76 ≈ 2−24 ≈ 2−76

280 230 255 secp256r1 2−48 1 ≈ 2−66 1 ≈ 2−66

280 220 235 x25519 2−48 ≈ 2−17 ≈ 2−72 ≈ 2−20 ≈ 2−72

280 230 255 x25519 2−48 1 ≈ 2−62 1 ≈ 2−62

280 220 235 secp384r1 2−112 ≈ 2−149 ≈ 2−204 ≈ 2−152 ≈ 2−204

280 230 255 secp384r1 2−112 ≈ 2−109 ≈ 2−194 ≈ 2−112 ≈ 2−194

Table 1. Exemplary concrete advantages of a key exchange adversary with given re-
sources t (running time), #U (number of users), #S (number of sessions), in break-
ing the security of the SIGMA and TLS 1.3 protocols when instantiated with curve
secp256r1, secp384r1, or x25519, based on the prior bounds by Canetti-Krawczyk [17]
resp. Dowling et al. [24], and the bounds we establish (Theorem 4 and 5). Target in-
dicates the maximal advantage t/2b tolerable when aiming for the respective curve’s
security level (b = 128 resp. 192 bits); entries in red-shaded cells miss that target. See
Section 7 for full details and curves secp521r1 and x448.

secp384r1 [39], or curve x25519 [37] and idealizing the protocols’ other com-
ponents (see Section 7 for full details). Following the curves’ security, we aim
at a security level of 128 bits, resp. 192 bits, meaning the ratio of an adver-
sary’s runtime to its advantage should be bounded by 2−128, resp. 2−192. When
considering the advantage of key exchange adversaries running in time t, inter-
acting in the security game with #U users and #S sessions, we can see that
previous security bounds fail to meet the targeted security level for real-world–
scale parameters (#U ranging in 220–230 based on 227 active certificates on
the Internet, #S ranging in 235–255 based on 232 Internet users and 233 daily
Google searches2). In the security analysis by Canetti and Krawczyk [17] (CK)
for SIGMA, the factor associated to the decisional Diffie–Hellman problem is
fDDH(t,#U,#S) = #U ·#S, where #U and #S again are the number of users,
resp. sessions, accessible by the adversary. The analysis by Dowling et al. [24]
(DFGS) for TLS 1.3 reduces to the strong Diffie–Hellman problem [1]—via the
PRF-ODH assumption [29,15]—with factor fstDH(t,#U,#S) = (#S)2. In con-
trast, we reduce to the strong Diffie–Hellman problem with a constant factor for
both SIGMA and TLS 1.3.

Let us discuss three data points from Table 1:

1. Already with medium-sized resources, investing time t = 260 and interacting
with a million users (#U = 220) and a few billion sessions (#S = 235), the
CK [17] and DFGS [24] advantage bounds for SIGMA and TLS 1.3 with

2 https://letsencrypt.org/stats/, https://www.internetlivestats.com/

https://letsencrypt.org/stats/
https://www.internetlivestats.com/

4 Hannah Davis and Felix Günther

curves secp256r1 and x25519 fall 6–11 bits below the target of 2−68 for
128-bit security.

2. When considering a more powerful, global-scale adversary (t = 280, #U =
230, #S = 255), both CK and DFGS bounds for secp256r1/x25519 become
fully vacuous; the upper bound on the probability of the adversary breaking
the protocol is 1. We stress that secp256r1 is the mandatory-to-implement
curve for TLS 1.3; secp256r1 and x25519 together make up for 90% of the
TLS 1.3 ECDHE handshakes reported through Firefox Telemetry.

3. Finally, and notably, even switching to the higher-security curve secp384r1
helps only marginally in the latter case: the resulting advantage against
SIGMA falls 3 bits short of the 192-bit security target of 2−112, and the
TLS advantage bound only barely meets that target.

For all curves and choices of parameters, our bounds do better.

Contributions. Most prior results in tightly secure key exchange (e.g., [4,27])
apply only to bespoke protocols, carefully designed to allow for tighter proof
techniques, at the cost of requiring more complex primitives which, in the end,
eat up the gained practical efficiency. Our work in contrast establishes tight se-
curity for standardized AKE protocols. We give tight reductions for the security
of SIGMA and TLS 1.3 to the strong Diffie–Hellman problem [1], which in addi-
tion we prove is as hard as the discrete logarithm problem in the generic group
model (GGM) [42,38]. Instantiating our bounds shows that, with standardized
real-world parameters, we achieve the intended security levels even when con-
sidering powerful, globally-scaled attackers.

Tighter security proof of SIGMA(-I). We establish fully quantitative security
bounds for SIGMA and its identity-protecting variant SIGMA-I [32] in Sections 3
and 4. Our result is for BR-like [12] key exchange security and gives a tight
reduction to the strong Diffie–Hellman problem [1] in the used DH group, and
to the multi-user (mu) security of the employed pseudorandom function (PRF),
signature scheme, and MAC scheme, adapting the techniques by Cohn-Gordon
et al. [19] in the random oracle model [11]. The latter mu-security bounds are
essentially equivalent to the corresponding bounds by CK [17]. Our improvement
comes from shaving off a factor of #U ·#S (number of users times number of
sessions) on the DH problem advantage compared to CK. While we move to the
interactive strong Diffie–Hellman problem (compared to DDH [14] used in [17]),
we prove (in Appendix C) that the strong DH problem, like DDH, is as hard as
solving discrete logarithms in the generic group model [42,38].

Tighter security proof for the TLS 1.3 DH handshake. We likewise establish
fully quantitative security bounds for the key exchange of the recently stan-
dardized newest version of the Transport Layer Security protocol, TLS 1.3 [41],
in Sections 5 and 6. The main quantitative improvement in our reduction is
again a tight reduction to the strong DH problem, whereas prior bounds by
DFGS [24] incurred a quadratic loss to the PRF-ODH assumption [29,15], a loss

Tighter Proofs for the SIGMA and TLS 1.3 Key Exchange Protocols 5

which translates directly to strong DH [15]. While TLS 1.3 roughly follows the
SIGMA-I design, its cascading key schedule impedes the precise technique of
Cohn-Gordon et al. [19] and a direct application of our results on SIGMA-I, as
no single function (to be modeled as a random oracle) binds the Diffie–Hellman
values to the session context. We therefore have to carefully adapt the proof
to accommodate the more complex key schedule and other core variations in
TLS 1.3’s key exchange, achieving conceptually similar tightness results as for
SIGMA-I.

Evaluation. In Section 7, we evaluate the concrete security implications of our
improved bounds for SIGMA and TLS 1.3 for a wide range of real-world resource
parameters and all five elliptic curves standardized for use in TLS 1.3 [41], a
summary of which is displayed in Table 1. We report that our tighter proofs
indeed materialize for a wide range of real-world resource parameters. The re-
sulting attacker advantages meet the targeted security levels of all five curves.
In comparison to the prior CK [17] SIGMA and DFGS [24] TLS 1.3 bounds, our
results improve the obtained security across these real-world parameters by up
to 85 bits for SIGMA and 92 bits for TLS 1.3, respectively.

Concurrent work. In concurrent and independent work, Diemert and Jager
(DJ) [21] studied the tight security of the main TLS 1.3 handshake. Their work
also tightly reduces the security of TLS 1.3 to the strong Diffie–Hellman problem
by extending the technique of Cohn-Gordon et al. [19], and their bounds and
ours are similarly tight. When instantiated with real-world parameters, both
bounds are dominated by the same terms, as we will demonstrate in Section 7.
Our proof differs from theirs in two key ways: We use an incomparable security
model that is weaker in some ways and stronger in others, and we approximate
the TLS 1.3 key schedule with fewer random oracles. We also contextualize our
results quite differently than the DJ work, with a detailed numerical analysis
that is enabled by our fully parameterized, concrete bounds. Uniquely to this
work, we treat the more generic SIGMA-I protocol and justify our use of the
strong DH problem with new bounds in the generic group model. Diemert and
Jager [21] in turn study tight composition with the TLS record protocol.

The DJ analysis is carried out in the multi-stage key exchange model [25],
proving security not only of the final session key, but also of intermediate hand-
shake encryption keys and further secrets. While our proof does show security
of these intermediate keys, we do not treat them as first-class keys accessible to
the adversary through dedicated queries in the security model. Unlike either the
DJ or Cohn-Gordon et al. works, our model addresses explicit authentication,
which we prove via HMAC’s unforgeability.

To tackle the challenge that TLS 1.3’s key schedule does not bind DH val-
ues and session context in one function, DJ model the full cascading derivation
of each intermediate key monolithically as an independent, programmable ran-
dom oracle (cf. [21, Theorem 6]). We instead model the key schedule’s inner
HKDF [34] extraction and expansion functions as two individual random or-
acles, carefully connected via efficient look-up tables, yielding a slightly less

6 Hannah Davis and Felix Günther

extensive use of random oracles and compensating for the existence of shared
computations in the derivation of multiple keys. This approach produces more
compact bounds and allows our analysis to stay closer to the use of HKDF in
TLS 1.3, where the output of one extraction call is used to derive multiple keys.

2 AKE Security Model and Multi-User Building Blocks

We provide our results in a game-based key exchange model formalized in Fig-
ure 1, at its core following the seminal work by Bellare and Rogaway [12] con-
sidering an active network adversary that controls all communication (initi-
ating sessions and determining their next inputs through Send queries) and
is able to corrupt long-term secrets (RevLongTermKey) as well as session
keys (RevSessionKey). The adversary’s goal is then to (a) distinguish the
established shared session key in a “fresh” (not trivially compromised, cap-
tured through a Fresh predicate) session from a uniformly random key obtained
through Test queries (breaking key secrecy), or (b) make a session accept with-
out matching communication partner (breaking explicit authentication).

Following Cohn-Gordon et al. [19], we formalize our model in a real-or-
random version (following Abdalla, Fouque, and Pointcheval [3] with added
forward secrecy [2]) with many Test queries which all answer with a real or
uniformly random session key based on the same random bit b. We focus on the
security of the main session key established. While our proofs (for both SIGMA
and TLS 1.3) establish security of the intermediate encryption and MAC keys,
too, we do not treat them as first-class keys available to the adversary through
Test and RevSessionKey queries. We expect that our results extend to a
multi-stage key exchange (MSKE [25]) treatment and refer to the concurrent
work by Diemert and Jager [21] for tight results for TLS 1.3 in a MSKE model.

In contrast to the work by Cohn-Gordon et al. [19] and Diemert and Jager [21],
our model additionally captures explicit authentication through the ExplicitAuth
predicate in Figure 1, ensuring sessions with non-corrupted peer accept with an
honest partner session. We and [21] further treat protocols where the commu-
nication partner’s identity of a session may be unknown at the outset and only
learned during the protocol execution; this setting of “post-specified peers” [17]
particularly applies to the SIGMA protocol family [32] as well as TLS 1.3 [41].

Key exchange protocols. We begin by formalizing the syntax of key ex-
change protocols. A key exchange protocol KE consists of three algorithms (KGen,
Activate,Run) and an associated key space KE.KS (where most commonly KE.KS =
{0, 1}n for some n ∈ N). The key generation algorithm KGen() $−→ (pk, sk) gener-
ates new long-term public/secret key pairs. In the security model, we will asso-
ciate key pairs to distinct users (or parties) with some identity u ∈ N running the
protocol, and log the public long-term keys associated with each user identity in
a list peerpk. (The adversary will be in control of initializing new users, identified
by an increasing counter, and we assume it only references existing user iden-
tities.) The activation algorithm Activate(id, sk, peerid, peerpk, role) $−→ (st′,m′)

Tighter Proofs for the SIGMA and TLS 1.3 Key Exchange Protocols 7

initiates a new session for a given user identity id (and associated long-term
secret key sk) acting in a given role role ∈ {initiator, responder} and aiming to
communicate with some peer user identity peerid. Activate also takes as input
the list peerpk of all users’ public keys; protocols may use this list to look up
their own and their peers’ public keys. We provide the entire list instead of just
the user’s and peers’ public keys to accommodate protocols with post-specified
peer. These protocols may leave peerid unspecified at the time of session acti-
vation; when the peer identity is set at some later point, the list can be used to
find the corresponding long-term key. Activation outputs a session state and (if
role = initiator) first protocol message m′, and will be invoked in the security
model to create a new session πi

u at a user u (where the label i distinguishes dif-
ferent sessions of the same user). Finally, Run(id, sk, st, peerpk,m) $−→ (st′,m′)
delivers the next incoming key exchange message m to the session of user id
with secret key sk and state st, resulting in an updated state st′ and a response
message m′. Like Activate, it relies on the list peerpk to look up its own and its
peer’s long-term keys.

