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This paper initiates the study of hidden variables from a quantum computing perspective. For
us, a hidden-variable theory is simply a way to convert a unitary matrix that maps one quantum
state to another, into a stochastic matrix that maps the initial probability distribution to the final
one in some fixed basis. We list five axioms that we might want such a theory to satisfy, and then
investigate which of the axioms can be satisfied simultaneously. Toward this end, we propose a new
hidden-variable theory based on network flows. In a second part of the paper, we show that if we
could examine the entire history of a hidden variable, then we could efficiently solve problems that
are believed to be intractable even for quantum computers. In particular, under any hidden-variable
theory satisfying a reasonable axiom, we could solve the Graph Isomorphism problem in polynomial

time, and could search an N-item database using O
(
N1/3

)
queries, as opposed to O

(
N1/2

)
queries

with Grover’s search algorithm. On the other hand, the N1/3 bound is optimal, meaning that we
could probably not solve NP-complete problems in polynomial time. We thus obtain the first
good example of a model of computation that appears slightly more powerful than the quantum
computing model.

PACS numbers: 03.65.Ta, 03.65.Ud, 03.67.Lx, 02.70.-c

I. INTRODUCTION

Quantum mechanics lets us calculate the probability that (say) an electron will be found in an excited state if
measured at a particular time. But it is silent about multiple-time or transition probabilities: that is, what is the
probability that the electron will be in an excited state at time t1, given that it was in its ground state at an earlier time
t0? The usual response is that this question is meaningless, unless of course the electron was measured (or otherwise
known with probability 1) to be in its ground state at t0. A different response—pursued by Schrödinger [1], Bohm
[2], Bell [3], Nelson [4], Dieks [5], and others—treats the question as provisionally meaningful, and then investigates
how one might answer it mathematically. Specific attempts at answers are called “hidden-variable theories.”

The appeal of hidden-variable theories is that they provide one possible solution to the measurement problem. For
they allow us to apply unitary quantum mechanics to the entire universe (including ourselves), yet still discuss the
probability of a future observation conditioned on our current observations. Furthermore, they let us do so without
making any assumptions about decoherence or the nature of observers. For example, even if an observer were placed
in coherent superposition, that observer would still have a sequence of definite experiences, and the probability of any
such sequence could be calculated.

This paper initiates the study of hidden variables from a quantum computing perspective. We restrict our attention
to the simplest possible setting: that of discrete time, a finite-dimensional Hilbert space, and a fixed orthogonal basis.
Within this setting, we reformulate known hidden-variable theories due to Dieks [5] and Schrödinger [1], and also
introduce a new theory based on network flows. However, a more important contribution is the axiomatic approach
that we use. We propose five axioms for hidden-variable theories in our setting, and then compare theories against
each other based on which of the axioms they satisfy. A central question in our approach is which subsets of axioms
can be satisfied simultaneously.

In a second part of the paper, we make the connection to quantum computing explicit, by studying the computational
complexity of simulating hidden-variable theories. Below we describe our computational results.

A. The Complexity of Sampling Histories

It is often stressed that hidden-variable theories yield exactly the same predictions as ordinary quantum mechanics.
On the other hand, these theories describe a different picture of physical reality, with an additional layer of dynamics
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beyond that of a state vector evolving unitarily. We address a question that, to our knowledge, had never been raised
before: what is the computational complexity of simulating that additional dynamics? In other words, if we could
examine a hidden variable’s entire history, then could we solve problems in polynomial time that are intractable even
for quantum computers?

We present strong evidence that the answer is yes. The Graph Isomorphism problem asks whether two graphs G
and H are isomorphic; while given a basis for a lattice L ∈ Rn, the Approximate Shortest Vector problem asks for
a nonzero vector in L within a

√
n factor of the shortest one. We show that both problems are efficiently solvable

by sampling a hidden variable’s history, provided the hidden-variable theory satisfies the indifference axiom. By
contrast, despite a decade of effort, neither problem is known to lie in BQP, the class of problems solvable in quantum
polynomial time with bounded error probability.[40] Thus, if we let DQP (Dynamical Quantum Polynomial-Time)
be the class of problems solvable in our new model, then this already provides circumstantial evidence that BQP is
strictly contained in DQP.

However, the evidence is stronger than this. For we actually show that DQP contains an entire class of problems,
of which Graph Isomorphism and Approximate Shortest Vector are special cases. Computer scientists know this class
as Statistical Zero Knowledge, or SZK. Furthermore, in previous work [6] we showed that “relative to an oracle,”
SZK is not contained in BQP. This is a technical concept implying that any proof of SZK ⊆ BQP would require
techniques unlike those that are currently known. Combining our result that SZK ⊆ DQP with the oracle separation
of [6], we obtain that BQP 6= DQP relative to an oracle as well. Given computer scientists’ longstanding inability to
separate basic complexity classes, this is nearly the best evidence one could hope for that sampling histories yields
more power than standard quantum computation.

Besides solving SZK problems, we also show that by sampling histories, one could search an unordered database of
N items for a single “marked item” using only O

(
N1/3

)
database queries. By comparison, Grover’s quantum search

algorithm [7] requires Θ
(
N1/2

)
queries, while classical algorithms require Θ (N) queries.[41] On the other hand,

we also show that our N1/3 upper bound is the best possible—so even in the histories model, one cannot search an
N -item database in (logN)

c
steps for some fixed power c. This implies that NP 6⊂ DQP relative to an oracle, which

in turn suggests that DQP is still not powerful enough to solve NP-complete problems in polynomial time. Note
that while Graph Isomorphism and Approximate Shortest Vector are in NP, it is strongly believed that they are not
NP-complete.

At this point we should address a concern that many readers will have. Once we extend quantum mechanics by
positing the “unphysical” ability to sample histories, isn’t it completely unsurprising if we can then solve problems
that were previously intractable? We believe the answer is no, for three reasons.

First, almost every change that makes the quantum computing model more powerful, seems to make it so much
more powerful that NP-complete and even harder problems become solvable efficiently. To give some examples,
NP-complete problems can be solved in polynomial time using a nonlinear Schrödinger equation, as shown by Abrams
and Lloyd [8]; using closed timelike curves, as shown by Brun [9] and Bacon [10] (and conjectured by Deutsch [11]);
or using a measurement rule of the form |ψ|p for any p 6= 2, as shown by us [12]. It is also easy to see that we
could solve NP-complete problems if, given a quantum state |ψ〉, we could request a classical description of |ψ〉,
such as a list of amplitudes or a preparation procedure.[42] By contrast, ours is the first independently motivated
model we know of that seems more powerful than quantum computing, but only slightly so.[43] Moreover, the
striking fact that unordered search in our model takes about N1/3 steps, as compared to N steps classically and N1/2

quantum-mechanically, suggests that DQP somehow “continues a sequence” that begins with P and BQP. It would
be interesting to find a model in which search takes N1/4 or N1/5 steps.

The second reason our results are surprising is that, given a hidden variable, the distribution over its possible values
at any single time is governed by standard quantum mechanics, and is therefore efficiently samplable on a quantum
computer. So if examining the variable’s history confers any extra computational power, then it can only be because
of correlations between the variable’s values at different times.

The third reason is our criterion for success. We are not saying merely that one can solve Graph Isomorphism
under some hidden-variable theory; or even that, under any theory satisfying the indifference axiom, there exists
an algorithm to solve it; but rather that there exists a single algorithm that solves Graph Isomorphism under any
theory satisfying indifference. Thus, we must consider even theories that are specifically designed to thwart such an
algorithm.

But what is the motivation for our results? The first motivation is that, within the community of physicists who
study hidden-variable theories such as Bohmian mechanics, there is great interest in actually calculating the hidden-
variable trajectories for specific physical systems [13, 14]. Our results show that, when many interacting particles
are involved, this task might be fundamentally intractable, even if a quantum computer were available. The second
motivation is that, in classical computer science, studying “unrealistic” models of computation has often led to new
insights into realistic ones; and likewise we expect that the DQP model could lead to new results about standard
quantum computation. Indeed, in a sense this has already happened. For our result that SZK 6⊂ BQP relative to
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an oracle [6] grew out of work on the BQP versus DQP question. Yet the “quantum lower bound for the collision
problem” underlying that result provided the first evidence that cryptographic hash functions could be secure against
quantum attack, and ruled out a large class of possible quantum algorithms for Graph Isomorphism and related
problems.

B. Outline of Paper

Sections II through V B develop our axiomatic approach to hidden variables; then Sections VI through IX study
the computational complexity of sampling hidden-variable histories.

Section II formally defines hidden-variable theories in our sense; then Section II A contrasts these theories with
related ideas such as Bohmian mechanics and modal interpretations. Section II B addresses the most common
objections to our approach: for example, that the implicit dependence on a fixed basis is unacceptable.

In Section III, we introduce five possible axioms for hidden-variable theories. These are indifference to the identity
operation; robustness to small perturbations; commutativity with respect to spacelike-separated unitaries; commu-
tativity for the special case of product states; and invariance under decomposition of mixed states into pure states.
Ideally, a theory would satisfy all of these axioms. However, we show in Section IV that no theory satisfies both
indifference and commutativity; no theory satisfies both indifference and a stronger version of robustness; no theory
satisfies indifference, robustness, and decomposition invariance; and no theory satisfies a stronger version of decom-
position invariance.

In Section V we shift from negative to positive results. Section VA presents a hidden-variable theory called the
flow theory or FT , which is based on the Max-Flow-Min-Cut theorem from combinatorial optimization. The idea
is to define a network of “pipes” from basis states at an initial time to basis states at a final time, and then route
as much probability mass as possible through these pipes. The capacity of each pipe depends on the corresponding
entry of the unitary acting from the initial to final time. To find the probability of transitioning from basis state |i〉
to basis state |j〉, we then determine how much of the flow originating at |i〉 is routed along the pipe to |j〉. Our
main results are that FT is well-defined and that it is robust to small perturbations. Since FT trivially satisfies
the indifference axiom, this implies that the indifference and robustness axioms can be satisfied simultaneously, which
was not at all obvious a priori.

Section V B presents a second theory that we call the Schrödinger theory or ST , since it is based on a pair of
integral equations introduced in a 1931 paper of Schrödinger [1]. Schrödinger conjectured, but was unable to prove,
the existence and uniqueness of a solution to these equations; the problem was not settled until the work of Nagasawa
[15] in the 1980’s. In our discrete setting the problem is simpler, and we give a self-contained proof of existence using
a matrix scaling technique due to Sinkhorn [16]. The idea is as follows: we want to convert a unitary matrix that
maps one quantum state to another, into a nonnegative matrix whose ith column sums to the initial probability of
basis state |i〉, and whose jth row sums to the final probability of basis state |j〉. To do so, we first replace each
entry of the unitary matrix by its absolute value, then normalize each column to sum to the desired initial probability,
then normalize each row to sum to the desired final probability. But then the columns are no longer normalized
correctly, so we normalize them again, then normalize the rows again, and so on. We show that this iterative
process converges, from which it follows that ST is well-defined. We also show that ST satisfies the indifference and
product commutativity axioms, and violates the decomposition invariance axiom. We conjecture that ST satisfies
the robustness axiom; proving that conjecture is one of the main open problems of the paper.

In Section VI we shift our attention to the complexity of sampling histories. We formally define DQP as the class
of problems solvable by a classical polynomial-time algorithm with access to a “history oracle.” Given a sequence of
quantum circuits as input, this oracle returns a sample from a corresponding distribution over histories of a hidden
variable, according to some hidden-variable theory T . The oracle can choose T “adversarially,” subject to the
constraint that T satisfies the indifference and robustness axioms. Thus, a key result from Section VI that we rely
on is that there exists a hidden-variable theory satisfying indifference and robustness.

Section VI A establishes the most basic facts about DQP: for example, that BQP ⊆ DQP, and that DQP is
independent of the choice of gate set. Then Section VII presents the “juggle subroutine,” a crucial ingredient in both
of our main hidden-variable algorithms. Given a state of the form (|a〉 + |b〉) /

√
2 or (|a〉 − |b〉) /

√
2, the goal of this

subroutine is to “juggle” a hidden variable between |a〉 and |b〉, so that when we inspect the hidden variable’s history,
both |a〉 and |b〉 are observed with high probability. The difficulty is that this needs to work under any indifferent
hidden-variable theory.

Next, Section VIII combines the juggle subroutine with a technique of Valiant and Vazirani [17] to prove that
SZK ⊆ DQP, from which it follows in particular that Graph Isomorphism and Approximate Shortest Vector are in
DQP. Then Section IX applies the juggle subroutine to search an N -item database in O

(
N1/3

)
queries, and also

proves that this N1/3 bound is optimal.
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We conclude in Section X with some directions for further research.

II. HIDDEN-VARIABLE THEORIES

Suppose we have an N ×N unitary matrix U , acting on a state

|ψ〉 = α1 |1〉 + · · · + αN |N〉 ,

where |1〉 , . . . , |N〉 is a standard orthogonal basis. Let

U |ψ〉 = β1 |1〉 + · · · + βN |N〉 .

Then can we construct a stochastic matrix S, which maps the vector of probabilities

−→p =




|α1|2
...

|αN |2




induced by measuring |ψ〉, to the vector

−→q =




|β1|2
...

|βN |2




induced by measuring U |ψ〉? Trivially yes. The following matrix maps any vector of probabilities to −→q , ignoring
the input vector −→p entirely:

SPT =




|β1|2 · · · |β1|2
...

...

|βN |2 · · · |βN |2


 .

Here PT stands for product theory. The product theory corresponds to a strange picture of physical reality, in which
memories and records are completely unreliable, there being no causal connection between states of affairs at earlier
and later times.

So we would like S to depend on U itself somehow, not just on |ψ〉 and U |ψ〉. Indeed, ideally S would be a function
only of U , and not of |ψ〉. But this is impossible, as the following example shows. Let U be a π/4 rotation, and let

|+〉 = (|0〉 + |1〉) /
√

2 and |−〉 = (|0〉 − |1〉) /
√

2. Then U |+〉 = |1〉 implies that

S (|+〉 , U) =

[
0 0
1 1

]
,

whereas U |−〉 = |0〉 implies that

S (|−〉 , U) =

[
1 1
0 0

]
.

On the other hand, it is easy to see that, if S can depend on |ψ〉 as well as U , then there are infinitely many choices
for the function S (|ψ〉 , U). Every choice reproduces the predictions of quantum mechanics perfectly when restricted
to single-time probabilities. So how can we possibly choose among them? Our approach in Sections III and V will
be to write down axioms that we would like S to satisfy, and then investigate which of the axioms can be satisfied
simultaneously.

Formally, a hidden-variable theory is a family of functions {SN}N≥1, where each SN maps an N -dimensional mixed

state ρ and an N × N unitary matrix U onto a singly stochastic matrix SN (ρ, U). We will often suppress the
dependence on N , ρ, and U , and occasionally use subscripts such as PT or FT to indicate the theory in question.
Also, if ρ = |ψ〉 〈ψ| is a pure state we may write S (|ψ〉 , U) instead of S (|ψ〉 〈ψ| , U).

Let (M)ij denote the entry in the ith column and jth row of matrix M . Then (S)ij is the probability that the

hidden variable takes value |j〉 after U is applied, conditioned on it taking value |i〉 before U is applied. At a minimum,
any theory must satisfy the following marginalization axiom: for all j ∈ {1, . . . , N},
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∑

i

(S)ij (ρ)ii =
(
UρU−1

)
jj

.

This says that after U is applied, the hidden variable takes value |j〉 with probability
(
UρU−1

)
jj

, which is the usual

Born probability.
Often it will be convenient to refer, not to S itself, but to the matrix P (ρ, U) of joint probabilities whose (i, j) entry

is (P )ij = (S)ij (ρ)ii. The ith column of P must sum to (ρ)ii, and the jth row must sum to
(
UρU−1

)
jj

. Indeed,

we will define the theories FT and ST by first specifying the matrix P , and then setting (S)ij := (P )ij / (ρ)ii. This

approach has the drawback that if (ρ)ii = 0, then the ith column of S is undefined. To get around this, we adopt the
convention that

S (ρ, U) := lim
ε→0+

S (ρε, U)

where ρε = (1 − ε) ρ+ εI and I is the N ×N maximally mixed state. Technically, the limits

lim
ε→0+

(P (ρε, U))ij
(ρε)ii

might not exist, but in the cases of interest to us it will be obvious that they do.

A. Comparison with Previous Work

Before going further, we should contrast our approach with previous approaches to hidden variables, the most
famous of which is Bohmian mechanics [2]. Our main criticism of Bohmian mechanics is that it commits itself to
a Hilbert space of particle positions and momenta. Furthermore, it is crucial that the positions and momenta be
continuous, in order for particles to evolve deterministically. To see this, let |L〉 and |R〉 be discrete positions, and

suppose a particle is in state |L〉 at time t0, and state (|L〉 + |R〉) /
√

2 at a later time t1. Then a hidden variable
representing the position would have entropy 0 at t1, since it is always |L〉 then; but entropy 1 at t1, since it is |L〉
or |R〉 both with 1/2 probability. Therefore the earlier value cannot determine the later one.[44] It follows that
Bohmian mechanics is incompatible with the belief that all physical observables are discrete. But in our view, there
are strong reasons to hold that belief, which include black hole entropy bounds; the existence of a natural minimum
length scale (10−33 cm); results on area quantization in quantum gravity [18]; the fact that many physical quantities
once thought to be continuous have turned out to be discrete; the infinities of quantum field theory; the implausibility
of analog “hypercomputers”; and conceptual problems raised by the independence of the continuum hypothesis.

Of course there exist stochastic analogues of Bohmian mechanics, among them Nelsonian mechanics [4] and Bohm
and Hiley’s “stochastic interpretation” [19]. But it is not obvious why we should prefer these to other stochastic
hidden-variable theories. From a quantum-information perspective, it is much more natural to take an abstract
approach—one that allows arbitrary finite-dimensional Hilbert spaces, and that does not rule out any transition rule
a priori.

Stochastic hidden variables have also been considered in the context of modal interpretations; see Dickson [20],
Bacciagaluppi and Dickson [21], and Dieks [5] for example. However, the central assumptions in that work are
extremely different from ours. In modal interpretations, a pure state evolving unitarily poses no problems at all:
one simply rotates the hidden-variable basis along with the state, so that the state always represents a “possessed
property” of the system in the current basis. Difficulties arise only for mixed states; and there, the goal is to track a
whole set of possessed properties. By contrast, our approach is to fix an orthogonal basis, then track a single hidden
variable that is an element of that basis. The issues raised by pure states and mixed states are essentially the same.

Finally we should mention the consistent-histories interpretation of Griffiths [22] and Gell-Mann and Hartle [23].
This interpretation assigns probabilities to various histories through a quantum system, so long as the “interference”
between those histories is negligible. Loosely speaking, then, the situations where consistent histories make sense are
precisely the ones where the question of transition probabilities can be avoided.

B. Objections

Hidden-variable theories, as we define them, are open to several technical objections. For example, we required
transition probabilities for only one orthogonal observable. What about other observables? The problem is that,
according to the Kochen-Specker theorem, we cannot assign consistent values to all observables at any single time,
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let alone give transition probabilities for those values. This is an issue in any setting, not just ours. The solution
we prefer is to postulate a fixed orthogonal basis of “distinguishable experiences,” and to interpret a measurement
in any other basis as a unitary followed by a measurement in the fixed basis. As mentioned in Section II A, modal
interpretations opt for a different solution, which involves sets of bases that change over time with the state itself.