The state of each session in a key exchange protocol contains at least the
following variables, beyond possibly further, protocol-specific information:

peerid ∈ N. Reflects the (intended) partner identity of the session; if post-
specified, this is learned and set (once) during protocol execution.

role ∈ {initiator, responder}. The session’s role, determined upon activation.
status ∈ {running, accepted, rejected}. The session’s status; initially status =

running, a session accepts when it switches to status = accepted (once).
skey ∈ KE.KS. The derived session key (inKE.KS), set upon acceptance.
sid. The session identifier used to define partnered session in the security
model; initially unset, sid is determined (once) during protocol execution.

Key exchange security. We formalize our key exchange security game GKE-SEC
KE,A

in Figure 1, based on the concepts introduced above in Figure 1 and following
the framework for code-based game playing by Bellare and Rogaway [13]. Af-
ter initializing the game, the adversary A is given access to queries NewUser
(generating a new user’s public/secret key pair), Send (controlling activation
and message processing of sessions), RevSessionKey (revealing session keys),
RevLongTermKey (corrupting user’s long-term secrets), and Test (provid-
ing challenge real-or-random session keys), as well as a Finalize query to which
it will submit its guess b′ for the challenge bit b, ending the game.

The game GKE-SEC
KE,A then (in Finalize) determines whether A was successful

through the following three predicates, formalized in pseudocode in Figure 1:
Sound ensures session identifiers are set in a sound manner (non-colliding, en-
suring agreement on session keys). ExplicitAuth encodes explicit authentication,
requiring that accepted sessions agree on the intended peer (if non-corrupted).
Finally, to capture key secrecy, we have to restrict the adversary to testing only
fresh (i.e., not trivially compromised) sessions in order to exclude trivial attacks;
this is ensured through Fresh.

8 Hannah Davis and Felix Günther

GKE-SEC
KE,A

Initialize:
1 time← 0; users← 0
2 b $←− {0, 1}

NewUser:
3 users← users + 1
4 (pkusers, skusers) $←− KGen()
5 revltkusers ←∞
6 peerpk[users]← pkusers

7 return pkusers

Send(u, i,m):

8 if πiu = ⊥ then
9 (peerid, role)← m

10 (πiu,m′) $←− Activate(u, sku, peerid,
peerpk, role)

11 πiu.tacc ← 0
12 else
13 (πiu,m′) $←− Run(u, sku, πiu, peerpk,m)
14 if πiu.status = accepted then
15 time← time + 1
16 πiu.tacc ← time
17 return m′

RevSessionKey(u, i):

18 if πiu = ⊥ or πiu.status 6= accepted then
19 return ⊥
20 πiu.revealed← true
21 return πiu.skey

RevLongTermKey(u):
22 time← time + 1
23 revltku ← time
24 return sku

Test(u, i):

25 if πiu = ⊥ or πiu.status 6= accepted or
πiu.tested then

26 return ⊥
27 πiu.tested← true
28 T ← T ∪ {πiu}
29 k0 ← πiu.skey

30 k1
$←− KE.KS

31 return kb

Finalize(b′):
32 if ¬Sound then return 1
33 if ¬ExplicitAuth then return 1
34 if ¬Fresh then b′ ← 0
35 return [[b = b′]]

Sound:
1 if ∃ distinct πiu, πjv, πkw with πiu.sid =
πjv.sid = πkw.sid then // no triple sid match

2 return false
3 if ∃πiu, πjv with

πiu.status = πjv.status = accepted
and πiu.sid = πjv.sid
and πiu.peerid = v and πjv.peerid = u
and πiu.role 6= πjv.role, but πiu.skey 6=

πjv.skey then // partnering implies same key
4 return false
5 return true

ExplicitAuth:
1 return
∀πiu : πiu.status = accepted

and πiu.tacc < revltkπi
u.peerid

// all sessions accepting with a non-corrupted
peer . . .

=⇒ ∃πjv : πiu.peerid = v
and πiu.sid = πjv.sid
and πiu.role 6= πjv.role

// . . . have a partnered session . . .
and (πjv.status = accepted =⇒

πjv.peerid = u) // . . . agreeing on the peerid
(upon acceptance)

Fresh:
1 for each πiu ∈ T
2 if πiu.revealed then
3 return false // tested session may not

be revealed
4 if ∃πjv 6= πiu : πjv.sid = πiu.sid

and (πjv.tested or πjv.revealed) then
5 return false // tested session’s part-

nered session may not be tested or revealed
6 if revltkπi

u.peerid
< πiu.tacc then

7 return false // tested session’s peer may
not be corrupted prior to acceptance

8 return true

Fig. 1. Key exchange security game.

Tighter Proofs for the SIGMA and TLS 1.3 Key Exchange Protocols 9

We call two distinct sessions πi
u and πj

v partnered if πi
u.sid = πj

v.sid. We refer
to sessions generated by Activate (i.e., controlled by the game) as honest sessions
to reflect that their behavior is determined honestly by the game and not the
adversary. The long-term key of an honest session may still be corrupted, or its
session key may be revealed without affecting this notion of “honesty”.

Definition 1 (Key exchange security). Let KE be a key exchange protocol
and GKE-SEC

KE,A be the key exchange security game defined in Figure 1. We define

AdvKE-SEC
KE (t, qN, qS, qRS, qRL, qT) := 2 ·max

A
Pr
[
GKE-SEC

KE,A ⇒ 1
]
− 1,

where the maximum is taken over all adversaries, denoted (t, qN, qS, qRS, qRL, qT)-
KE-SEC-adversaries, running in time at most t and making at most qN, qS,
qRS, qRL, resp. qT queries to their oracles NewUser, Send, RevSessionKey,
RevLongTermKey, resp. Test.

Security properties. We capture regular key secrecy of the main session key
throughTest queries, incorporating explicit authentication as well as (“perfect”)
forward secrecy by allowing corruption as long as each tested sessions accepted
prior to corrupting its intended peer. This strengthens our model compared to
that of Cohn-Gordon et al. [19] which only captures implicit authentication and
weak forward secrecy; while Diemert and Jager [21] additionally treat the secu-
rity of intermediate and further keys beyond the main session key in a multi-stage
approach [25], but without capturing explicit authentication. Like [19,21], our
model captures key-compromise impersonation, but not session-state or random-
ness reveals [16,36] or post-compromise security [18].

Multi-User Security Advantages. Before we continue to our technical re-
sults, let us briefly introduce notation and discuss the multi-user security of
the involved building blocks: PRFs, digital signatures, MAC schemes, and hash
functions. We defer full definitions to Appendix B and only explain how to read
the advantage bounds here.

PRF: Advmu-PRF
PRF (t, qNw, qFn, qFn/U). The maximal advantage in distinguish-

ing PRF from a random function of any adversary running in time t with
access to at most qNw users, making at most qFn function queries overall
and qFn/U function queries per user.

Signature: Advmu-EUF-CMA
S (t, qNw, qSg, qSg/U, qC). The maximal advantage for

an existential signature forgery for S of any adversary running in time t
with access to at most qNw users, making at most qSg/qSg/U signing queries
total/per user, allowed to adaptively corrupt at most qC users.

MAC: Advmu-EUF-CMA
M (t, qNw, qTg, qTg/U, qVf, qVf/U, qC). The maximal advan-

tage for an existential MAC forgery for M of any adversary running in time t
with access to at most qNw users, making at most qTg/qTg/U and qVf/qVf/U

tagging resp. verification queries total/per user, allowed to adaptively cor-
rupt at most qC users.

10 Hannah Davis and Felix Günther

Hash: AdvCR
H (t). The advantage of a given adversary running in time t in

outputting a hash collision under H.

Strong Diffie–Hellman GGM bound. The strong Diffie–Hellman (strong
DH) assumption, a weakening of the gap DH assumption [40], states that solving
the computational DH problem given a restricted decisional DH [14] oracle is
hard.

Definition 2 (Strong Diffie–Hellman problem [40]). Let G = 〈g〉 be a
cyclic group of prime order q. Let DDH(X,Y, Z) := [[X logg(Y) = Z]] be a deci-
sional Diffie–Hellman oracle. We define

AdvstDH
G (t, qsDH) := max

A
Pr
[
ADDH(gx,·,·)(G, g, gx, gy) = gxy

∣∣∣ x, y $←− Zq

]
,

where the maximum is taken over all adversaries, denoted (t, qsDH)-stDH-adversaries,
running in time at most t and making at most qsDH queries to their DDH oracle.

The strong (or gap) DH assumption has been deployed in numerous works to
analyze practical key exchange designs, directly or through the PRF-ODH as-
sumption [29,15] it supports, including [29,25,22,35,23,26,24] as well as in the
closely related works on practical tightness by Cohn-Gordon et al. [19] and
Diemert and Jager [21]. To argue that it is reasonable to rely on the strong
DH assumption, we turn to the generic group model [42,38]. Although some
known algorithms for solving discrete logarithms in finite fields like index calcu-
lus fall outside the generic group model, the best known algorithms for elliptic
curve groups are generic. Shoup [42] proved that, in the generic group model,
any adversary computing at most t group operations in a group of prime order p
has advantage at most O(t2/p) in solving the discrete logarithm, CDH, or DDH
problem. We claim, and prove in Appendix C, that any adversary in the generic
group model making at most t group operations and DDH oracle queries, also
has advantage at most O(t2/p) in solving the strong Diffie–Hellman problem.

Theorem 3. Let G be a group with prime order p. In the generic group model,
AdvstDH

G (t, q) ≤ 4t2/p.

3 The SIGMA Protocol

The SIGMA family of key exchange protocols introduced by Krawczyk [32,33] de-
scribes several variants for building authenticated Diffie–Hellman key exchange
using the “SIGn-and-MAc” approach. Its design has been adopted in several
Internet security protocols, including, e.g., the Internet Key Exchange proto-
col [28,30] as part of the IPsec Internet security protocol [31] and the newest
version 1.3 of the Transport Layer Security (TLS) protocol [41].