Another objection is that the probability of transitioning from basis state |i〉 at time t1 to basis state |j〉 at time
t2 might depend on how finely we divide the time interval between t1 and t2. In other words, for some state |ψ〉 and
unitaries V,W , we might have

S (|ψ〉 ,WV ) 6= S (V |ψ〉 ,W )S (|ψ〉 , V )

(a similar point was made by Gillespie [24]). Indeed, this is true for any hidden-variable theory other than the
product theory PT . To see this, observe that for all unitaries U and states |ψ〉, there exist unitaries V,W such that
U = WV and V |ψ〉 = |1〉. Then applying V destroys all information in the hidden variable (that is, decreases its
entropy to 0); so if we then apply W , then the variable’s final value must be uncorrelated with the initial value. In
other words, S (V |ψ〉 ,W )S (|ψ〉 , V ) must equal SPT (|ψ〉 , U). It follows that to any hidden-variable theory we must
associate a time scale, or some other rule for deciding when the transitions take place.

In response, let us point out that exactly the same problem arises in continuous-time stochastic hidden-variable
theories. For if a state |ψ〉 is governed by the Schrödinger equation d |ψ〉 /dt = iHt |ψ〉, and a hidden variable’s
probability distribution −→p is governed by the stochastic equation d−→p /dτ = Aτ

−→p , then there is still an arbitrary
parameter dτ/dt on which the dynamics depend.

Finally, it will be objected that we have ignored special relativity. In Section III we will define a commutativity
axiom, which informally requires that the stochastic matrix S not depend on the temporal order of spacelike separated
events. Unfortunately, we will see that when entangled states are involved, commutativity is irreconcilable with
another axiom that seems even more basic. The resulting nonlocality has the same character as the nonlocality of
Bohmian mechanics—that is, one cannot use it to send superluminal signals in the usual sense, but it is unsettling
nonetheless.

III. AXIOMS FOR HIDDEN-VARIABLE THEORIES

We now state five[45] axioms that we might like hidden-variable theories to satisfy.
Indifference. The indifference axiom says that if U is block-diagonal, then S should also be block-diagonal with

the same block structure or some refinement thereof. Formally, let a block be a subset B ⊆ {1, . . . , N} such that
(U)ij = 0 for all i ∈ B, j /∈ B and i /∈ B, j ∈ B. Then for all blocks B, we should have (S)ij = 0 for all i ∈ B, j /∈ B

and i /∈ B, j ∈ B. In particular, indifference implies that given any state ρ in a tensor product space HA ⊗HB , and
any unitary U that acts only on HA (that is, never maps a basis state |iA〉 ⊗ |iB〉 to |jA〉 ⊗ |jB〉 where iB 6= jB), the
stochastic matrix S (ρ, U) acts only on HA as well.

Robustness. A theory is robust if it is insensitive to small errors in a state or unitary (which, in particular,

implies continuity). Suppose we obtain ρ̃ and Ũ by perturbing ρ and U respectively. Then for all polynomials p,
there should exist a polynomial q such that for all N ,

∥∥∥P
(
ρ̃, Ũ

)
− P (ρ, U)

∥∥∥
∞

≤ 1

p (N)

where ‖M‖∞ = maxij

∣∣∣(M)ij

∣∣∣, whenever ‖ρ̃− ρ‖∞ ≤ 1/q (N) and
∥∥∥Ũ − U

∥∥∥
∞

≤ 1/q (N). Robustness has an impor-

tant advantage for quantum computing: if a hidden-variable theory is robust then the set of gates used to define the
unitaries U1, . . . , UT is irrelevant, since by the Solovay-Kitaev Theorem (see [25, 26]), any universal quantum gate set
can simulate any other to a precision ε with O (logc 1/ε) overhead.

Commutativity. Let ρAB be a bipartite state, and let UA and UB act only on subsystems A and B respectively.
Then commutativity means that the order in which UA and UB are applied is irrelevant:

S
(
UAρABU

−1
A , UB

)
S (ρAB, UA) = S

(
UBρABU

−1
B , UA

)
S (ρAB, UB) .

Product Commutativity. A theory is product commutative if it satisfies commutativity for all separable pure
states |ψ〉 = |ψA〉 ⊗ |ψB〉.

Decomposition Invariance. A theory is decomposition invariant if

S (ρ, U) =

N∑

i=1

piS (|ψi〉 〈ψi| , U)
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for every decomposition

ρ =

N∑

i=1

pi |ψi〉 〈ψi|

of ρ into pure states. Theorem 2, part (ii) will show that the analogous axiom for P (ρ, U) is unsatisfiable.

A. Comparing Theories

To fix ideas, let us compare some hidden-variable theories with respect to the above axioms. We have already
seen the product theory PT in Section II. It is easy to show that PT satisfies robustness, commutativity, and
decomposition invariance. However, we consider PT unsatisfactory because it violates indifference: even if a unitary
U acts only on the first of two qubits, SPT (ρ, U) will readily produce transitions involving the second qubit.

Recognizing this problem, Dieks [5] proposed an alternative theory that in our setting corresponds to the
following.[46] First partition the set of basis states into minimal blocks B1, . . . , Bm between which U never sends
amplitude. Then apply the product theory separately to each block; that is, if i and j belong to the same block Bk
then set

(S)ij =

(
UρU−1

)
jj∑

ĵ∈Bk
(UρU−1)ĵĵ

,

and otherwise set (S)ij = 0. The resulting Dieks theory, DT , satisfies indifference by construction. However, it

does not satisfy robustness (or even continuity), since the set of blocks can change if we replace ‘0’ entries in U by
arbitrarily small nonzero entries.

In Section V we will introduce two other hidden-variable theories, the flow theory FT and the Schrödinger theory
ST . The following table lists which axioms the four theories satisfy.

PT (Product) DT (Dieks) FT (Flow) ST (Schrödinger)
Indifference No Yes Yes Yes
Robustness Yes No Yes ?
Commutativity Yes No No No
Product Commutativity Yes Yes No Yes
Decomposition Invariance Yes Yes No No

If we could prove that ST satisfies robustness, then the above table together with the impossibility results of Section
IV would completely characterize which of the axioms can be satisfied simultaneously.

IV. IMPOSSIBILITY RESULTS

This section shows that certain sets of axioms cannot be satisfied by any hidden-variable theory. We first show
that the failure of DT , FT , and ST to satisfy commutativity is inherent, and not a fixable technical problem.

Theorem 1 No hidden-variable theory satisfies both indifference and commutativity.

Proof. Assume indifference holds, and let our initial state be |ψ〉 = (|00〉 + |11〉) /
√

2. Suppose UA applies a π/8
rotation to the first qubit, and UB applies a −π/8 rotation to the second qubit. Then

UA |ψ〉 = UB |ψ〉 =
1√
2

(
cos

π

8
|00〉 − sin

π

8
|01〉 + sin

π

8
|10〉+ cos

π

8
|11〉

)
,

UAUB |ψ〉 = UBUA |ψ〉 =
1

2
(|00〉 − |01〉 + |10〉 + |11〉) .

Let vt be the value of the hidden variable after t unitaries have been applied. Let E be the event that v0 = |00〉
initially, and v2 = |10〉 at the end. If UA is applied before UB, then the unique ‘path’ from v0 to v2 consistent with
indifference sets v1 = |10〉. So

Pr [E] ≤ Pr [v1 = |10〉] =
1

2
sin2 π

8
.
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But if UB is applied before UA, then the probability that v0 = |11〉 and v2 = |10〉 is at most 1
2 sin2 π

8 , by the same
reasoning. Thus, since v2 must equal |10〉 with probability 1/4, and since the only possibilities for v0 are |00〉 and
|11〉,

Pr [E] ≥ 1

4
− 1

2
sin2 π

8
>

1

2
sin2 π

8
.

We conclude that commutativity is violated.
Let us remark on the relationship between Theorem 1 and Bell’s Theorem. Any hidden-variable theory that is

“local” in Bell’s sense would immediately satisfy both indifference and commutativity. However, the converse is not
obvious, since there might be nonlocal information in the states UA |ψ〉 or UB |ψ〉, which an indifferent commutative
theory could exploit but a local one could not. Theorem 1 rules out this possibility, and in that sense is a strengthening
of Bell’s Theorem.

The next result places limits on decomposition invariance.

Theorem 2

(i) No theory satisfies indifference, robustness, and decomposition invariance.

(ii) No theory has the property that

P (ρ, U) =

N∑

i=1

piP (|ψi〉 〈ψi| , U)

for every decomposition
∑N

i=1 pi |ψi〉 〈ψi| of ρ.

Proof.

(i) Suppose the contrary. Let

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
,

|ϕθ〉 = cos θ |0〉 + sin θ |1〉 .

Then for every θ not a multiple of π/2, we must have

S (|ϕ−θ〉 , Rθ) =

[
1 1
0 0

]
,

S
(∣∣ϕπ/2−θ

〉
, Rθ

)
=

[
0 0
1 1

]
.

So by decomposition invariance, letting I = (|0〉 〈0| + |1〉 〈1|) /2 denote the maximally mixed state,

S (I, Rθ) = S

(
|ϕ−θ〉 〈ϕ−θ| +

∣∣ϕπ/2−θ
〉 〈
ϕπ/2−θ

∣∣
2

, Rθ

)
=

[
1
2

1
2

1
2

1
2

]

and therefore

P (I, Rθ) =

[
(ρ)00

2

(ρ)11
2

(ρ)00
2

(ρ)11
2

]
=

[
1
4

1
4

1
4

1
4

]
.

By robustness, this holds for θ = 0 as well. But this is a contradiction, since by indifference P (I, R0) must be
half the identity.

(ii) Suppose the contrary; then

P
(
I, Rπ/8

)
=
P
(
|0〉 , Rπ/8

)
+ P

(
|1〉 , Rπ/8

)

2
.
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So considering transitions from |0〉 to |1〉,
(
P
(
I, Rπ/8

))
01

=

(
P
(
|0〉 , Rπ/8

))
11

+ 0

2
=

1

2
sin2 π

8
.

But

P
(
I, Rπ/8

)
=
P
(∣∣ϕπ/8

〉
, Rπ/8

)
+ P

(∣∣ϕ5π/8

〉
, Rπ/8

)

2

also. Since Rπ/8
∣∣ϕπ/8

〉
=
∣∣ϕπ/4

〉
, we have

(
P
(
I, Rπ/8

))
01

≥ 1

2

(
P
(∣∣ϕπ/8

〉
, Rπ/8

))
01

≥ 1

2

(
1

2
−
(
P
(∣∣ϕπ/8

〉
, Rπ/8

))
11

)

≥ 1

2

(
1

2
− sin2 π

8

)

>
1

2
sin2 π

8

which is a contradiction.

Notice that all three conditions in Theorem 2, part (i) were essential—for PT satisfies robustness and decomposition
invariance, DT satisfies indifference and decomposition invariance, and FT satisfies indifference and robustness.

Our last impossibility result says that no hidden-variable theory satisfies both indifference and “strong continuity,”
in the sense that for all ε > 0 there exists δ > 0 such that ‖ρ̃− ρ‖ ≤ δ implies ‖S (ρ̃, U) − S (ρ, U)‖ ≤ ε. To see this,
let

U =




1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2


 ,

ρ =
√

1 − 2δ2 |0〉 + δ |1〉 + δ |2〉 ,
ρ̃ =

√
1 − 2δ2 |0〉 + δ |1〉 − δ |2〉 .

Then by indifference,

S (ρ, U) =




1 0 0
0 0 0
0 1 1



 , S (ρ̃, U) =




1 0 0
0 1 1
0 0 0



 .

This is the reason why we defined robustness in terms of the joint probabilities matrix P rather than the stochastic
matrix S. On the other hand, note that by giving up indifference, we can satisfy strong continuity, as is shown by
PT .

V. SPECIFIC THEORIES

This section presents two nontrivial examples of hidden-variable theories: the flow theory in Section VA, and the
Schrödinger theory in Section VB.

A. Flow Theory

The idea of the flow theory is to convert a unitary matrix into a weighted directed graph, and then route probability
mass through that graph like oil through pipes. Given a unitary U , let



β1

...
βN


 =




(U)11 · · · (U)N1
...

...
(U)1N · · · (U)NN






α1

...
αN


 ,
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2

1α

2

Nα2

Nβ

2

1β
�

�

st

1

N

ij

1

N

( )11
U

( )NN
U

�

�

FIG. 1: A network (weighted directed graph with source and sink) corresponding to the unitary U and state |ψ〉

where for the time being

|ψ〉 = α1 |1〉 + · · · + αN |N〉 ,
U |ψ〉 = β1 |1〉 + · · · + βN |N〉

are pure states. Then consider the network G shown in Figure 1. We have a source vertex s, a sink vertex t, and N
input and N output vertices labeled by basis states |1〉 , . . . , |N〉. Each edge of the form (s, |i〉) has capacity |αi|2,
each edge (|i〉 , |j〉) has capacity

∣∣∣(U)ij

∣∣∣, and each edge (|j〉 , t) has capacity |βj |2. A natural question is how much

probability mass can flow from s to t without violating the capacity constraints. Rather surprisingly, we show that

one unit of mass (that is, all of it) can. Interestingly, this result would be false if edge (|i〉 , |j〉) had capacity
∣∣∣(U)ij

∣∣∣
2

(or even
∣∣∣(U)ij

∣∣∣
1+ε

) instead of
∣∣∣(U)ij

∣∣∣. We also show that there exists a mapping from networks to maximal flows

in those networks, that is robust in the sense that a small change in edge capacities produces only a small change in
the amount of flow through any edge.

The proofs of these theorems use classical results from the theory of network flows (see [27] for an introduction).
In particular, let a cut be a set of edges that separates s from t; the value of a cut is the sum of the capacities of
its edges. Then a fundamental result called the Max-Flow-Min-Cut Theorem [28] says that the maximum possible
amount of flow from s to t equals the minimum value of any cut. Using that result we can show the following.

Theorem 3 One unit of flow can be routed from s to t in G.

Proof. By the above, it suffices to show that any cut C in G has value at least 1. Let A be the set of i ∈ {1, . . . , N}
such that (s, |i〉) /∈ C, and let B be the set of j such that (|j〉 , t) /∈ C. Then C must contain every edge (|i〉 , |j〉) such
that i ∈ A and j ∈ B, and we can assume without loss of generality that C contains no other edges. So the value of
C is

∑

i/∈A
|αi|2 +

∑

j /∈B
|βj |2 +

∑

i∈A, j∈B

∣∣∣(U)ij

∣∣∣ .

Therefore we need to prove the matrix inequality

(
1 −

∑

i∈A
|αi|2

)
+


1 −

∑

j∈B
|βj |2


+

∑

i∈A, j∈B

∣∣∣(U)ij

∣∣∣ ≥ 1,

or

1 +
∑

i∈A, j∈B

∣∣∣(U)ij

∣∣∣ ≥
∑

i∈A
|αi|2 +

∑

j∈B
|βj |2 . (1)

Let U be fixed, and consider the maximum of the right-hand side of equation (1) over all |ψ〉. Since

βj =
∑

i

(U)ij αi,
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this maximum is equal to the largest eigenvalue λ of the positive semidefinite matrix

∑

i∈A
|i〉 〈i| +

∑

j∈B
|uj〉 〈uj|

where for each j,

|uj〉 = (U)1j |1〉 + · · · + (U)Nj |N〉 .

Let HA be the subspace of states spanned by {|i〉 : i ∈ A}, and let HB be the subspace spanned by {|uj〉 : j ∈ B}.
Also, let LA (|ψ〉) be the length of the projection of |ψ〉 onto HA, and let LB (|ψ〉) be the length of the projection of
|ψ〉 onto HB. Then since the |i〉’s and |uj〉’s form orthogonal bases for HA and HB respectively, we have

λ = max
|ψ〉



∑

i∈A
|〈i|ψ〉|2 +

∑

j∈B
|〈uj |ψ〉|2




= max
|ψ〉

(
LA (|ψ〉)2 + LB (|ψ〉)2

)
.

So letting θ be the angle between HA and HB,

λ = 2 cos2
θ

2
= 1 + cos θ

≤ 1 + max
|a〉∈HA, |b〉∈HB

|〈a|b〉|

= 1 + max
|γ1|2+···+|γN |2=1

|δ1|2+···+|δN |2=1

∣∣∣∣∣∣

(
∑

i∈A
γi 〈i|

)

∑

j∈B
δj |uj〉




∣∣∣∣∣∣

≤ 1 +
∑

i∈A, j∈B

∣∣∣(U)ij

∣∣∣

which completes the theorem.
Observe that Theorem 3 still holds if U acts on a mixed state ρ, since we can write ρ as a convex combination of

pure states |ψ〉 〈ψ|, construct a flow for each |ψ〉 separately, and then take a convex combination of the flows.
Using Theorem 3, we now define the flow theory FT . Let F (ρ, U) be the set of maximal flows for ρ, U—

representable by N ×N arrays of real numbers fij such that 0 ≤ fij ≤
∣∣∣(U)ij

∣∣∣ for all i, j, and also

∑

j

fij = (ρ)ii ,
∑

i

fij =
(
UρU−1

)
jj
.

Clearly F (ρ, U) is a convex polytope, which Theorem 3 asserts is nonempty. Form a maximal flow f∗ (ρ, U) ∈ F (ρ, U)
as follows: first let f∗

11 be the maximum of f11 over all f ∈ F (ρ, U). Then let f∗
12 be the maximum of f12 over all

f ∈ F (ρ, U) such that f11 = f∗
11. Continue to loop through all i, j pairs in lexicographic order, setting each f∗

ij to
its maximum possible value consistent with the (i− 1)N + j − 1 previous values. Finally, let (P )ij = f∗

ij for all i, j.

As discussed in Section II, given P we can easily obtain the stochastic matrix S by dividing the ith column by (ρ)ii,
or taking a limit in case (ρ)ii = 0.

It is easy to check that FT so defined satisfies the indifference axiom. Showing that FT satisfies robustness is
harder. Our proof is based on the Ford-Fulkerson algorithm [28], a classic algorithm for computing maximal flows
that works by finding a sequence of “augmenting paths,” each of which increases the flow from s to t by some positive
amount.

Theorem 4 FT satisfies robustness.

Proof. Let G be an arbitrary flow network with source s, sink t, and directed edges e1, . . . , em, where each ei has
capacity ci and leads from vi to wi. It will be convenient to introduce a fictitious edge e0 from t to s with unlimited
capacity; then maximizing the flow through G is equivalent to maximizing the flow through e0. Suppose we produce
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a new network G̃ by increasing a single capacity ci∗ by some ε > 0. Let f∗ be the optimal flow for G, obtained by
first maximizing the flow f0 through e0, then maximizing the flow f1 through e1 holding f0 fixed, and so on up to

fm. Let f̃∗ be the maximal flow for G̃ produced in the same way. We claim that for all i ∈ {0, . . . ,m},
∣∣∣f̃∗
i − f∗

i

∣∣∣ ≤ ε.

To see that the theorem follows from this claim: first, if f∗ is robust under adding ε to ci∗ , then it must also

be robust under subtracting ε from ci∗ . Second, if we change ρ, U to ρ̃, Ũ such that ‖ρ̃− ρ‖∞ ≤ 1/q (N) and∥∥∥Ũ − U
∥∥∥
∞

≤ 1/q (N), then we can imagine the N2 + 2N edge capacities are changed one by one, so that

∥∥∥f∗
(
ρ̃, Ũ

)
− f∗ (ρ, U)

∥∥∥
∞

≤
∑

ij

∣∣∣∣

∣∣∣∣
(
Ũ
)

ij

∣∣∣∣−
∣∣∣(U)ij

∣∣∣
∣∣∣∣+
∑

i

|(ρ̃)ii − (ρ)ii|

+
∑

j

∣∣∣∣
(
Ũ ρ̃Ũ−1

)

jj
−
(
UρU−1

)
jj

∣∣∣∣

≤ 4N2

q (N)
.