Beyond the basic SIGMA design, we are particularly interested in the SIGMA-I
variant which forms the basis of the TLS 1.3 key exchange and aims at hid-
ing the protocol participants’ identities as additional feature. We here present

Tighter Proofs for the SIGMA and TLS 1.3 Key Exchange Protocols 11

Initiator I Responder Rcyclic group G = 〈g〉 of prime order p

RunInit1(I, skI , st) RunResp1(R, skR, st, peerpk,m = (nI , X))
x $←− Zp, X ← gx y $←− Zp, Y ← gy

nI
$←− {0, 1}nl nR

$←− {0, 1}nlnI , X
sid← (nI , nR, X, Y)

mk ← RO(nI , nR, X, Y,Xy)
ks/kt/ ke ← PRF(mk, 0/1/2)

σ ← S.Sign(skR, Lrs‖nI‖nR‖X‖Y)
τ ← M.Tag(kt, Lrm‖nI‖nR‖R)

c← (R, σ, τ) c← Encke (R, σ, τ)
RunInit2(I, skI , st, peerpk,m = (nR, Y, c))

nR, Y, c
sid← (nI , nR, X, Y)
mk ← RO(nI , nR, X, Y, Y x)
ks/kt/ ke ← PRF(mk, 0/1/2)
(R, σ, τ)← c (R, σ, τ)← Decke (c)
abort if ¬S.Vrfy(peerpk[R], Lrs‖nI‖nR‖X‖Y, σ)
abort if ¬M.Vrfy(kt, Lrm‖nI‖nR‖R, τ)
status← accepted; peerid← R

σ′ ← S.Sign(skI , Lis‖nI‖nR‖X‖Y)
τ ′ ← M.Tag(kt, Lim‖nI‖nR‖I)
c′ ← (I, σ′, τ ′) c′ ← Encke (I, σ′, τ ′)

RunResp2(id, sk, st, peerpk,m = c′)
c′

(I, σ′, τ ′)← c′ (I, σ′, τ ′)← Decke (c′)
abort if ¬S.Vrfy(peerpk[I], Lis‖nI‖nR‖X‖Y, σ′)

abort if ¬M.Vrfy(kt, Lim‖nI‖nR‖I, τ ′)
status← accepted; peerid← I

accept with key skey = ks and session identifier sid = (nI , nR, X, Y)

st.state← (n,X, x)

st.state← (n, n′, X, Y, ks, kt, ke)

Fig. 2. The SIGMA/SIGMA-I protocol flow diagram. Boxed code is only performed
in the SIGMA-I variant. Values Lx indicate label strings (distinct per x).

an augmented version of the basic SIGMA/SIGMA-I protocols which includes
explicit exchange of session-identifying random numbers (nonces) to be closer
to SIGMA(-like) protocols in practice, somewhat following the “full-fledged”
SIGMA variant [33, Appendix B]. We illustrate these protocol flows in Figure 2.

The SIGMA and SIGMA-I protocols make use of a signature scheme S =
(KGen,Sign,Vrfy), a MAC scheme M = (KGen,Tag,Vrfy), a pseudorandom func-
tion PRF, and a function RO which we model as a random oracle. The parties’
long-term secret keys consist of one signing key, i.e., KE.KGen = S.KGen. The
protocols consists of three messages exchanged and accordingly two steps per-
formed by both initiator and responder, which we describe in more detail now.

Initiator Step 1. The initiator picks a Diffie–Hellman exponent x $←− Zp and
a random nonce nI of length nl and sends nI and gx.

Responder Step 1. The responder also picks a random DH exponent y and
a random nonce nR. It then derives a master key as mk ← RO(nI , nR,
X, Y,Xy) from nonces, DH shares, and the joint DH secret gxy = (gx)y.
From mk, keys are derived via PRF with distinct labels: the session key ks,
the MAC key kt, and (only in SIGMA-I) the encryption key ke.
The responder computes a signature σ with skR over nonces and DH shares
(and a unique label Lrs) and a MAC value τ under key kt over the nonces
and its identity R (and unique label Lrm). It sends nI , gy, as well as R, σ,

12 Hannah Davis and Felix Günther

and τ to the initiator. In SIGMA-I the last three elements are encrypted
using ke to conceal the responder’s identity against passive adversaries.

Initiator Step 2. The initiator also computes mk and keys ks, kt, and (in
SIGMA-I, used to decrypt the second message part) ke. It ensures both the
received signature σ and MAC τ verify, and aborts otherwise.
It computes its own signature σ′ under skI on nonces and DH shares (with a
different label Lis) and a MAC τ ′ under kt over the nonces and its identity I
(with yet another label Lim). It sends I, σ′, and τ ′ to the responder (in
SIGMA-I encrypted under ke) and accepts with session key ks using the
nonces and DH shares (nI , nR, X, Y) as session identifier.

Responder Step 2. The responder finally checks the initiator’s signature σ′
and MAC τ ′ (aborting if either fails) and then accepts with session key skey =
ks and session identifier sid = (nI , nR, X, Y).

4 Tighter Security Proof for SIGMA-I

We now come to our first main result, a tighter security proof for the SIGMA-I
protocol. Note that by omitting message encryption our proof similarly applies
to the basic SIGMA protocol.

Theorem 4. Let the SIGMA-I protocol be as specified in Figure 2 based on a
group G of prime order p, a PRF PRF, a signature scheme S, and a MAC M,
and let RO in the protocol be modeled as a random oracle. For any (t, qN, qS, qRS,
qRL, qT)-KE-SEC-adversary against SIGMA-I making at most qRO queries to RO,
we give algorithms B1, B2, B3, and B4 in the proof, with running times tB1 ≈
t+ 2qRO log2 p and tBi

≈ t (for i = 2, . . . , 4) close to that of A, such that

AdvKE-SEC
SIGMA-I(t, qN, qS, qRS, qRL, qT)

≤ 3q2
S

2nl+1 · p
+ AdvstDH

G (tB1 , qRO) + Advmu-PRF
PRF (tB2 , qS, 3qS, 3)

+ Advmu-EUF-CMA
S (tB3 , qN, qS, qS, qRL) + Advmu-EUF-CMA

M (tB4 , qS, qS, 1, qS, 1, 0).

Here, nl is the nonce length in SIGMA-I and G is the used Diffie–Hellman group
of prime order p.

In terms of multi-user security for the employed primitives, multi-user PRF
and MAC security can be obtained tightly, e.g., via the efficient AMAC con-
struction [6], and multi-user signature security can be generically reduced to
single-user security of any signature scheme with a loss in the number of users,
here parties (not sessions) in the key exchange game.

Proof outline. We defer the detailed game-based description of the proof to the
full version [20] and only outline its core and novel technical steps here. We give
a more detailed proof for our TLS 1.3 bound in Section 6 which requires careful
handling of the more complex key schedule, but is still structurally close.

Tighter Proofs for the SIGMA and TLS 1.3 Key Exchange Protocols 13

The heart of the proof is the reduction to the strong DH problem. In prior
analyses of SIGMA and TLS 1.3, this reduction embeds a DH challenge into
a single tested session. This technique incurs a loss in the number of sessions
because the reduction must guess in advance which session will be tested. Trans-
lating techniques from Cohn-Gordon et al. [19], we instead use the random self-
reducibility of DH to embed a single challenge into every session which could
possibly accept and be tested without violating the Fresh predicate.

We can divide all sessions into two categories: (A) those who receive nonces
or DH shares that have been tampered with by an adversary and (B) those who
receive unaltered nonces and DH shares from an honest peer. Embedding a DH
challenge into each of these types of sessions must be addressed differently.

If an adversary controls the DH share received by an honest session (cat-
egory (A)), it can compute that session’s DH secret, from which are derived
master key, session key, and MAC key. If such a session has an embedded chal-
lenge, the simulator cannot honestly produce the proper master key. Instead, it
uses the strong DH oracle to detect if the adversary ever makes an RO query
containing the session’s nonces, DH shares, and the corresponding DH secret,
and it programs the response to this query to maintain consistency. The reduc-
tion also cannot produce the proper master key for sessions in category (B);
however, it can again use the strong DH oracle to detect RO queries containing
a valid DH secret that would output the proper master key. This secret can be
used to extract the challenge secret and hence win the strong DH game. One
particular nuance here is that checking each RO query for every session’s DH
secret would lead to a quadratic loss in the number of strong DH oracle queries.
We maintain tightness by instead using the nonces and group elements in the
RO query to identify the relevant sessions and efficiently program responses.

For sessions in category (B), the master key is now chosen uniformly at
random. Invoking PRF security allows the session, traffic encryption, and MAC
keys to be selected at random as well. Each accepting session must receive a valid
signature and MAC tag on its nonces and group elements. Excluding the small
probability that nonces and group elements collide between honest sessions, the
adversary can only produce these by corrupting a long-term key or by forgery.
The former approach violates the Fresh predicate; the latter violates the EUF-
CMA security of either the signature or MAC scheme. Therefore, these sessions
will accept only if they complete an entire protocol execution without tampering
with an honest peer holding the same master key and thus same session key.

For sessions in category (A), the master key may be known to the adversary.
However, these sessions still must receive a valid signature to accept. Since the
nonces and group elements were tampered with, no honest session will produce
this signature. Again, the adversary must resort to either corruption or forgery,
hence violating either freshness or signature EUF-CMA security.

14 Hannah Davis and Felix Günther

5 The TLS 1.3 Handshake Protocol

The Transport Layer Security (TLS) protocol in version 1.3 [41] bases its key
exchange design (the so-called handshake protocol) on a variant of SIGMA-I.
Following the core SIGMA design, the TLS 1.3 main handshake is an ephemeral
Diffie–Hellman key exchange, authenticated through a combination of signing
and MAC-ing the (full, hashed) communication transcript.3 Additionally, and
similar to SIGMA-I, beyond establishing the main (application traffic) session
key, handshake traffic keys are derived and used to encrypt part of the handshake.

Beyond additional protocol features like negotiating the cryptographic algo-
rithms to be used, communicating further information in extensions, etc.—which
we do not capture here—, TLS 1.3 however deviates in two core cryptographic
aspects from the more simplistic and abstract SIGMA(-I) design: it hashes the
communication transcript when deriving keys and computing signatures and
MACs, and it uses a significantly more complicated key schedule. In this sec-
tion we revisit the TLS 1.3 handshake and discuss the careful technical changes
and additional assumptions needed to translate our tight security results for
SIGMA-I to TLS 1.3’s main key exchange mode.

Protocol description. We focus on a slightly simplified version of the hand-
shake encompassing all essential cryptographic aspects for our tightness results.
In particular, we only consider mutual authentication and security of the main
application traffic keys and accordingly leave out some computations and ad-
ditional messages. We illustrate the handshake protocol and its accompanying
key schedule in Figure 3, the latter deriving keys in the extract-then-expand
paradigm of the HKDF key derivation function [34].4

In the TLS 1.3 handshake, the client acts as initiator and the server as re-
sponder. Within Hello messages, both send nonce values nC resp. nS together
with ephemeral Diffie–Hellman shares gx resp. gy. Based on these values, both
parties extract a handshake secret HS from the shared DH value DHE = gxy us-
ing HKDF.Extract with a constant salt input. In a second step, client and server
derive their respective handshake traffic keys tkchs, tkshs and MAC keys fkC ,
fkS through two levels of HKDF.Expand steps from the handshake secret HS,
including in the first level distinct labels and the hashed communication tran-
script H(CH‖SH) so far as context information.

The handshake traffic keys are then used to encrypt the remaining handshake
messages. First the server, then the client send their certificate (carrying their
identity and public key), a signature over the hashed transcript up to including
their certificate, as well as a MAC over the (hashed) transcript up to incl. their
signatures. Note the similarity to SIGMA-I here: each party signs both nonces
3 TLS 1.3 also specifies an abbreviated resumption-style handshake based on pre-
shared keys; we focus on the main DH-based handshake in this work.

4 HKDF.Extract(XTS,SKM) on input salt XTS and source key material SKM outputs
a pseudorandom key PRK. HKDF.Expand(PRK,CTXinfo) on input a pseudorandom
key PRK and context information CTXinfo outputs pseudorandom key material KM.