(Here we have made no attempt to optimize the bound.)
We now prove the claim. To do so we describe an iterative algorithm for computing f∗. First maximize the flow

f0 through e0, by using the Ford-Fulkerson algorithm to find a maximal flow from s to t. Let f (0) be the resulting
flow, and let G(1) be the residual network that corresponds to f (0). For each i, that is, G(1) has an edge ei = (vi, wi)

of capacity c
(1)
i = ci− f

(0)
i , and an edge ei = (wi, vi) of capacity c

(1)
i = f

(0)
i . Next maximize f1 subject to f0 by using

the Ford-Fulkerson algorithm to find “augmenting cycles” from w1 to v1 and back to w1 in G(1) \ {e0, e0}. Continue
in this manner until each of f1, . . . , fm has been maximized subject to the previous fi’s. Finally set f∗ = f (m).

Now, one way to compute f̃∗ is to start with f∗, then repeatedly “correct” it by applying the same iterative

algorithm to maximize f̃0, then f̃1, and so on. Let εi =
∣∣∣f̃∗
i − f∗

i

∣∣∣; then we need to show that εi ≤ ε for all

i ∈ {0, . . . ,m}. The proof is by induction on i. Clearly ε0 ≤ ε, since increasing ci∗ by ε can increase the value of

the minimum cut from s to t by at most ε. Likewise, after we maximize f̃0, the value of the minimum cut from w1

to v1 can increase by at most ε− ε0 + ε0 = ε. For of the at most ε new units of flow from w1 to v1 that increasing

ci∗ made available, ε0 of them were “taken up” in maximizing f̃0, but the process of maximizing f̃0 could have again
increased the minimum cut from w1 to v1 by up to ε0. Continuing in this way,

ε2 ≤ ε− ε0 + ε0 − ε1 + ε1 = ε,

and so on up to εm. This completes the proof.
That FT violates decomposition invariance now follows from Theorem 2, part (i). One can also show that FT

violates product commutativity, by considering the following example: let |ψ〉 =
∣∣ϕπ/4

〉
⊗
∣∣ϕ−π/8

〉
be a 2-qubit initial

state, and let RAπ/4 and RBπ/4 be π/4 rotations applied to the first and second qubits respectively. Then

S
(
RAπ/4 |ψ〉 , RBπ/4

)
S
(
|ψ〉 , RAπ/4

)
6= S

(
RBπ/4 |ψ〉 , RAπ/4

)
S
(
|ψ〉 , RBπ/4

)
.

We omit a proof for brevity.

B. Schrödinger Theory

Our final hidden-variable theory, which we call the Schrödinger theory or ST , is the most interesting one mathe-
matically. The idea—to make a matrix into a stochastic matrix via row and column rescaling—is natural enough
that we came upon it independently, only later learning that it originated in a 1931 paper of Schrödinger [1]. The
idea was subsequently developed by Fortet [29], Beurling [30], Nagasawa [15], and others. Our goal is to give what
(to our knowledge) is the first self-contained, reasonably accessible presentation of the main result in this area; and
to interpret that result in what we think is the correct way: as providing one example of a hidden-variable theory,
whose strengths and weaknesses should be directly compared to those of other theories.

Most of the technical difficulties in [1, 15, 29, 30] arise because the stochastic process being constructed involves
continuous time and particle positions. Here we eliminate those difficulties by restricting attention to discrete time
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and finite-dimensional Hilbert spaces. We thereby obtain a generalized version[47] of a problem that computer
scientists know as (r, c)-scaling of matrices [16, 31, 32].

As in the case of the flow theory, given a unitary U acting on a state ρ, the first step is to replace each entry of

U by its absolute value, obtaining a nonnegative matrix U (0) defined by
(
U (0)

)
ij

:=
∣∣∣(U)ij

∣∣∣. We then wish to find

nonnegative column multipliers α1, . . . , αN and row multipliers β1, . . . , βN such that for all i, j,

αiβ1

(
U (0)

)

i1
+ · · · + αiβN

(
U (0)

)

iN
= (ρ)ii , (2)

α1βj

(
U (0)

)

1j
+ · · · + αNβj

(
U (0)

)

Nj
=
(
UρU−1

)
jj
. (3)

If we like, we can interpret the αi’s and βj ’s as dynamical variables that reach equilibrium precisely when equations
(2) and (3) are satisfied. Admittedly, it might be thought physically implausible that such a complicated dynamical
process should take place at every instant of time. On the other hand, it is hard to imagine a more “benign” way to
convert U (0) into a joint probabilities matrix, than by simply rescaling its rows and columns.

We will show that multipliers satisfying (2) and (3) always exist. The intuition of a dynamical process reaching
equilibrium turns out to be key to the proof. For all t ≥ 0, let

(
U (2t+1)

)

ij
=

(ρ)ii∑
k

(
U (2t)

)
ik

(
U (2t)

)

ij
,

(
U (2t+2)

)

ij
=

(
UρU−1

)
jj∑

k

(
U (2t+1)

)
kj

(
U (2t+1)

)

ij
.

In words, we obtain U (2t+1) by normalizing each column i of U (2t) to sum to (ρ)ii; likewise we obtain U (2t+2) by

normalizing each row j of U (2t+1) to sum to
(
UρU−1

)
jj

. The crucial fact is that the above process always converges

to some P (ρ, U) = limt→∞ U (t). We can therefore take

αi =

∞∏

t=0

(ρ)ii∑
k

(
U (2t)

)
ik

,

βj =

∞∏

t=0

(
UρU−1

)
jj∑

k

(
U (2t+1)

)
kj

for all i, j. Although we will not prove it here, it turns out that this yields the unique solution to equations (2) and
(3), up to a global rescaling of the form αi → αic for all i and βj → βj/c for all j [15].

Our convergence proof will reuse a result about network flows from Section V A, in order to define a nondecreasing
“progress measure” based on Kullback-Leibler distance.

Theorem 5 The limit P (ρ, U) = limt→∞ U (t) exists.

Proof. A consequence of Theorem 3 is that for every ρ, U , there exists an N×N array of nonnegative real numbers
fij such that

(1) fij = 0 whenever
∣∣∣(U)ij

∣∣∣ = 0,

(2) fi1 + · · · + fiN = (ρ)ii for all i, and

(3) f1j + · · · + fNj =
(
UρU−1

)
jj

for all j.

Given any such array, define a progress measure

Z(t) =
∏

ij

(
U (t)

)fij

ij
,

where we adopt the convention 00 = 1. We claim that Z(t+1) ≥ Z(t) for all t ≥ 1. To see this, assume without loss of

generality that we are on an odd step 2t+ 1, and let C
(2t)
i =

∑
j

(
U (2t)

)
ij

be the ith column sum before we normalize
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it. Then

Z(2t+1) =
∏

ij

(
U (2t+1)

)fij

ij

=
∏

ij

(
(ρ)ii

C
(2t)
i

(
U (2t)

)

ij

)fij

=




∏

ij

(
U (2t)

)fij

ij








∏

i

(
(ρ)ii

C
(2t)
i

)fi1+···+fiN




= Z(2t) ·
∏

i

(
(ρ)ii

C
(2t)
i

)(ρ)ii

.

As a result of the 2tth normalization step, we had
∑

i C
(2t)
i = 1. Subject to that constraint, the maximum of

∏

i

(
C

(2t)
i

)(ρ)ii

over the C
(2t)
i ’s occurs when C

(2t)
i = (ρ)ii for all i—a simple calculus fact that follows from the nonnegativity of

Kullback-Leibler distance. This implies that Z(2t+1) ≥ Z(2t). Similarly, normalizing rows leads to Z(2t+2) ≥ Z(2t+1).

It follows that the limit P (ρ, U) = limt→∞ U (t) exists. For suppose not; then some C
(t)
i is bounded away from

(ρ)ii, so there exists an ε > 0 such that Z(t+1) ≥ (1 + ε)Z(t) for all even t. But this is a contradiction, since Z(0) > 0

and Z(t) ≤ 1 for all t.
Besides showing that P (ρ, U) is well-defined, Theorem 5 also yields a procedure to calculate P (ρ, U) (as well

as the αi’s and βj ’s). It can be shown that this procedure converges to within entrywise error ε after a number
steps polynomial in N and 1/ε. Also, once we have P (ρ, U), the stochastic matrix S (ρ, U) is readily obtained by
normalizing each column of P (ρ, U) to sum to 1. This completes the definition of the Schrödinger theory ST .

It is immediate that ST satisfies indifference. Let us show that it satisfies product commutativity as well.

Proposition 6 ST satisfies product commutativity.

Proof. Given a state |ψ〉 = |ψA〉 ⊗ |ψB〉, let UA ⊗ I act only on |ψA〉 and let I ⊗ UB act only on |ψB〉. Then we
claim that

S (|ψ〉 , UA ⊗ I) = S (|ψA〉 , UA) ⊗ I.

The reason is simply that multiplying all amplitudes in |ψA〉 and UA |ψA〉 by a constant factor αx, as we do for each
basis state |x〉 of |ψB〉, has no effect on the scaling procedure that produces S (|ψA〉 , UA). Similarly

S (|ψ〉 , I ⊗ UB) = I ⊗ S (|ψB〉 , UB) .

It follows that

S (|ψA〉 , UA) ⊗ S (|ψB〉 , UB) = S (UA |ψA〉 ⊗ |ψB〉 , I ⊗ UB)S (|ψ〉 , UA ⊗ I)

= S (|ψA〉 ⊗ UB |ψB〉 , UA ⊗ I)S (|ψ〉 , I ⊗ UB) .

On the other hand, numerical simulations readily show that ST violates decomposition invariance, even when
N = 2 (we omit a concrete example for brevity).

VI. THE COMPUTATIONAL MODEL

We now explain our model of computation, building our way up to the complexity class DQP. From now on, the
states ρ that we consider will always be pure states of ` = log2N qubits. That is, ρ = |ψ〉 〈ψ| where

|ψ〉 =
∑

x∈{0,1}`

αx |x〉 .
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Our algorithms will work under any hidden-variable theory that satisfies the indifference axiom. On the other
hand, if we take into account that even in theory (let alone in practice), a generic unitary cannot be represented
exactly with a finite universal gate set, only approximated arbitrarily well, then we also need the robustness axiom.
Thus, it is reassuring that there exists a hidden-variable theory (namely FT ) that satisfies both indifference and
robustness.