Tighter Proofs for the SIGMA and TLS 1.3 Key Exchange Protocols 15

Client Server

ClientHello: nC $←− {0, 1}nl, X ← gx

ClientHello

ServerHello: nS $←− {0, 1}nl, Y ← gy

ServerHello

DHE← Y x DHE← XyHS← HKDF.Extract(C1,DHE)
CHTS/SHTS← HKDF.Expand(HS, L1/L2,H(CH‖SH))

dHS← HKDF.Expand(HS, L3,H(""))
tkchs/tkshs ← HKDF.Expand(CHTS/SHTS, L4,H(""))

ServerCert: pkS
ServerCertVfy: SCV← S.Sign(skS , L5‖H(CH‖ . . . ‖SCRT))

fkS ← HKDF.Expand(SHTS, L6,H(""))
ServerFinished: SF← HMAC(fkS ,H(CH‖ . . . ‖SCV))

{ServerCert, ServerCertVfy, ServerFinished}tkshs

abort if ¬S.Vrfy(pkS , L5‖H(CH‖ . . . ‖SCRT), SCV)
abort if SF 6= HMAC(fkS ,H(CH‖ . . . ‖SCV))

ClientCert: pkC
ClientCertVfy: CCV← S.Sign(skC , L7‖H(CH‖ . . . ‖CCRT))
fkC ← HKDF.Expand(CHTS, L6,H(""))
ClientFinished: CF← HMAC(fkC ,H(CH‖ . . . ‖CCV))

{ClientCert, ClientCertVfy, ClientFinished}tkchs

abort if ¬S.Vrfy(pkC , L7‖H(CH‖ . . . ‖CCRT), CCV)
abort if CF 6= HMAC(fkC ,H(CH‖ . . . ‖CCV))

MS← HKDF.Extract(dHS, 0)
ATS← HKDF.Expand(MS, L8,H(CH‖ . . . ‖SF))

accept with key skey = ATS, session identifier sid = (nC , nS , X, Y)

DHE = gxy

HS

dHS

MS

Ext

Exp

Ext

CHTS tkchs

fkC

Exp

H(CH‖SH)

Exp

Exp

SHTS tkshs

fkS

Exp

H(CH‖SH)

Exp

Exp

ATSExp

H(CH‖ . . . ‖SF)

Protocol flow legend Message Abbreviations
MSG: Z message MSG sent, containing Z CH ClientHello
{MSG}K message AEAD-encrypted with K = tkshs/tkchs SH ServerHello

CCRT/SCRT Client/ServerCert
CCV/SCV Client/ServerCertVfy
CF/SF Client/ServerFinished

Fig. 3. The simplified TLS 1.3 main Diffie–Hellman handshake protocol (left) and key
schedule (right). Values Li and Ci indicate bitstring labels, resp. constant values, (dis-
tinct per i). Boxes Ext and Exp denote HKDF extraction resp. expansion, dashed inputs
to Exp indicating context information (see protocol figure for detailed computations).

and DH values (within CH‖SH, modulo transcript hashing) together with a unique
label, and then MACs both nonces and their own identity (the latter being part
of their certificate). The application traffic secret ATS—which we treat as the
session key skey, unifying secrets of both client and server—is then derived
from the master secret MS through HKDF.Expand with handshake context up
to the ServerFinished message. The master secret in turn is derived through
(context-less) Expand and Extract from the handshake secret HS.

Handling the TLS 1.3 key schedule. What crucially differentiates the
TLS 1.3 handshake from the basic SIGMA-I design is the way keys are derived.
While SIGMA-I derives its master key through a random oracle with input

16 Hannah Davis and Felix Günther

both the shared DH secret and the session identifying nonces and DH shares,
TLS 1.3 separates them in its HKDF-based extract-then-expand key schedule:
The core HS and MS secrets are derived without further context purely from
the shared DH secret DHE = gxy. Only when deriving the specific-purpose
secrets—handshake traffic keys, MAC keys, and the session key ATS—are the
nonces and DH shares add as session-identifying context. To complicate matters
even further, this context is hashed and the final session key ATS depends on
more messages than just the session-identifying ones. Recall that the original
techniques by Cohn-Gordon et al. [19] heavily relies on (exactly) the session
identifiers being input together with DH secrets to a random oracle when pro-
gramming the latter, impeding a more direct application like for SIGMA-I. In
their concurrent work, Diemert and Jager [21] satisfy this requirement by mod-
eling the full derivation of each stage key in their multi-stage treatment as a
separate random oracle. This directly connects inputs to keys, but results in a
monolithic random oracle treatment of the key schedule which loses the indepen-
dence of the intermediate HKDF.Extract and HKDF.Expand steps in translation.
As we will show next, we overcome the technical obstacle of this linking while di-
rectly modeling HKDF.Extract and HKDF.Expand as individual random oracles,
carefully orchestrating the programming of intermediate secrets and session keys
and connecting them through constant-time look-ups. This leads to a slightly
less excessive use of the random oracle technique and allows us to stay much
closer to the structure of TLS 1.3’s key schedule.

6 Tighter Security Proof for the TLS 1.3 Handshake

We now give our second main result, the tighter-security bound for TLS 1.3.
Theorem 5. Let A be a key exchange security adversary against the TLS 1.3
handshake protocol as specified in Figure 3 based on a hash function H, a sig-
nature scheme S, and a group G of prime order p, and let the HKDF func-
tions Extract and Expand in the protocol be modeled as (independent) random or-
acles RO1, resp. RO2. For any (t, qN, qS, qRS, qRL, qT)-KE-SEC-adversary against
SIGMA-I making at most qRO queries to the random oracle, we give algorithms B1,
B2, B3, and B4 in the proof, with running times tBi

≈ t (for i = 1, 3, 4) and
tB2 ≈ t+ 2qRO log2 p close to that of A, such that

AdvKE-SEC
TLS 1.3(t, qN, qS, qRS, qRL, qT) ≤ 3q2

S

2nl+1 · p
+ AdvCR

H (tB1)

+ 2 · AdvstDH
G (tB2 , qRO) + qRO · qS

2kl−1 + Advmu-EUF-CMA
S (tB3 , qN, qS, qS, qRL)

+ Advmu-EUF-CMA
HMAC (tB4 , qS, qS, 1, qS, 1, 0).

Here, nl = 256 is the nonce length in TLS 1.3, kl is the output length of RO2 =
HKDF.Expand, G is the used Diffie–Hellman group of prime order p, and qS ·
qRO ≤ 2kl−3.5
5 We simplify the factor on AdvstDH

G to 2 by assuming qS · qRO ≤ 2kl−3, which is true
for any reasonable real-world parameters. See the proof for the exact bound.

Tighter Proofs for the SIGMA and TLS 1.3 Key Exchange Protocols 17

Proof idea. Let us first outline the core and novel technical steps, before we
give some more proof details below; for space reasons we defer the full proof
to the full version [20]. We note that as all keys in the SIGMA exchange are
derived from the master key mk, which is itself derived from the shared Diffie–
Hellman secret, all intermediate keys in TLS 1.3 are derived from the handshake
secret HS, which is derived directly from the shared Diffie–Hellman secret DHE.
Embedding a DH challenge into all sessions robs the reduction of the ability to
compute HS; as in the SIGMA proof, we will need to use the strong DH oracle
to detect and program queries that would output an inconsistent value of HS.
Since HS is derived without context, a naive method would have to check every
input to HKDF.Extract against the DH shares received by each session, which
would however result in a non-tight, quadratic runtime loss.

We instead leverage that the handshake secret HS is an internal value, not
exposed by any oracle. The adversary hence cannot detect an inconsistent HS
value until it makes the entire chain of queries leading to one of the keys tkshs,
tkchs, fkC , fkS , or ATS used in Send, RevSessionKey, and Test responses.
Our reduction prudently sets up a separate bidirectional lookup table for each
“link” in that chain. The adversary can make the RO queries in the chain in
any order; we need only program the last one for consistency, at which time we
have seen the session’s DH secret, nonces, and group elements as query inputs.
Linking the output of one key-derivation step to the input of the next this way,
the reduction can identify the relevant sessions using only constant time and
linear space. Together with a careful argument that the attacker is unlikely to
guess an intermediate chain value, this allows us to treat HKDF.Extract and
HKDF.Expand as two individual random oracles. Thereby, we stay close to how
HKDF is used in TLS 1.3 and obtain two compact strong-DH bounds.

Now we give a more precise view of the structure of our proof, with a particu-
lar focus on nonstandard techniques and the critical random oracle programming
in the reduction step to the strong Diffie–Hellman problem, handling the com-
plexity of TLS 1.3’s key schedule.

Proof. We develop the bound via a series of code-based game hops.
Game 0. The first game G0 is the key exchange security game (cf. Figure 1) for
the TLS 1.3 handshake protocol (Figure 3). So, Pr[G0 ⇒ 1] = Pr[GKE-SEC

TLS,A ⇒ 1].
Games 1–4. Over the next four games we ensure the uniqueness of each ses-
sion’s protocol transcript by aborting if an honest session chooses a nonce and
DH share that have already been sent or received by another honest session, or
if a collision occurs in the hash function H. We limit the probability of nonce
and DH share collisions using a union bound, and give a simple reduction B1 to
the collision resistance of the hash function H. We also lazily sample the random
oracles RO1 and RO2 using internal tables H1 and H2. Excluding collisions, we
obtain the bound Pr[G0 ⇒ 1]− Pr[G4 ⇒ 1] ≤ 3q2

S

2nl+1·p + AdvCR
H (t1).

Games 5–6. Following the technique of [19], we let initiator sessions in cate-
gory (A) copy session, MAC, and traffic encryption keys from their partners via

18 Hannah Davis and Felix Günther

a table indexed by session IDs. In TLS 1.3, there are two encryption keys tkshs
and tkchs, and two MAC keys fkS and fkC to copy. One significant difference
from both [19] and our SIGMA-I proof is that the session key ATS now depends
on the messages SCRT, SCV, and SF. We have not yet ensured that partnered
sessions agree on these values. Therefore honest initiators will only copy ATS
from their partners if they received the exact same (SCRT, SCV, SF) sent by their
partner, which they check via an internal look-up table. Otherwise, ATS is still
computed as in previous games. Since keys are only copied when partners agree
on all of the information entering the key derivation function, this change is
unobservable to A, hence Pr[G6 ⇒ 1] = Pr[G4 ⇒ 1].

Games 7–8. These two games contain both the most critical step and the one
that diverges the most from the SIGMA-I proof. We let all category (A) sessions
that are not already copying their keys pick the handshake traffic keys SHTS and
CHTS, and the session key ATS uniformly at random, checking for consistency
with the random oracle RO2 and retroactively programming it when necessary.
(Category (A) initiator sessions who do not copy ATS due to tampering sample
only ATS.) Then, we eliminate the consistency check and let these sessions’
handshake traffic keys and session key be uniformly random and inconsistent
with the adversary’s queries to RO2. We argue that the adversary can only
detect this inconsistency if it queries RO2 on the correct input to derive one of
SHTS, CHTS, or ATS for a category (A) session, an event we refer to as event F .

We give a reduction B2 to the strong DH assumption in group G which wins
with high probability if event F occurs. Given a challenge C,D, algorithm B2
simulates Game 7. It embeds C in the DH shares of all initiators and D in the
DH shares of all category (A) responders. Because B2 cannot compute the DH
secret for embedded sessions, it uses its stDH oracle to catch and program all
queries to RO2 which are dependent on this secret. When event F occurs, B2
uses its own randomness to extract the challenge DH secret from the DH secret
contained in the query that triggered event F . In addition to the details covered
in Section 6, the reduction has a few nuances:

1. If for some category (A) session, A can guess without making the cor-
responding query any of the intermediate values HS = RO1(C1,DHE),
dHS = RO2(HS, L3,H(“”)), or MS = RO1(dHS, 0), where DHE is the DH
secret associated to some pair of embedded shares (X,Y) chosen by honest
sessions, then it can trigger event F without ever submitting DHE to an
oracle. Without knowing DHE, B2 cannot detect this query, so it does not
program RO2 appropriately and the simulation fails. B2 does not itself com-
pute HS, dHS, or MS for category (A) sessions, so if A does not make the
appropriate queries than all three values are uniformly random and each
can be guessed with probability at most qRO·qS

2kl .
2. In TLS 1.3, the context string including the Diffie–Hellman shares is hashed

with H before it enters the key derivation, so B2 cannot directly associate an
RO2 query with an honest sid. We address this by logging hash computations
of honest sessions in a reverse look-up table R. Then in the RO2 oracle, B2
can use R to efficiently find the context associated with a particular query.

Tighter Proofs for the SIGMA and TLS 1.3 Key Exchange Protocols 19

When qRO · qS ≤ 2kl−3, we obtain the bound Pr[G6 ⇒ 1] − Pr[G8 ⇒ 1] ≤
2 · AdvstDH

G (tB2 , qRO) + qRO·qS

2kl .
The reduction B2 queries the stDH oracle at most once for each query to RO2

query and once more when event F occurs. Computing the input to each stDH
query requires 1 multiplication and one exponentiation in the base group, which
can be done using 1 + 2 log2 p total group operations. In our runtime analysis,
we count each group operation as 1 step, so tB2 ≈ t+ 2qRO log2 p.