Let a quantum computer have the initial state |0〉⊗`, and suppose we apply a sequence U = (U1, . . . , UT ) of unitary
operations, each of which is implemented by a polynomial-size quantum circuit. Then a history of a hidden variable
through the computation is a sequence H = (v0, . . . , vT ) of basis states, where vt is the variable’s value immediately

after Ut is applied (thus v0 = |0〉⊗`). Given any hidden-variable theory T , we can obtain a probability distribution
Ω (U , T ) over histories by just applying T repeatedly, once for each Ut, to obtain the stochastic matrices

S
(
|0〉⊗` , U1

)
, S

(
U1 |0〉⊗` , U2

)
, . . . S

(
UT−1 · · ·U1 |0〉⊗` , UT

)
.

Note that Ω (U , T ) is a Markov distribution; that is, each vt is independent of the other vi’s conditioned on vt−1 and
vt+1. Admittedly, Ω (U , T ) could depend on the precise way in which the combined circuit UT · · ·U1 is “sliced” into
component circuits U1, . . . , UT . But as we showed in Section II B, such dependence on the granularity of unitaries is
unavoidable in any hidden-variable theory other than PT .

Given a hidden-variable theory T , let O (T ) be an oracle that takes as input a positive integer `, and a sequence
of quantum circuits U = (U1, . . . , UT ) that act on ` qubits. Here each Ut is specified by a sequence

(
gt,1, . . . , gt,m(t)

)

of gates chosen from some finite universal gate set G. The oracle O (T ) returns as output a sample (v0, . . . , vT )
from the history distribution Ω (U , T ) defined previously. Now let A be a deterministic classical Turing machine
that is given oracle access to O (T ). The machine A receives an input x, makes a single oracle query to O (T ), then
produces an output based on the response. We say a set of strings L is in DQP if there exists an A such that for
all sufficiently large n and inputs x ∈ {0, 1}n, and all theories T satisfying the indifference and robustness axioms, A
correctly decides whether x ∈ L with probability at least 2/3, in time polynomial in n.

Let us make some remarks about the above definition. There is no real significance in our requirement that A
be deterministic and classical, and that it be allowed only one query to O (T ). We made this choice only because
it suffices for our upper bounds; it might be interesting to consider the effects of other choices. However, other
aspects of the definition are not arbitrary. The order of quantifiers matters; we want a single A that works for any
hidden-variable theory satisfying indifference and robustness. Also, we require A to succeed only for sufficiently large
n since by choosing a large enough polynomial q (N) in the statement of the robustness axiom, an adversary might
easily make A incorrect on a finite number of instances.

A. Basic Results

Having defined the complexity class DQP, let us establish its most basic properties. First of all, it is immediate
that BQP ⊆ DQP; that is, sampling histories is at least as powerful as standard quantum computation. For v1, the
first hidden-variable value returned by O (T ), can be seen as simply the result of applying a polynomial-size quantum

circuit U1 to the initial state |0〉⊗` and then measuring in the standard basis. A key further observation is the
following.

Theorem 7 Any universal gate set yields the same complexity class DQP. By universal, we mean that any unitary
matrix (real or complex) can be approximated, without the need for ancilla qubits.

Proof. Let G and G′ be universal gate sets. Also, let U = (U1, . . . , UT ) be a sequence of `-qubit unitaries, each
specified by a polynomial-size quantum circuit over G. We have T, ` = O (poly (n)) where n is the input length.
We can also assume without loss of generality that ` ≥ n, since otherwise we simply insert n − ` dummy qubits
that are never acted on (by the indifference axiom, this will not affect the results). We want to approximate U by
another sequence of `-qubit unitaries, U ′ = (U ′

1, . . . , U
′
T ), where each U ′

t is specified by a quantum circuit over G′. In

particular, for all t we want ‖U ′
t − Ut‖∞ ≤ 2−`

2T . By the Solovay-Kitaev Theorem [25, 26], we can achieve this using

poly
(
n, `2T

)
= poly (n) gates from G′; moreover, the circuit for U ′

t can be constructed in polynomial time given the
circuit for Ut.

Let |ψt〉 = Ut · · ·U1 |0〉⊗` and |ψ′
t〉 = U ′

t · · ·U ′
1 |0〉⊗`. Notice that for all t ∈ {1, . . . , T},

‖|ψ′
t〉 − |ψt〉‖∞ ≤ 2`

(∥∥∣∣ψ′
t−1

〉
− |ψt−1〉

∥∥
∞ + 2−`

2T
)

≤ T 2`T
(
2−`

2T
)

= T 2−`(`−1)T ,
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since ‖|ψ′
0〉 − |ψ0〉‖∞ = 0. Here ‖ ‖∞ denotes the maximum entrywise difference between two vectors in C2`

. Also,
given a theory T , let Pt and P ′

t be the joint probabilities matrices corresponding to Ut and U ′
t respectively. Then by the

robustness axiom, there exists a polynomial q such that if ‖U ′
t − Ut‖∞ ≤ 1/q

(
2`
)

and
∥∥∣∣ψ′

t−1

〉
− |ψt−1〉

∥∥
∞ ≤ 1/q

(
2`
)
,

then ‖Pt − P ′
t‖∞ ≤ 2−3`. For all such polynomials q, we have 2−`

2T ≤ 1/q
(
2`
)

and T 2−`(`−1)T ≤ 1/q
(
2`
)

for

sufficiently large n ≤ `. Therefore ‖Pt − P ′
t‖∞ ≤ 2−3` for all t and sufficiently large n.

Now assume n is sufficiently large, and consider the distributions Ω (U , T ) and Ω (U ′, T ) over classical histories

H = (v0, . . . , vT ). For all t ∈ {1, . . . , T} and x ∈ {0, 1}`, we have

∣∣∣∣ Pr
Ω(U ,T )

[vt = |x〉] − Pr
Ω(U ′,T )

[vt = |x〉]
∣∣∣∣ ≤ 2`

(
2−3`

)
= 2−2`.

It follows by the union bound that the variation distance ‖Ω (U ′, T ) − Ω (U , T )‖ is at most

T 2`
(
2−2`

)
=
T

2`
≤ T

2n
.

In other words, Ω (U ′, T ) can be distinguished from Ω (U , T ) with bias at most T/2n, which is exponentially small.
So any classical postprocessing algorithm that succeeds with high probability given H ∈ Ω (U , T ), also succeeds with
high probability given H ∈ Ω (U ′, T ). This completes the theorem.

Unfortunately, the best upper bound on DQP we have been able to show is DQP ⊆ EXP; that is, any problem in
DQP is solvable in deterministic exponential time. The proof is trivial: let T be the flow theory FT , with the slight
modification that we omit the step from Section VA of symmetrizing over all permutations of basis states. Then
by using the Ford-Fulkerson algorithm, we can clearly construct the requisite maximum flows in time polynomial in
2` (hence exponential in n), and thereby calculate the probability of each possible history (v1, . . . , vT ) to suitable
precision.

VII. THE JUGGLE SUBROUTINE

This section presents a crucial subroutine that will be used in both algorithms of this paper: the algorithm for
simulating statistical zero knowledge in Section VIII, and the algorithm for search in N1/3 queries in Section IX.
Given an `-qubit state (|a〉 + |b〉) /

√
2, where |a〉 and |b〉 are unknown basis states, the goal of the juggle subroutine is

to learn both a and b. The name arises because our strategy will be to “juggle” a hidden variable, so that if it starts
out at |a〉 then with non-negligible probability it transitions to |b〉, and vice versa. Inspecting the entire history of
the hidden variable will then reveal both a and b, as desired.

To produce this behavior, we will exploit a basic feature of quantum mechanics: that observable information in
one basis can become unobservable phase information in a different basis. We will apply a sequence of unitaries that
hide all information about a and b in phases, thereby forcing the hidden variable to “forget” whether it started at |a〉
or |b〉. We will then invert those unitaries to return the state to (|a〉 + |b〉) /

√
2, at which point the hidden variable,

having “forgotten” its initial value, must be unequal to that value with probability 1/2.

We now give the subroutine. Let |ψ〉 = (|a〉 + |b〉) /
√

2 be the initial state. The first unitary, U1, consists of
Hadamard gates on ` − 1 qubits chosen uniformly at random, and the identity operation on the remaining qubit,
i. Next U2 consists of a Hadamard gate on qubit i. Finally U3 consists of Hadamard gates on all ` qubits. Let
a = a1 . . . a` and b = b1 . . . b`. Then since a 6= b, we have ai 6= bi with probability at least 1/`. Assuming that occurs,
the state

U1 |ψ〉 =
1

2`/2




∑

z∈{0,1}` : zi=ai

(−1)
a·z−aizi |z〉 +

∑

z∈{0,1}` : zi=bi

(−1)
b·z−bizi |z〉





assigns nonzero amplitude to all 2` basis states. Then U2U1 |ψ〉 assigns nonzero amplitude to 2`−1 basis states |z〉,
namely those for which a · z ≡ b · z (mod 2). Finally U3U2U1 |ψ〉 = |ψ〉.

Let vt be the value of the hidden variable after Ut is applied. Then assuming ai 6= bi, we claim that v3 is
independent of v0. So in particular, if v0 = |a〉 then v3 = |b〉 with 1/2 probability, and if v0 = |b〉 then v3 = |a〉 with
1/2 probability. To see this, observe that when U1 is applied, there is no interference between basis states |z〉 such
that zi = ai, and those such that zi = bi. So by the indifference axiom, the probability mass at |a〉 must spread
out evenly among all 2`−1 basis states that agree with a on the ith bit, and similarly for the probability mass at |b〉.
Then after U2 is applied, v2 can differ from v1 only on the ith bit, again by the indifference axiom. So each basis
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state of U2U1 |ψ〉 must receive an equal contribution from probability mass originating at |a〉, and probability mass
originating at |b〉. Therefore v2 is independent of v0, from which it follows that v3 is independent of v0 as well.

Unfortunately, the juggle subroutine only works with probability 1/ (2`)—for it requires that ai 6= bi, and even then,
inspecting the history (v0, v1, . . .) only reveals both |a〉 and |b〉 with probability 1/2. Furthermore, the definition of
DQP does not allow more than one call to the history oracle. However, all we need to do is pack multiple subroutine
calls into a single oracle call. That is, choose U4 similarly to U1 (except with a different value of i), and set U5 = U2

and U6 = U3. Do the same with U7, U8, and U9, and so on. Since U3, U6, U9, . . . all return the quantum state to |ψ〉,
the effect is that of multiple independent juggle attempts. With 2`2 attempts, we can make the failure probability

at most (1 − 1/ (2`))2`
2

< e−`.
As a final remark, it is easy to see that the juggle subroutine works equally well with states of the form |ψ〉 =

(|a〉 − |b〉) /
√

2. This will prove useful in Section IX.

VIII. SIMULATING SZK

Our goal is to show that SZK ⊆ DQP. Here SZK, or Statistical Zero Knowledge, was originally defined as the
class of all problems that possess a certain kind of “zero-knowledge proof protocol”—that is, a protocol between an
omniscient prover and a verifier, by which the verifier becomes convinced of the answer to a problem, yet without
learning anything else about the problem. However, for our purposes this cryptographic definition of SZK is irrelevant.
For Sahai and Vadhan [33] have given an alternate and much simpler characterization: a problem is in SZK if and
only if it can be reduced to a problem called Statistical Difference, which involves deciding whether two probability
distributions are close or far.

More formally, let P0 and P1 be functions that map n-bit strings to q (n)-bit strings for some polynomial q, and that
are specified by classical polynomial-time algorithms. Let Λ0 and Λ1 be the probability distributions over P0 (x) and
P1 (x) respectively, if x ∈ {0, 1}n is chosen uniformly at random. Then the problem is to decide whether ‖Λ0 − Λ1‖
is less than 1/3 or greater than 2/3, given that one of these is the case. Here

‖Λ0 − Λ1‖ =
1

2

∑

y∈{0,1}q(n)

∣∣∣∣ Pr
x∈{0,1}n

[P0 (x) = y] − Pr
x∈{0,1}n

[P1 (x) = y]

∣∣∣∣

is the variation distance between Λ0 and Λ1.
To illustrate, let us show that Graph Isomorphism is in SZK. Given two graphs G0 and G1, take Λ0 to be the

uniform distribution over all permutations of G0, and Λ1 to be uniform over all permutations of G1. This way, if
G0 and G1 are isomorphic, then Λ0 and Λ1 will be identical, so ‖Λ0 − Λ1‖ = 0. On the other hand, if G0 and G1

are non-isomorphic, then Λ0 and Λ1 will be perfectly distinguishable, so ‖Λ0 − Λ1‖ = 1. Since Λ0 and Λ1 are clearly
samplable by polynomial-time algorithms, it follows that any instance of Graph Isomorphism can be expressed as an
instance of Statistical Difference. For a proof that Approximate Shortest Vector is in SZK, we refer the reader to
Goldreich and Goldwasser [34] (see also Aharonov and Ta-Shma [35]).

Our proof will use the following “amplification lemma” from [33]:[48]

Lemma 8 (Sahai and Vadhan) Given efficiently-samplable distributions Λ0 and Λ1, we can construct new
efficiently-samplable distributions Λ′

0 and Λ′
1, such that if ‖Λ0 − Λ1‖ ≤ 1/3 then ‖Λ′

0 − Λ′
1‖ ≤ 2−n, while if

‖Λ0 − Λ1‖ ≥ 2/3 then ‖Λ′
0 − Λ′

1‖ ≥ 1 − 2−n.

In particular, Lemma 8 means we can assume without loss of generality that either ‖Λ0 − Λ1‖ ≤ 2−n
c

or ‖Λ0 − Λ1‖ ≥
1 − 2−n

c

for some constant c > 0.
Having covered the necessary facts about SZK, we can now proceed to the main result.

Theorem 9 SZK ⊆ DQP.

Proof. We show how to solve Statistical Difference by using a history oracle. For simplicity, we start with the
special case where P0 and P1 are both one-to-one functions. In this case, the circuit sequence U given to the history
oracle does the following: it first prepares the state

1

2(n+1)/2

∑

b∈{0,1},x∈{0,1}n

|b〉 |x〉 |Pb (x)〉 .

It then applies the juggle subroutine to the joint state of the |b〉 and |x〉 registers, taking ` = n+1. Notice that by the
indifference axiom, the hidden variable will never transition from one value of Pb (x) to another—exactly as if we had
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measured the third register in the standard basis. All that matters is the reduced state |ψ〉 of the first two registers,

which has the form (|0〉 |x0〉 + |1〉 |x1〉) /
√

2 for some x0, x1 if ‖Λ0 − Λ1‖ = 0, and |b〉 |x〉 for some b, x if ‖Λ0 − Λ1‖ = 1.
We have already seen that the juggle subroutine can distinguish these two cases: when the hidden-variable history
is inspected, it will contain two values of the |b〉 register in the former case, and only one value in the latter case.
Also, clearly the case ‖Λ0 − Λ1‖ ≤ 2−n

c

is statistically indistinguishable from ‖Λ0 − Λ1‖ = 0 with respect to the
subroutine, and likewise ‖Λ0 − Λ1‖ ≥ 1 − 2−n

c

is indistinguishable from ‖Λ0 − Λ1‖ = 1.
We now consider the general case, where P0 and P1 need not be one-to-one. Our strategy is to reduce to the one-to-

one case, by using a well-known hashing technique of Valiant and Vazirani [17]. Let Dn,k be the uniform distribution

over all affine functions mapping {0, 1}n to {0, 1}k, where we identify those sets with the finite fields Fn2 and Fk2
respectively. What Valiant and Vazirani showed is that, for all subsets A ⊆ {0, 1}n such that 2k−2 ≤ |A| ≤ 2k−1,

and all s ∈ {0, 1}k,

Pr
h∈Dn,k

[∣∣A ∩ h−1 (s)
∣∣ = 1

]
≥ 1

8
.

As a corollary, the expectation over h ∈ Dn,k of
∣∣∣
{
s ∈ {0, 1}k :

∣∣A ∩ h−1 (s)
∣∣ = 1

}∣∣∣

is at least 2k/8. It follows that, if x is drawn uniformly at random from A, then

Pr
h,x

[∣∣A ∩ h−1 (h (x))
∣∣ = 1

]
≥ 2k/8

|A| ≥ 1

4
.

This immediately suggests the following algorithm for the many-to-one case. Draw k uniformly at random from
{2, . . . , n+ 1}; then draw h0, h1 ∈ Dn,k. Have U prepare the state

1

2(n+1)/2

∑

b∈{0,1},x∈{0,1}n

|b〉 |x〉 |Pb (x)〉 |hb (x)〉 ,

and then apply the juggle subroutine to the joint state of the |b〉 and |x〉 registers, ignoring the |Pb (x)〉 and |hb (x)〉
registers as before.

Suppose ‖Λ0 − Λ1‖ = 0. Also, given x ∈ {0, 1}n and i ∈ {0, 1}, let Ai = P−1
i (Pi (x)) and Hi = h−1

i (hi (x)), and
suppose 2k−2 ≤ |A0| = |A1| ≤ 2k−1. Then

Pr
s,h0,h1

[|A0 ∩H0| = 1 ∧ |A1 ∩H1| = 1] ≥
(

1

4

)2

,

since the events |A0 ∩H0| = 1 and |A1 ∩H1| = 1 are independent of each other conditioned on x. Assuming both
events occur, as before the juggle subroutine will reveal both |0〉 |x0〉 and |1〉 |x1〉 with high probability, where x0 and
x1 are the unique elements of A0 ∩H0 and A1 ∩H1 respectively. By contrast, if ‖Λ0 − Λ1‖ = 1 then only one value
of the |b〉 register will ever be observed. Again, replacing ‖Λ0 − Λ1‖ = 0 by ‖Λ0 − Λ1‖ ≤ 2−n

c

, and ‖Λ0 − Λ1‖ = 1
by ‖Λ0 − Λ1‖ ≥ 1 − 2−n

c

, can have only a negligible effect on the history distribution.
Of course, the probability that the correct value of k is chosen, and that A0 ∩H0 and A1 ∩H1 both have a unique

element, could be as low as 1/ (16n). To deal with this, we simply increase the number of calls to the juggle subroutine
by an O (n) factor, drawing new values of k, h0, h1 for each call. We pack multiple subroutine calls into a single
oracle call as described in Section VII, except that now we uncompute the entire state (returning it to |0 · · · 0〉) and
then recompute it between subroutine calls. A final remark: since the algorithm that calls the history oracle is
deterministic, we “draw” new values of k, h0, h1 by having U prepare a uniform superposition over all possible values.
The indifference axiom justifies this procedure, by guaranteeing that within each call to the juggle subroutine, the
hidden-variable values of k, h0, and h1 remain constant.

Let us end this section with some brief remarks about the oracle result of [6]. Given a function g : {0, 1}n → {0, 1}n,
the collision problem is to decide whether g is one-to-one or two-to-one, given that one of these is the case. The
question is, how many queries to g are needed to solve this problem (where a query just returns g (x) given x)? It
is not hard to see that Θ

(
2n/2

)
queries are necessary and sufficient for classical randomized algorithms. What we

showed in [6] is that Ω
(
2n/5

)
queries are needed by any quantum algorithm as well. Subsequently Shi [36] managed

to improve the quantum lower bound to Ω
(
2n/3

)
queries, thereby matching an upper bound of Brassard, Høyer, and

Tapp [37]. On the other hand, the collision problem is easily reducible to the Statistical Difference problem, and is
therefore solvable in polynomial time by sampling histories. This is the essence of the statement that BQP 6= DQP

relative to an oracle.
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IX. SEARCH IN N1/3 QUERIES

Given a Boolean function f : {0, 1}n → {0, 1}, the database search problem is simply to find a string x such that
f (x) = 1. We can assume without loss of generality that this “marked item” x is unique.[49] We want to find it
using as few queries to f as possible, where a query returns f (y) given y.