Game 9. In game G9, category (A) sessions sample all encryption and MAC
keys uniformly at random. This is distinguishable only if the adversary can query
RO on a string containing one of the random values SHTS or CHTS, so by the
birthday bound Pr[G8 ⇒ 1]− Pr[G9 ⇒ 1] ≤ qRO·qS

2kl .

Games 10–13. In the remaining games, we eliminate signature and MAC
forgeries via straightforward reductions B3 and B4 to the multi-user EUF-CMA
security of S and M. This gives the bound Pr[G9 ⇒ 1] − Pr[G13 ⇒ 1] ≤
Advmu-EUF-CMA

S (tB3,qNw,qS,qS,qRL
) + Advmu-EUF-CMA

M (tB4 , qS, qS, 1, qS, 1, 0).
Finally, we argue that A has advantage 0 in game G13, using logic similar to

that in our SIGMA-I proof, with two slight differences: 1. Partnered sessions no
longer use labels to distinguish their MAC tags; instead we note that messages
tagged by initiator sessions are strictly longer than messages tagged by responder
sessions. 2. We cannot immediately conclude that partnered sessions agree on
the same session key because the session key ATS relies on values that are
not contained in the session identifier. However, since we have excluded MAC
forgeries, all the information entering the derivation of ATS is authenticated by
the responder session’s MAC tag.

7 Evaluation

Tighter security results in terms of loss factors are practically meaningful only
if they materialize in better concrete advantage bounds when taking the under-
lying assumptions into account. In our case, this amounts to the question: How
does the overall concrete security of the SIGMA/SIGMA-I and the TLS 1.3 key
exchange protocols improve based on our tighter security proofs?

Parameter selection. In order to evaluate our and prior bounds pratically, we
need to make concrete choices for each of the parameters entering the bounds.
Let us explain the choices we made in our evaluation:

Runtime t ∈ {240, 260, 280}. We parameterize the adversary’s runtime be-
tween well within computational reach (240) and large-scale attackers (280).

Number of users #U = qN ∈ {220, 230}. We consider the number of users a
global-scale adversary may interact with to be in the order of active public-
key certificates on the Internet, reported at 130–150 million6 (≈ 227).

6 https://letsencrypt.org/stats/,
https://trends.builtwith.com/ssl/traffic/Entire-Internet

https://letsencrypt.org/stats/
https://trends.builtwith.com/ssl/traffic/Entire-Internet

20 Hannah Davis and Felix Günther

Number of sessions #S ≈ qS ∈ {235, 245, 255}. Chrome and Firefox report
that 76–98% of all web page accesses through these browsers are encrypted,
with an active daily base of about 2 billion (≈ 230) users.7 We consider
adversaries may easily see 235 sessions and a global-scale attacker may have
access to 255 sessions over an extended timespan. Note that the number of
send queries essentially corresponds to the number of sessions.

Number of RO queries #RO = qRO = t
210 . We fix this bound at a 210-

fraction of the overall runtime accounting for all adversarial steps.
Diffie–Hellman groups and group order p. We consider all five elliptic
curves standardized for TLS 1.3 (bit-security b, order p in parentheses):
secp256r1 (b = 128, p ≈ 2256), secp384r1 (b = 192, p ≈ 2384), secp521r1
(b = 256, p ≈ 2521), x25519 (b = 128, p ≈ 2252), and x448 (b = 224,
p ≈ 2446). We focus on elliptic curve groups, as they provide high efficiency
and the best known algorithms for solving discrete-log and DH problems
are generic, allowing us to apply GGM bounds for DDH and strong DH.

Signature schemes. In order to unify the underlying hardness assumptions,
we consider the ECDSA/EdDSA signature schemes standardized for use
with TLS 1.3, based on the five elliptic curves above, treating their single-
user unforgeability as equally hard as the corresponding discrete logarithm.

Symmetric schemes and key/output/nonce lengths kl, ol, nl. Since our
focus is mostly on evaluating ECDH parameters, we idealize the symmetric
primitives (PRF, MAC, and hash function) in the random oracle model. Ap-
plying lengths standardized for TLS 1.3, we set the key and output length
to kl = ol = 256 bits for 128-bit security curves and 384 bits for higher-
security curves, corresponding to ciphersuites using SHA-256 or SHA-384.
The nonce length is fixed to nl = 256 bits, again as in TLS 1.3.

Reveal and Test queries qRS, qRL, qT. Using a generic reduction to single-
user signature unforgeability, the number of RevLongTermKey,
RevSessionKey, and Test queries do not affect the bounds; we hence
do not place any constraints on them.

Fully-quantitative CK/DFGS bounds for SIGMA/TLS 1.3. For our
evaluation, we need to reconstruct fully-quantitative security bounds from the
more abstract prior security proofs for SIGMA by Canetti-Krawczyk [17] and
for TLS 1.3 by Dowling et al. [24]. We report them in Appendix A for reference.
In terms of their reduction to underlying DH problems, the CK SIGMA bound
reduces to the DDH problem with a loss of #U ·#S, whereas the DFGS TLS 1.3
bound reduces to the strong DH problem with a loss of (#S)2.

Numerical advantage bounds. We report the numerical advantage bounds
for SIGMA and TLS 1.3 based on prior (CK [17], DFGS [24]) and our bounds
when ranging over the full parameter space detailed above in Table 2. Table 1
summarizes the key data points for 128-bit and 192-bit security levels.
7 https://transparencyreport.google.com/, https://telemetry.mozilla.org/

https://transparencyreport.google.com/
https://telemetry.mozilla.org/

Tighter Proofs for the SIGMA and TLS 1.3 Key Exchange Protocols 21
Adv. resources SIGMA TLS 1.3

t #U #S #RO Curve (bit sec. b, order p) Target t/2b CK [17] Us (Thm. 4) DFGS [24] Us (Thm. 5)

240 220 235 230 secp256r1 (b = 128, p ≈ 2256) 2−88 ≈ 2−101 ≈ 2−156 ≈ 2−104 ≈ 2−156

240 220 245 230 secp256r1 (b = 128, p ≈ 2256) 2−88 ≈ 2−91 ≈ 2−156 ≈ 2−84 ≈ 2−156

240 220 255 230 secp256r1 (b = 128, p ≈ 2256) 2−88 ≈ 2−81 ≈ 2−156 ≈ 2−64 ≈ 2−156

240 230 235 230 secp256r1 (b = 128, p ≈ 2256) 2−88 ≈ 2−81 ≈ 2−146 ≈ 2−104 ≈ 2−146

240 230 245 230 secp256r1 (b = 128, p ≈ 2256) 2−88 ≈ 2−71 ≈ 2−146 ≈ 2−84 ≈ 2−146

240 230 255 230 secp256r1 (b = 128, p ≈ 2256) 2−88 ≈ 2−61 ≈ 2−146 ≈ 2−64 ≈ 2−146

240 220 235 230 secp384r1 (b = 192, p ≈ 2384) 2−152 ≈ 2−229 ≈ 2−284 ≈ 2−232 ≈ 2−284

240 220 245 230 secp384r1 (b = 192, p ≈ 2384) 2−152 ≈ 2−219 ≈ 2−284 ≈ 2−212 ≈ 2−284

240 220 255 230 secp384r1 (b = 192, p ≈ 2384) 2−152 ≈ 2−209 ≈ 2−284 ≈ 2−192 ≈ 2−284

240 230 235 230 secp384r1 (b = 192, p ≈ 2384) 2−152 ≈ 2−209 ≈ 2−274 ≈ 2−232 ≈ 2−274

240 230 245 230 secp384r1 (b = 192, p ≈ 2384) 2−152 ≈ 2−199 ≈ 2−274 ≈ 2−212 ≈ 2−274

240 230 255 230 secp384r1 (b = 192, p ≈ 2384) 2−152 ≈ 2−189 ≈ 2−274 ≈ 2−192 ≈ 2−274

240 220 235 230 secp521r1 (b = 256, p ≈ 2521) 2−216 ≈ 2−298 ≈ 2−318 ≈ 2−282 ≈ 2−317

240 220 245 230 secp521r1 (b = 256, p ≈ 2521) 2−216 ≈ 2−288 ≈ 2−308 ≈ 2−262 ≈ 2−307

240 220 255 230 secp521r1 (b = 256, p ≈ 2521) 2−216 ≈ 2−278 ≈ 2−298 ≈ 2−242 ≈ 2−297

240 230 235 230 secp521r1 (b = 256, p ≈ 2521) 2−216 ≈ 2−288 ≈ 2−318 ≈ 2−282 ≈ 2−317

240 230 245 230 secp521r1 (b = 256, p ≈ 2521) 2−216 ≈ 2−278 ≈ 2−308 ≈ 2−262 ≈ 2−307

240 230 255 230 secp521r1 (b = 256, p ≈ 2521) 2−216 ≈ 2−268 ≈ 2−298 ≈ 2−242 ≈ 2−297

240 220 235 230 x25519 (b = 128, p ≈ 2252) 2−88 ≈ 2−97 ≈ 2−152 ≈ 2−100 ≈ 2−152

240 220 245 230 x25519 (b = 128, p ≈ 2252) 2−88 ≈ 2−87 ≈ 2−152 ≈ 2−80 ≈ 2−152

240 220 255 230 x25519 (b = 128, p ≈ 2252) 2−88 ≈ 2−77 ≈ 2−152 ≈ 2−60 ≈ 2−152

240 230 235 230 x25519 (b = 128, p ≈ 2252) 2−88 ≈ 2−77 ≈ 2−142 ≈ 2−100 ≈ 2−142

240 230 245 230 x25519 (b = 128, p ≈ 2252) 2−88 ≈ 2−67 ≈ 2−142 ≈ 2−80 ≈ 2−142

240 230 255 230 x25519 (b = 128, p ≈ 2252) 2−88 ≈ 2−57 ≈ 2−142 ≈ 2−60 ≈ 2−142

240 220 235 230 x448 (b = 224, p ≈ 2446) 2−184 ≈ 2−291 ≈ 2−318 ≈ 2−282 ≈ 2−317

240 220 245 230 x448 (b = 224, p ≈ 2446) 2−184 ≈ 2−281 ≈ 2−308 ≈ 2−262 ≈ 2−307

240 220 255 230 x448 (b = 224, p ≈ 2446) 2−184 ≈ 2−271 ≈ 2−298 ≈ 2−242 ≈ 2−297

240 230 235 230 x448 (b = 224, p ≈ 2446) 2−184 ≈ 2−271 ≈ 2−318 ≈ 2−282 ≈ 2−317

240 230 245 230 x448 (b = 224, p ≈ 2446) 2−184 ≈ 2−261 ≈ 2−308 ≈ 2−262 ≈ 2−307

240 230 255 230 x448 (b = 224, p ≈ 2446) 2−184 ≈ 2−251 ≈ 2−298 ≈ 2−242 ≈ 2−297

260 220 235 250 secp256r1 (b = 128, p ≈ 2256) 2−68 ≈ 2−61 ≈ 2−116 ≈ 2−64 ≈ 2−116

260 220 245 250 secp256r1 (b = 128, p ≈ 2256) 2−68 ≈ 2−51 ≈ 2−116 ≈ 2−44 ≈ 2−116

260 220 255 250 secp256r1 (b = 128, p ≈ 2256) 2−68 ≈ 2−41 ≈ 2−116 ≈ 2−24 ≈ 2−116

260 230 235 250 secp256r1 (b = 128, p ≈ 2256) 2−68 ≈ 2−41 ≈ 2−106 ≈ 2−64 ≈ 2−106

260 230 245 250 secp256r1 (b = 128, p ≈ 2256) 2−68 ≈ 2−31 ≈ 2−106 ≈ 2−44 ≈ 2−106

260 230 255 250 secp256r1 (b = 128, p ≈ 2256) 2−68 ≈ 2−21 ≈ 2−106 ≈ 2−24 ≈ 2−106

260 220 235 250 secp384r1 (b = 192, p ≈ 2384) 2−132 ≈ 2−189 ≈ 2−244 ≈ 2−192 ≈ 2−244

260 220 245 250 secp384r1 (b = 192, p ≈ 2384) 2−132 ≈ 2−179 ≈ 2−244 ≈ 2−172 ≈ 2−244

260 220 255 250 secp384r1 (b = 192, p ≈ 2384) 2−132 ≈ 2−169 ≈ 2−244 ≈ 2−152 ≈ 2−244

260 230 235 250 secp384r1 (b = 192, p ≈ 2384) 2−132 ≈ 2−169 ≈ 2−234 ≈ 2−192 ≈ 2−234

260 230 245 250 secp384r1 (b = 192, p ≈ 2384) 2−132 ≈ 2−159 ≈ 2−234 ≈ 2−172 ≈ 2−234

260 230 255 250 secp384r1 (b = 192, p ≈ 2384) 2−132 ≈ 2−149 ≈ 2−234 ≈ 2−152 ≈ 2−234

260 220 235 250 secp521r1 (b = 256, p ≈ 2521) 2−196 ≈ 2−278 ≈ 2−298 ≈ 2−250 ≈ 2−285

260 220 245 250 secp521r1 (b = 256, p ≈ 2521) 2−196 ≈ 2−268 ≈ 2−288 ≈ 2−240 ≈ 2−285

260 220 255 250 secp521r1 (b = 256, p ≈ 2521) 2−196 ≈ 2−258 ≈ 2−278 ≈ 2−222 ≈ 2−277

260 230 235 250 secp521r1 (b = 256, p ≈ 2521) 2−196 ≈ 2−268 ≈ 2−298 ≈ 2−250 ≈ 2−285

260 230 245 250 secp521r1 (b = 256, p ≈ 2521) 2−196 ≈ 2−258 ≈ 2−288 ≈ 2−240 ≈ 2−285

260 230 255 250 secp521r1 (b = 256, p ≈ 2521) 2−196 ≈ 2−248 ≈ 2−278 ≈ 2−222 ≈ 2−277

260 220 235 250 x25519 (b = 128, p ≈ 2252) 2−68 ≈ 2−57 ≈ 2−112 ≈ 2−60 ≈ 2−112

260 220 245 250 x25519 (b = 128, p ≈ 2252) 2−68 ≈ 2−47 ≈ 2−112 ≈ 2−40 ≈ 2−112

260 220 255 250 x25519 (b = 128, p ≈ 2252) 2−68 ≈ 2−37 ≈ 2−112 ≈ 2−20 ≈ 2−112

260 230 235 250 x25519 (b = 128, p ≈ 2252) 2−68 ≈ 2−37 ≈ 2−102 ≈ 2−60 ≈ 2−102

260 230 245 250 x25519 (b = 128, p ≈ 2252) 2−68 ≈ 2−27 ≈ 2−102 ≈ 2−40 ≈ 2−102

260 230 255 250 x25519 (b = 128, p ≈ 2252) 2−68 ≈ 2−17 ≈ 2−102 ≈ 2−20 ≈ 2−102

260 220 235 250 x448 (b = 224, p ≈ 2446) 2−164 ≈ 2−251 ≈ 2−298 ≈ 2−250 ≈ 2−285

260 220 245 250 x448 (b = 224, p ≈ 2446) 2−164 ≈ 2−241 ≈ 2−288 ≈ 2−234 ≈ 2−285

260 220 255 250 x448 (b = 224, p ≈ 2446) 2−164 ≈ 2−231 ≈ 2−278 ≈ 2−214 ≈ 2−277

260 230 235 250 x448 (b = 224, p ≈ 2446) 2−164 ≈ 2−231 ≈ 2−296 ≈ 2−250 ≈ 2−285

260 230 245 250 x448 (b = 224, p ≈ 2446) 2−164 ≈ 2−221 ≈ 2−288 ≈ 2−234 ≈ 2−285

260 230 255 250 x448 (b = 224, p ≈ 2446) 2−164 ≈ 2−211 ≈ 2−278 ≈ 2−214 ≈ 2−277

280 220 235 270 secp256r1 (b = 128, p ≈ 2256) 2−48 ≈ 2−21 ≈ 2−76 ≈ 2−24 ≈ 2−76

280 220 245 270 secp256r1 (b = 128, p ≈ 2256) 2−48 ≈ 2−11 ≈ 2−76 ≈ 2−4 ≈ 2−76

280 220 255 270 secp256r1 (b = 128, p ≈ 2256) 2−48 ≈ 2−1 ≈ 2−76 1 ≈ 2−76

280 230 235 270 secp256r1 (b = 128, p ≈ 2256) 2−48 ≈ 2−1 ≈ 2−66 ≈ 2−24 ≈ 2−66

280 230 245 270 secp256r1 (b = 128, p ≈ 2256) 2−48 1 ≈ 2−66 ≈ 2−4 ≈ 2−66

280 230 255 270 secp256r1 (b = 128, p ≈ 2256) 2−48 1 ≈ 2−66 1 ≈ 2−66

280 220 235 270 secp384r1 (b = 192, p ≈ 2384) 2−112 ≈ 2−149 ≈ 2−204 ≈ 2−152 ≈ 2−204

280 220 245 270 secp384r1 (b = 192, p ≈ 2384) 2−112 ≈ 2−139 ≈ 2−204 ≈ 2−132 ≈ 2−204

280 220 255 270 secp384r1 (b = 192, p ≈ 2384) 2−112 ≈ 2−129 ≈ 2−204 ≈ 2−112 ≈ 2−204

280 230 235 270 secp384r1 (b = 192, p ≈ 2384) 2−112 ≈ 2−129 ≈ 2−194 ≈ 2−152 ≈ 2−194

280 230 245 270 secp384r1 (b = 192, p ≈ 2384) 2−112 ≈ 2−119 ≈ 2−194 ≈ 2−132 ≈ 2−194

280 230 255 270 secp384r1 (b = 192, p ≈ 2384) 2−112 ≈ 2−109 ≈ 2−194 ≈ 2−112 ≈ 2−194

280 220 235 270 secp521r1 (b = 256, p ≈ 2521) 2−176 ≈ 2−258 ≈ 2−278 ≈ 2−210 ≈ 2−245

280 220 245 270 secp521r1 (b = 256, p ≈ 2521) 2−176 ≈ 2−248 ≈ 2−268 ≈ 2−200 ≈ 2−245

280 220 255 270 secp521r1 (b = 256, p ≈ 2521) 2−176 ≈ 2−238 ≈ 2−258 ≈ 2−190 ≈ 2−245

280 230 235 270 secp521r1 (b = 256, p ≈ 2521) 2−176 ≈ 2−248 ≈ 2−278 ≈ 2−210 ≈ 2−245

280 230 245 270 secp521r1 (b = 256, p ≈ 2521) 2−176 ≈ 2−238 ≈ 2−268 ≈ 2−200 ≈ 2−245

280 230 255 270 secp521r1 (b = 256, p ≈ 2521) 2−176 ≈ 2−228 ≈ 2−258 ≈ 2−190 ≈ 2−245

280 220 235 270 x25519 (b = 128, p ≈ 2252) 2−48 ≈ 2−17 ≈ 2−72 ≈ 2−20 ≈ 2−72

280 220 245 270 x25519 (b = 128, p ≈ 2252) 2−48 ≈ 2−7 ≈ 2−72 1 ≈ 2−72

280 220 255 270 x25519 (b = 128, p ≈ 2252) 2−48 1 ≈ 2−72 1 ≈ 2−72

280 230 235 270 x25519 (b = 128, p ≈ 2252) 2−48 1 ≈ 2−62 ≈ 2−20 ≈ 2−62

280 230 245 270 x25519 (b = 128, p ≈ 2252) 2−48 1 ≈ 2−62 1 ≈ 2−62

280 230 255 270 x25519 (b = 128, p ≈ 2252) 2−48 1 ≈ 2−62 1 ≈ 2−62

280 220 235 270 x448 (b = 224, p ≈ 2446) 2−144 ≈ 2−211 ≈ 2−266 ≈ 2−210 ≈ 2−245

280 220 245 270 x448 (b = 224, p ≈ 2446) 2−144 ≈ 2−201 ≈ 2−266 ≈ 2−194 ≈ 2−245

280 220 255 270 x448 (b = 224, p ≈ 2446) 2−144 ≈ 2−191 ≈ 2−258 ≈ 2−174 ≈ 2−245

280 230 235 270 x448 (b = 224, p ≈ 2446) 2−144 ≈ 2−191 ≈ 2−256 ≈ 2−210 ≈ 2−245

280 230 245 270 x448 (b = 224, p ≈ 2446) 2−144 ≈ 2−181 ≈ 2−256 ≈ 2−194 ≈ 2−245

280 230 255 270 x448 (b = 224, p ≈ 2446) 2−144 ≈ 2−171 ≈ 2−256 ≈ 2−174 ≈ 2−245

Table 2. Advantages of a key exchange adversary with given resources in breaking the
security of the SIGMA and TLS 1.3 protocols. See Section 7 for further details.

22 Hannah Davis and Felix Günther

220 230 240 250 260

2256

2384
gr
ou

p
or
de

r
p

128 bit security level
secp256r1
secp384r1
CK (sm)
CK (lg)
DFGS (sm)
DFGS (lg)
Us (sm)
Us (lg)

220 230 240 250 260
2256

2384

number of sessions #S

gr
ou

p
or
de

r
p

192 bit security level

Fig. 4. Elliptic curve group order (y axis) required to achieve 128-bit (top) and 192-
bit (bottom) AKE security for SIGMA and TLS 1.3 based on the CK [17] SIGMA,
DFGS [24] TLS 1.3, and our bounds (ours giving the same result for SIGMA and
TLS 1.3), for a varying number of sessions #S (x axis). Both axes are in log-scale.
For each security and bound, we plot a smaller-resource “(sm)” setting with runtime
t = 260, number of users #U = 220, and number of random oracle queries #RO = 250

and a larger-resource “(lg)” setting with t = 280, #U = 230, and #RO = 270. We let
symmetric key/output lengths be 256 bits for 128-bit security and 384-bits for 192-bit
security; nonce length is 256 bits. The group orders of NIST elliptic curves secp256r1
(p ≈ 2256) and secp384r1 (p ≈ 2384) are shown as horizontal lines for context.

Throughout Table 2, we assume that an adversary with running time t makes
no more than t · 2−10 queries to its random oracles. We target the bit-security
of whatever curve we use; this means that for b bits of security we want an
advantage of t/2b. If a bound does not achieve this goal, we color it red. We
consider runtimes between 240 and 280, a total number of users between to
vary between 220 and 230, and a total number of sessions between 235 and 255

(see above for the discussion of these parameter choices). We evaluate these
parameters in relation to all of the elliptic curve groups standardized for use
with TLS 1.3. We idealize symmetric primitives, assuming the use of 256-bit
keys in conjunction with 128-bit security curves and 384-bit keys in conjunction
with higher-security curves, this corresponds to the available SHA-256 and SHA-
384 functions in TLS 1.3. The nonce length is fixed to 256 bits (as in TLS 1.3).

Our bounds do better than the CK [17] and DFGS [24] bounds across all
considered parameters and always meet the security targets, which these prior
bounds fail to meet for secp256r1 and x25519 for almost all parameters, but
notably also for the 192-bit security level of curve secp384r1 for large-scale

Tighter Proofs for the SIGMA and TLS 1.3 Key Exchange Protocols 23

parameters. We improve over prior bounds by at least 20 and up to 85 bits of
security for SIGMA, and by at least 35 and up to 92 bits of security for TLS 1.3.

In comparison, the TLS 1.3 bounds from the concurrent work by Diemert
and Jager [21] yield bit security levels similar to ours for TLS 1.3: While some
sub-terms in their bound are slightly worse (esp. for strong DH), the dominating
sub-terms are the same.