Let N = 2n. Then classically, of course, Θ (N) queries are necessary and sufficient. By querying f in superposition,

Grover’s algorithm [7] finds x using O
(
N1/2

)
queries, together with Õ

(
N1/2

)
auxiliary computation steps (here the

Õ hides a factor of the form (logN)c). Bennett et al. [38] showed that any quantum algorithm needs Ω
(
N1/2

)

queries.
In this section, we show how to find the marked item by sampling histories, using only O

(
N1/3

)
queries and

Õ
(
N1/3

)
computation steps. Formally, the model is as follows. Each of the quantum circuits U1, . . . , UT that

algorithm A gives to the history oracle O (T ) is now able to query f . Suppose Ut makes qt queries to f ; then the
total number of queries made by A is defined to be Q = q1 + · · · + qT . The total number of computation steps is at
least the number of steps required to write down U1, . . . , UT , but could be greater.

Theorem 10 In the DQP model, we can search a database of N items for a unique marked item using O
(
N1/3

)

queries and Õ
(
N1/3

)
computation steps.

Proof. Assume without loss of generality that N = 2n with n|3, and that each database item is labeled by an
n-bit string. Let x ∈ {0, 1}n be the label of the unique marked item. Then the sequence of quantum circuits
U does the following: it first runs O

(
2n/3

)
iterations of Grover’s algorithm, in order to produce the n-qubit state

α |x〉 + β
∑
y∈{0,1}n |y〉, where

α =

√
1

2n/3 + 2−n/3+1 + 1
,

β = 2−n/3α

(one can check that this state is normalized). Next U applies Hadamard gates to the first n/3 qubits. This yields
the state

2−n/6α
∑

y∈{0,1}n/3

(−1)
xA·y |y〉 |xB〉 + 2n/6β

∑

z∈{0,1}2n/3

|0〉⊗n/3 |z〉 ,

where xA consists of the first n/3 bits of x, and xB consists of the remaining 2n/3 bits. Let Y be the set of 2n/3

basis states of the form |y〉 |xB〉, and Z be the set of 22n/3 basis states of the form |0〉⊗n/3 |z〉.
Notice that 2−n/6α = 2n/6β. So with the sole exception of |0〉⊗n/3 |xB〉 (which belongs to both Y and Z), the

“marked” basis states in Y have the same amplitude as the “unmarked” basis states in Z. This is what we wanted.
Notice also that, if we manage to find any |y〉 |xB〉 ∈ Y , then we can find x itself using 2n/3 further classical queries:
simply test all possible strings that end in xB . Thus, the goal of our algorithm will be to cause the hidden variable
to visit an element of Y , so that inspecting the variable’s history reveals that element.

As in Theorem 9, the tools that we need are the juggle subroutine, and a way of reducing many basis states to two.

Let s be drawn uniformly at random from {0, 1}n/3. Then U appends a third register to |φ〉, and sets it equal to |z〉
if the first two registers have the form |0〉⊗n/3 |z〉, or to |s, y〉 if they have the form |y〉 |xB〉. Disregarding the basis

state |0〉⊗n/3 |xB〉 for convenience, the result is

2−n/6α




∑

y∈{0,1}n/3

(−1)
xA·y |y〉 |xB〉 |s, y〉 +

∑

z∈{0,1}2n/3

|0〉⊗n/3 |z〉 |z〉



 .

Next U applies the juggle subroutine to the joint state of the first two registers. Suppose the hidden-variable value

has the form |0〉⊗n/3 |z〉 |z〉 (that is, lies outside Y ). Then with probability 2−n/3 over s, the first n/3 bits of z are
equal to s. Suppose this event occurs. Then conditioned on the third register being |z〉, the reduced state of the
first two registers is

(−1)
xA·zB |zB〉 |xB〉 + |0〉⊗n/3 |z〉√

2
,
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where zB consists of the last n/3 bits of z. So it follows from Section VII that with probability Ω (1/n), the juggle

subroutine will cause the hidden variable to transition from |0〉⊗n/3 |z〉 to |zB〉 |xB〉, and hence from Z to Y .
The algorithm calls the juggle subroutine Θ

(
2n/3n

)
= Θ

(
N1/3 logN

)
times, drawing a new value of s and re-

computing the third register after each call. Each call moves the hidden variable from Z to Y with independent
probability Ω

(
2−n/3/n

)
; therefore with high probability some call does so. Note that this juggling phase does not

involve any database queries. Also, as in Theorem 9, “drawing” s really means preparing a uniform superposition over

all possible s. Finally, the probability that the hidden variable ever visits the basis state |0〉⊗n/3 |xB〉 is exponentially
small (by the union bound), which justifies our having disregarded it.

A curious feature of Theorem 10 is the tradeoff between queries and computation steps. Suppose we had run Q
iterations of Grover’s algorithm, or in other words made Q queries to f . Then provided Q ≤

√
N , the marked state

|x〉 would have occurred with probability Ω
(
Q2/N

)
, meaning that Õ

(
N/Q2

)
calls to the juggle subroutine would have

been sufficient to find x. Of course, the choice of Q that minimizes max
{
Q,N/Q2

}
is Q = N1/3. On the other hand,

had we been willing to spend Õ (N) computation steps, we could have found x with only a single query![50] Thus, one
might wonder whether some other algorithm could push the number of queries below N1/3, without simultaneously
increasing the number of computation steps. The following theorem rules out that possibility.

Theorem 11 In the DQP model, Ω
(
N1/3

)
computation steps are needed to search an N -item database for a unique

marked item. As a consequence, there exists an oracle relative to which NP 6⊂ DQP; that is, NP-complete problems
are not efficiently solvable by sampling histories.

Proof. Let N = 2n and f : {0, 1}n → {0, 1}. Given a sequence of quantum circuits U = (U1, . . . , UT ) that query
f , and assuming that x ∈ {0, 1}n is the unique string such that f (x) = 1, let |ψt (x)〉 be the quantum state after Ut
is applied but before Ut+1 is. Then the “hybrid argument” of Bennett et al. [38] implies that, by simply changing
the location of the marked item from x to x∗, we can ensure that

‖|ψt (x)〉 − |ψt (x∗)〉‖ = O

(
Q2
t

N

)

where ‖ ‖ represents trace distance, and Qt is the total number of queries made to f by U1, . . . , Ut. Therefore
O
(
Q2
t/N

)
provides an upper bound on the probability of noticing the x→ x∗ change by monitoring vt, the value of

the hidden variable after Ut is applied. So by the union bound, the probability of noticing the change by monitoring
the entire history (v1, . . . , vT ) is at most of order

T∑

t=1

Q2
t

N
≤ TQ2

T

N
.

This cannot be Ω (1) unless T = Ω
(
N1/3

)
or QT = Ω

(
N1/3

)
, either of which implies an Ω

(
N1/3

)
lower bound on

the total number of steps.
To obtain an oracle relative to which NP 6⊂ DQP, we can now use a standard and well-known “diagonalization

method” due to Baker, Gill, and Solovay [39] to construct an infinite sequence of exponentially hard search problems,
such that any DQP machine fails on at least one of the problems, whereas there exists an NP machine that succeeds
on all of them. We omit the details.

X. DISCUSSION

The idea that certain observables in quantum mechanics might have trajectories governed by dynamical laws has
reappeared many times: in Schrödinger’s 1931 stochastic approach [1], Bohmian mechanics [2], modal interpretations
[5, 20, 21], and elsewhere. Yet because all of these proposals yield the same predictions for single-time probabilities,
if we are to decide between them it must be on the basis of internal mathematical considerations. One message of
this paper has been that such considerations can actually get us quite far.

To focus attention on the core issues, we restricted attention to the simplest possible setting: discrete time, a
finite-dimensional Hilbert space, and a single orthogonal basis. Within this setting, we proposed what seem like
reasonable axioms that any hidden-variable theory should satisfy: for example, indifference to the identity operation,
robustness to small perturbations, and independence of the temporal order of spacelike-separated events. We then
showed that not all of these axioms can be satisfied simultaneously. But perhaps more surprisingly, we also showed
that certain subsets of axioms can be satisfied for quite nontrivial reasons. In showing that the indifference and
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robustness axioms can be simultaneously satisfied, Section V revealed an unexpected connection between unitary
matrices and the classical theory of network flows.

As mentioned previously, an important open problem is to show that the Schrödinger theory satisfies robustness.
Currently, we can only show that the matrix PST (ρ, U) is robust to exponentially small perturbations, not polyno-
mially small ones. The problem is that if any row or column sum in the U (t) matrix is extremely small, then the
(r, c)-scaling process will magnify tiny errors in the entries. Intuitively, though, this effect should be washed out by
later scaling steps.

A second open problem is whether there exists a theory that satisfies indifference, as well as commutativity for
all separable mixed states (not just separable pure states). A third problem is to investigate other notions of
robustness—for example, robustness to small multiplicative rather than additive errors.

On the complexity side, perhaps the most interesting problem left open by this paper is the computational complex-
ity of simulating Bohmian mechanics. We strongly conjecture that this problem, like the hidden-variable problems
we have seen, is strictly harder than simulating an ordinary quantum computer. The trouble is that Bohmian me-
chanics does not quite fit in our framework: as discussed in Section II B, we cannot have deterministic hidden-variable
trajectories for discrete degrees of freedom such as qubits. Even worse, Bohmian mechanics violates the continuous
analogue of the indifference axiom. On the other hand, this means that by trying to implement (say) the juggle
subroutine with Bohmian trajectories, one might learn not only about Bohmian mechanics and its relation to quantum
computation, but also about how essential the indifference axiom really is for our implementation.

Another key open problem is to show better upper bounds on DQP. Recall that we were only able to show
DQP ⊆ EXP, by giving a classical exponential-time algorithm to simulate the flow theory FT . Can we improve
this to (say) DQP ⊆ PSPACE? Clearly it would suffice to give a PSPACE algorithm that computes the transition
probabilities for some theory T satisfying the indifference and robustness axioms. On the other hand, this might
not be necessary—that is, there might be an indirect simulation method that does not work by computing (or even
sampling from) the distribution over histories. It would also be nice to pin down the complexities of simulating
specific hidden-variable theories, such as FT and ST .
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