Group size requirements. Finally, let us take a slightly different perspective
on what the prior and our bounds tell us: Figure 7 illustrates the group size
required to achieve 128-bit resp. 192-bit AKE security for SIGMA and TLS 1.3
based on the different bounds, dependent on a varying number of sessions #S.
The CK SIGMA and our SIGMA and TLS 1.3 bounds are dominated by the
signature scheme advantage (with a #S · (#U)2 loss for CK and a #U loss
for our bound); the DFGS TLS 1.3 bound instead is mostly dominated by the
(#S)2–loss reduction to strong DH. The CK and DFGS bounds require the use
of larger, less efficient curves to achieve 128-bit security even for 235 sessions. For
large-scale attackers, they similarly require a larger curve than secp384r1 above
about 255 sessions. We highlight that, in contrast, with our bounds a curve with
128-bit, resp. 192-bit, security is sufficient to guarantee the same security level
for SIGMA and TLS 1.3, for both small- and large-scale adversaries and for very
conservative bounds on the number of sessions.

Acknowledgments. We thank Mihir Bellare for insightful discussions and help-
ful comments, and Denis Diemert and Tibor Jager for their kind handling of our
concurrent work. We thank the anonymous reviewers for valuable comments.
Both authors were supported in part by National Science Foundation (NSF)
grant CNS-1717640. Felix Günther has been supported in part by Research Fel-
lowship grant GU 1859/1-1 of the German Research Foundation (DFG).

References

1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (Apr 2001)

2. Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE password-
authenticated key exchange protocol. In: 2015 IEEE Symposium on Security and
Privacy. pp. 571–587. IEEE Computer Society Press (May 2015)

3. Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 65–84. Springer, Heidelberg (Jan 2005)

4. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol.
9014, pp. 629–658. Springer, Heidelberg (Mar 2015)

5. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS,
vol. 9666, pp. 273–304. Springer, Heidelberg (May 2016)

24 Hannah Davis and Felix Günther

6. Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC and
its multi-user security. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016,
Part I. LNCS, vol. 9665, pp. 566–595. Springer, Heidelberg (May 2016)

7. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. In: 37th FOCS. pp. 514–523. IEEE
Computer Society Press (Oct 1996)

8. Bellare, M., Dai, W.: The multi-base discrete logarithm problem: Non-rewinding
proofs and improved reduction tightness for identification and signatures. In: IN-
DOCRYPT 2020 (2020), https://eprint.iacr.org/2020/416

9. Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in mes-
sage authentication and authenticated encryption. Cryptology ePrint Archive, Re-
port 2004/309 (2004), http://eprint.iacr.org/2004/309

10. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (May 2000)

11. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93. pp. 62–73. ACM Press (Nov 1993)

12. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO’93. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (Aug
1994)

13. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (May / Jun 2006)

14. Boneh, D.: The decision Diffie-Hellman problem. In: Third Algorithmic Number
Theory Symposium (ANTS). LNCS, vol. 1423. Springer, Heidelberg (1998), invited
paper

15. Brendel, J., Fischlin, M., Günther, F., Janson, C.: PRF-ODH: Relations, instanti-
ations, and impossibility results. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part III. LNCS, vol. 10403, pp. 651–681. Springer, Heidelberg (Aug 2017)

16. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (May 2001)

17. Canetti, R., Krawczyk, H.: Security analysis of IKE’s signature-based key-exchange
protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–161.
Springer, Heidelberg (Aug 2002), http://eprint.iacr.org/2002/120/

18. Cohn-Gordon, K., Cremers, C., Garratt, L.: On post-compromise security. In: 2016
Computer Security Foundations Symposium. pp. 164–178. IEEE (2016)

19. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly effi-
cient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 767–797. Springer, Hei-
delberg (Aug 2019)

20. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. Cryptology ePrint Archive, Report 2020/1029 (2020), https://eprint.
iacr.org/2020/1029

21. Diemert, D., Jager, T.: On the tight security of TLS 1.3: Theoretically-sound cryp-
tographic parameters for real-world deployments. Journal of Cryptology (2020),
to appear. Available as Cryptology ePrint Archive, Report 2020/726. https:
//eprint.iacr.org/2020/726

https://eprint.iacr.org/2020/416
http://eprint.iacr.org/2004/309
http://eprint.iacr.org/2002/120/
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/726
https://eprint.iacr.org/2020/726

Tighter Proofs for the SIGMA and TLS 1.3 Key Exchange Protocols 25

22. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of
the TLS 1.3 handshake protocol candidates. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015. pp. 1197–1210. ACM Press (Oct 2015)

23. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint
Archive, Report 2016/081 (2016), http://eprint.iacr.org/2016/081

24. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 handshake protocol. Journal of Cryptology (2021), to appear. Available as
Cryptology ePrint Archive, Report 2020/1044. https://eprint.iacr.org/2020/
1044

25. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC
protocol. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014. pp. 1193–1204.
ACM Press (Nov 2014)

26. Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: The case of the
TLS 1.3 handshake candidates. In: 2017 IEEE European Symposium on Security
and Privacy, EuroS&P 2017. pp. 60–75. IEEE (Apr 2017)

27. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and au-
thenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018,
Part II. LNCS, vol. 10992, pp. 95–125. Springer, Heidelberg (Aug 2018)

28. Harkins, D., Carrel, D.: The Internet Key Exchange (IKE). IETF RFC 2409 (Pro-
posed Standard) (1998)

29. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (Aug 2012)

30. Kaufman (Ed.), C.: Internet Key Exchange (IKEv2) Protocol. RFC 4306 (Pro-
posed Standard) (Dec 2005), https://www.rfc-editor.org/rfc/rfc4306.txt,
obsoleted by RFC 5996, updated by RFC 5282

31. Kent, S., Atkinson, R.: Security Architecture for the Internet Protocol. RFC 2401
(Proposed Standard) (Nov 1998), https://www.rfc-editor.org/rfc/rfc2401.
txt, obsoleted by RFC 4301, updated by RFC 3168

32. Krawczyk, H.: SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (Aug 2003)

33. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols (2003), full version. https://webee.
technion.ac.il/~hugo/sigma-pdf.pdf

34. Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF scheme.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Hei-
delberg (Aug 2010)

35. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: 2016 IEEE Euro-
pean Symposium on Security and Privacy. pp. 81–96. IEEE (Mar 2016)

36. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (Nov 2007)

37. Langley, A., Hamburg, M., Turner, S.: Elliptic Curves for Security. RFC 7748
(Informational) (Jan 2016), https://www.rfc-editor.org/rfc/rfc7748.txt

38. Maurer, U.M.: Abstract models of computation in cryptography (invited paper).
In: Smart, N.P. (ed.) 10th IMA International Conference on Cryptography and
Coding. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (Dec 2005)

39. National Institute of Standards and Technology: FIPS PUB 186-4: Digital Signa-
ture Standard (DSS) (2013)

http://eprint.iacr.org/2016/081
https://eprint.iacr.org/2020/1044
https://eprint.iacr.org/2020/1044
https://www.rfc-editor.org/rfc/rfc4306.txt
https://www.rfc-editor.org/rfc/rfc2401.txt
https://www.rfc-editor.org/rfc/rfc2401.txt
https://webee.technion.ac.il/~hugo/sigma-pdf.pdf
https://webee.technion.ac.il/~hugo/sigma-pdf.pdf
https://www.rfc-editor.org/rfc/rfc7748.txt

26 Hannah Davis and Felix Günther

40. Okamoto, T., Pointcheval, D.: The gap-problems: A new class of problems for the
security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (Feb 2001)

41. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(Proposed Standard) (Aug 2018), https://www.rfc-editor.org/rfc/rfc8446.
txt

42. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(May 1997)

A Evaluation Details

Fully-quantitative CK SIGMA Bound. Comparing our SIGMA bound
from Theorem 4 to the original security proof by Canetti and Krawczyk [17]
(CK) faces two complications. First, we must reconstruct a concrete security
bound from the CK proof, which merely refers to the decisional Diffie–Hellman
and “standard security notions” for digital signatures, MACs, and PRFs (i.e.,
single-user EUF-CMA and PRF security). Second, the CK result is given in a
stronger security model for key exchange [16] which allows state-reveal attacks.
Further, the CK proof assumes out-of-band unique session identifiers, whereas
protocols in practice have to establish those from, e.g., nonces (introducing a
corresponding collision bound as in our analysis). We are therefore inherently
constrained to compare qualitatively different security properties here.

Let us informally consider a game-based definition of the CK model [16]
in the same style as our AKE model (cf. Definition 1), capturing the same
oracles plus an additional state-reveal oracle, with qRSt denoting the number
of queries to this oracle, and session identifiers that, like ours, consist of the
session and peers’ nonces and DH shares. Translating the SIGMA-I security
proof from [17, Theorem 6 in the full version], we obtained the following concrete
security bound:

AdvCK
SIGMA-I(t, qN, qS, qRS, qRL, qRSt, qT)

≤ 2q2
S

2nl · p + Advmu-EUF-CMA
S (tB1 , qN, qS, qS, qRL) // sid collision & property P1

+ qN · qS ·
(

AdvDDH
G (tB2) + Advmu-PRF

PRF (tB5 , 1, 3) // property P2 . . .

+ (qN + 1) · Advmu-EUF-CMA
S (tB3 , 1, qS, qS, 0) + Advmu-EUF-CMA

M (tB4 , 1, 2, 2, 2, 2, 0)
)
,

where nl is the nonce length, G the used Diffie–Hellman group of prime order p,
the number of test queries is restricted to qT = 1, and Bi (for i = 1, . . . , 5) are
the described reductions in [17, Theorem 6 in the full version] all running in
time tBi ≈ t. For simplicity, we present the above bound in terms of “multi-
user” PRF, signature, and MAC advantages for a single user qNw = 1, which are
equivalent to the corresponding single-user advantages (cf. Appendix B).

Fully-quantitative DFGS TLS 1.3 Bound. We compare our security bound
for TLS 1.3 from Theorem 5 with the bound of Dowling et al. [24] (DFGS).

https://www.rfc-editor.org/rfc/rfc8446.txt
https://www.rfc-editor.org/rfc/rfc8446.txt

Tighter Proofs for the SIGMA and TLS 1.3 Key Exchange Protocols 27

Note that this bound is established in a multi-stage key exchange model [25],
here we focus only on the main application key derivation, as in our proof. The
DFGS bound needs instantiation through the random oracle only in one step (the
PRF-ODH assumption on HKDF.Extract) while other PRF steps remain in the
standard model. Our proof instead models both HKDF.Extract and HKDF.Expand
as random oracles. Translating the bound from [24, Theorems 5.1, 5.2] yields:

AdvDFGS
TLS 1.3(t, qN, qS, qRS, qRL, qT)

≤ q2
S

2nl · p
+ qS ·

(
AdvCR

H (tB1) + qN · Advmu-EUF-CMA
S (tB2 , 1, qS, qS, 0)

+ qS ·
(

Advdual-snPRF-ODH
HKDF.Extract,G (tB3) + Advmu-PRF

HKDF.Expand(tB4 , 1, 3, 3, 0)
+ 2 · Advmu-PRF

HKDF.Expand(tB5 , 1, 2, 2, 0) + Advmu-PRF
HKDF.Extract(tB6 , 1, 1, 1, 0)

+ Advmu-PRF
HKDF.Expand(tB7 , 1, 1, 1, 0)

))
.

Let us further unpack the PRF-ODH term. Following Brendel et al. [15], it
can be reduced to the strong Diffie–Hellman assumption modeling HKDF.Extract
as a random oracle.8 In this reduction, the single DH oracle query is checked
against each random oracle query via the strong-DH oracle, hence establishing
the following bound: Advdual-snPRF-ODH

RO,G (tB3 , qRO) ≤ AdvstDH
G (tB3 , qRO).

B Assumptions, Building Blocks, Multi-User Security

Definition 6 (Multi-user PRF security). Let PRF : {0, 1}k × {0, 1}m →
{0, 1}n be a function (for k, n ∈ N and m ∈ N ∪ {∗}) and Gmu-PRF

PRF,A be the multi-
user PRF security game defined as in Figure 5. We define Advmu-PRF

PRF (t, qNw, qFn,

qFn/U) := 2 ·maxA Pr
[
Gmu-PRF

PRF,A ⇒ 1
]
− 1, where the maximum is taken over all

adversaries, denoted (t, qNw, qFn, qFn/U)-mu-PRF-adversaries, running in time at
most t and making at most qNw queries to their New oracle, at most qFn total
queries to their Fn oracle, and at most qFn/U queries Fn(i, ·) for any user i.

Generically, the multi-user security of PRFs reduces to single-user security
(formally, Gmu-PRF

PRF,A with A restricted to qNw = 1 queries to New) with a factor in
the number of users via a hybrid argument [7], i.e., Advmu-PRF

PRF (t, qNw, qFn, qFn/U) ≤
qNw ·Advmu-PRF

PRF (t′, 1, qFn/U, qFn/U), where t ≈ t′. (Note that the total number qFn
of queries to the Fn oracle across all users does not affect the reduction.) There
exist simple and efficient constructions, like AMAC [6], that however achieve
multi-user security tightly. If we use a random oracle RO as a PRF with key
length kl, then Advmu-PRF

RO (t, qNw, qFn, qFn/U, qRO) ≤ qNw·qRO

2kl .

8 The same paper suggests that a standard-model instantiation of the PRF-ODH
assumption via an algebraic black-box reduction to common cryptographic problems
is implausible.

28 Hannah Davis and Felix Günther

Gmu-PRF
PRF,A

Initialize:
1 b $←− {0, 1}
2 u← 0

New:
3 u← u+ 1
4 if b = 1 then
5 Ku

$←− {0, 1}k ; fu := PRF(Ku, ·)
6 else fu

$←− FUNC

Fn(i, x):
7 return fi(x)

Finalize(b∗):
8 return [[b = b∗]]

Fig. 5. Multi-user PRF security of a pseudorandom function PRF : {0, 1}k×{0, 1}m →
{0, 1}n. FUNC is the space of all functions {0, 1}m → {0, 1}n.

Definition 7 (Signature mu-EUF-CMA security [4]). Let S be a signature
scheme and Gmu-EUF-CMA

S,A be the game for signature multi-user existential unforge-
ability under chosen-message attacks with adaptive corruptions (see the full ver-
sion [20] for the formal definition). We define Advmu-EUF-CMA

S (t, qNw, qSg, qSg/U,

qC) := maxA Pr
[
Gmu-EUF-CMA

S,A ⇒ 1
]
, where the maximum is taken over all ad-

versaries, denoted (t, qNw, qSg, qSg/U, qC)-mu-EUF-CMA-adversaries, running in
time at most t and making at most qNw, qSg, resp. qC total queries to their
New, Sign, resp. Corrupt oracle, and making at most qSg/U queries Sign(i, ·)
for any user i.

Multi-user EUF-CMA security of signature schemes (with adaptive corrup-
tions) can be reduced to classical, single-user EUF-CMA security (formally,
Gmu-EUF-CMA

S,A with A restricted to qNw = 1 queries to New) by a standard hybrid
argument, losing a factor of number of users. Formally, this yields Advmu-EUF-CMA

S (t,
qNw, qSg, qSg/U, qC) ≤ qNw · Advmu-EUF-CMA

S (t′, 1, qSg/U, qSg/U, 0), where t ≈ t′.
(Note that the reduction is not affected by the total number of signature queries qSg
across all users.) In many cases, such loss is indeed unavoidable [5].

Definition 8 (MAC mu-EUF-CMA security). Let M be a MAC scheme and
Gmu-EUF-CMA

M,A be the game for MAC multi-user existential unforgeability under
chosen-message attacks with adaptive corruptions (see the full version [20] for the
formal definition). We define Advmu-EUF-CMA

M (t, qNw, qTg, qTg/U, qVf, qVf/U, qC) :=
maxA Pr

[
Gmu-EUF-CMA

M,A ⇒ 1
]
, where the maximum is taken over all adversaries,

denoted (t, qNw, qTg, qTg/U, qVf, qVf/U, qC)-mu-EUF-CMA-adversaries, running in
time at most t and making at most qNw, qTg, qVf, resp. qC queries to their
New, Sign, Vrfy, resp. Corrupt oracle, and making at most qTg/U queries
Tag(i, ·), resp. qVf/U queries Vrfy(i, ·) for any user i.

As for signature schemes, multi-user EUF-CMA security of MACs reduces to
the single-user case (qNw = 1) by a standard hybrid argument: Advmu-EUF-CMA

M (t,
qNw, qTg, qTg/U, qVf, qVf/U, qC) ≤ qNw·Advmu-EUF-CMA

M (t, 1, qTg/U, qTg/U, qVf/U, qVf/U,
0), where t ≈ t′. (Note that the reduction is not affected by the total number of
tagging and verification queries qTg resp. qVf across all users.)

Our multi-user definition of MACs provides a verification oracle, which is
non-standard (and in general not equivalent to a definition with a single forgery
attempts, as Bellare, Goldreich and Mityiagin [9] showed). For PRF-based MACs

Tighter Proofs for the SIGMA and TLS 1.3 Key Exchange Protocols 29

(which in particular includes HMAC used in TLS 1.3), it however is equivalent
and the reduction from multi-query to single-query verification is tight [9].

In our key exchange reductions, we actually do not need to corrupt MAC
keys, i.e., we achieve qC = 0. This in particular allows specific constructions like
AMAC [6] achieving tight multi-user security (without corruptions).

If we use a random oracle RO as PRF-like MAC with key length kl and out-
put length ol, then Advmu-EUF-CMA

RO (t, qNw, qTg, qTg/U, qVf, qVf/U, qC, qRO) ≤ qVf

2ol +
(qNw−qC)·qRO

2kl .

Definition 9 (Hash function collision resistance). Let H : {0, 1}∗ → {0, 1}ol

for ol ∈ N be a function. For a given adversary A running in time at most t, we
can consider AdvCR

H (t) := Pr [(m,m′) $←− A : m 6= m′ and H(m) = H(m′)].

If we use a random oracle RO as hash function, then AdvCR
RO(t, qRO) ≤ q2

RO

2ol+1 + 1
2ol .

C Proof of the Strong Diffie–Hellman GGM Bound

We establish the bound of Theorem 3 through a sequence of incrementally chang-
ing code-based games; see the full version [20] for complete details.
Game 0. We formalize the strong Diffie–Hellman problem in the GGM using
the setting and notation of Bellare and Dai [8]. Briefly, we represent a group a
group of prime order p using an arbitrary set G of label strings and a randomly
chosen bijection E : Zp → G, called the encoding function. For any two strings
A,B ∈ G, we define the operation AOPE B = E(E−1(A) + E−1(B) mod p).
The adversary is given the identity element 1 = E(0), a generator g = E(1),
challenges X and Y , and oracle access to OPE through an oracle OP. Note that
for any integer a ∈ Zp, we can compute ga = E(a). On an input A,B, the stDH
oracle uses this property to find the discrete logarithm a of A in order to check
whether E(xa) = Xa = B. Throughout, we track the set GL of group element
labels the adversary has seen, and return ⊥ in response to all oracle queries
containing other labels. By definition, AdvstDH

G (t, qsDH) = Pr[G0 ⇒ 1].
Game 1. Although the notation of G0 is simpler and more intuitive, it is more
useful for the proof game to internally represent elements of G with vectors over
Z3

p instead of integers in Zp, as we do in Figure 6. We map elements ~t ∈ Z3
p back

to Zp by taking the inner product of ~t with the vector (1, x, y). (Effectively, we
take ~t to be the coefficients of a linear combination of 1, x, and y, which are
represented respectively by the basis vectors ~e1, ~e2, and ~e3.)

Composing this map with the encoding function E induces a transformation
from Z3

p to G, which we implement via an internal oracle VE. We cache the
transformation in table TV and its inverse in table TI. Each element of G
now has multiple vector representations, but the bilinearity of the inner product
ensures that the view of the adversary is not changed, and Pr[G1] = Pr[G0].
Games 2–3. In Game G3, we make two undetectable changes: we lazily sample
the bijection E, and in the stDH oracle, we replace the condition VE(x~a) = B =
VE(~b) with the equivalent condition 〈x~a−~b, ~x〉 = 0.

30 Hannah Davis and Felix Günther

G1

Initialize():
1 p← |G|; E $←− Bijections(Zp,G)
2 1← VE(~0); g ← VE(~e1)
3 x, y $←− Z∗p; ~x← 1, x, y
4 X ← VE(~e2); Y ← VE(~e3)
5 return (1, g, x, y)

OP(A,B, sgn):
6 ~c← TI(A) sgn TI(B) mod p

7 C ← VE(~c); return C

VE(~t):

1 if TV [~t] 6= ⊥ then return TV [~t]
2 v ← 〈~t, ~x〉; TV [~t]← E(v);
3 GL← GL ∪ {TV [~t]}; TI[TV [~t]]← ~t

4 return TV [~t]

stDH(A,B):

8 ~a← TI(A); ~b← TI(B)
9 return [[VE(x~a) = B]]

Finalize(Z):
10 return [[VE(x~e3) = Z]]

Fig. 6. Game G1 of the stDH proof.

We continue in the next game by sampling the entries of TV directly instead
of through calls to E. Distinct vectors ~t and ~t′ no longer map to the same group
element when 〈~t, ~x〉 = 〈~t′, ~x〉. The adversary cannot notice this change unless
two such t, t′ are queried to VE; we call this event F1 and let Finalize return
true when it occurs. This only increases the success probability of the adversary,
so Pr[G1] ≤ Pr[G3]. At this point, function E is unused and becomes redundant.
Game 4. The adversary can trivially get a true response from the stDH ora-
cle by computing A = ga for any integer a and B = Xa. We now return false
in all other cases. Let F2 be the event where the adversary makes a nontriv-
ial query (A,B) to stDH that should return true, i.e., one where 〈xTI(A) −
TI(B), ~x〉 = 0. Unless F2 occurs, the output of stDH does not change, so
Pr[G3] ≤ Pr[G4 and F2] + Pr[F2].
Game 5. This game is identical to G4, except Finalize returns true whenever
event F2 could have occurred. It follows that Pr[G3] ≤ Pr[G5]. At this point,
variables x, y, and ~x are not used by any oracle except Finalize, so we delay
their initialization until the end of the game without detection by the adversary.

Collecting bounds reveals that AdvstDH
G (t, qsDH) ≤ Pr[G5]. A t-query adver-

sary playing G5 wins only if events F1 or F2 occur, or if [VE(x~e3) = Z]. Event
F1 occurs when table TI contains distinct ~ti, ~tj such that 〈~ti − ~tj , (1, x, y)〉.
This means (x, y) is a root of the bivariate linear polynomial (~ti − ~tj)[0] +
(~ti − ~tj)[1] · x + (~ti − ~tj)[2] · y. Since x and y are sampled independently by
the Finalize oracle, this occurs with probability at most 1/p for each poly-
nomial by Lemma 1 of [42]. Event F2 occurs when 〈x~ti − ~tj , ~x〉 = 0 for some
ti, tj in TI. Similarly, this means that (x, y) must be a root of the quadratic
(x~ti − ~tj)[0] + (x~ti − ~tj)[1] · x + (x~ti − ~tj)[2] · y. By Lemma 1, this occurs with
probability at most 2/p for each (~ti, ~tj) pair. Finally, [VE(x~e3) = Z] holds with
probability at most 1/p because VE(x~e3) is uniformly random.

Taking a union bound over the (t + 4)2 possible pairs (~ti, ~tj), we obtain
Pr[G5] ≤ (3(t+ 4)2 + 1)/p. The theorem statement follows for all t > 25.

