

14440 - COS Imaging TA and Spectroscopic WCA-PSA/BOA offset verifications

Cycle: 23, Proposal Category: CAL/COS

(Availability Mode: RESTRICTED)

INVESTIGATORS

Name	Institution	E-Mail
Dr. Steven V. Penton (PI) (Contact)	Space Telescope Science Institute	penton@stsci.edu
Sean Lockwood (CoI)	Space Telescope Science Institute	lockwood@stsci.edu

VISITS

Visit	Targets used in Visit	Configurations used in Visit	Orbits Used		OP Current with Visit?
01	(2) WD-1657+343 WAVE	COS/FUV COS/NUV	1	29-Jul-2016 13:34:23.0	yes
02	(3) HIP66578 WAVE	COS/FUV COS/NUV	1	29-Jul-2016 13:34:27.0	yes
03	(1) 206W3	COS/FUV COS/NUV	1	29-Jul-2016 13:34:29.0	yes

³ Total Orbits Used

ABSTRACT

This program builds upon the monitoring and calibration of the FGS-to-SI alignment program (14452 - HST Cycle 23- Focal Plane Calibration (SI-FGS Alignment)). HST 14452 performs back-to-back PSA/MIRRORA & PSA/MIRRORB ACQ/IMAGEs, from which all the results herein are bootstrapped.

The FGS-to-SI program is repeated twice a year (every cycle) and we will use its COS exposures as the baseline for this TA co-alignment program.

Proposal 14440 (STScI Edit Number: 2, Created: Friday, July 29, 2016 12:34:30 PM EST) - Overview

The historical list of FCS-to-SI proposals, & cycles, are:

11878 (C17) ->12399 (C18) ->12781 (C19) ->13171 (C20) ->13616 (C21) ->14035 (C22) ->14452 (C23)

The order in which the alignment is checked is: STIS->WFC3->ACS->COS

The FGS-to-SI program (14452) performs a PSA/MIRRORA ACQ/IMAGE on a target that should be centered in the aperture. This verifies the COS NUV PSA aperture position in the SIAF. After this PSA+MIRRORA ACQ/IMAGE, a PSA+MIRRORB ACQ/IMAGE is then performed. This exposure bootstraps the PSA+MIRRORB centering to the PSA+MIRRORA SIAF verification. This allows us to monitor the properties of the PSA+MIRRORB image in a controlled way on a centered target. No spectra are taken in 14452 due to time constraints, but we are currently planning on adding in PSA/MIRRORA and PSA/MIRRORB lamp images.

Visits 01 & 02 of this program extend the COS SIAF/FGS-to-SI verification of Visit 02 of 14452 to the other two ACQ/IMAGE combinations (BOA+MIRRORA & BOA+MIRRORB) by bootstraping from the PSA+MIRRORB verification to co-align all the COS TA imaging modes. The details of the observations are given is the observing section.

Visit 01 of this program bootstraps off Visit 02 of 14452 to co-align the PSA+MIRRORB ACQ/IMAGE mode to the BOA+MIRRORA. We prefer that Visit 01 of this program executes within 45 days of Visit 02 of 14452, to ensure that no long term instrument or telescope focus changes impact our results.

Visit 02 of this program follows the style of Visit 01, and bootstraps from the BOA+MIRRORA mode to the BOA+MIRRORB TA imaging mode. Visit 02 should also occur within 45 days of visit 02 of 14452 and within 45 days of Visit 01 of this program.

Visit 3 of this program is an on-hold, contingency visit that would be used to replace the 14452 Visit 02 in case this program is, for whatever reason, not executed as planned. In this case the 1st ACQ/IMAGE is PSA/MIRRORA and the 2nd ACQ/Image is PSA/MIRRORB. This visit also takes several lamp images to measure the WCA-to-PSA imaging offset FSW patchable constants.

In all visits, lamp+target images are taken before and after the TA imaging mode that is being co-aligned (the second ACQ/IMAGE of the program.)

All visits in this program are single orbit visits, this program is very similar to the C22 version (13972). Due to the change in OSM2 Home position, some NUV spectra have been re-ordered for efficiency AND some NUV cenwaves were changed to those that are known to have good stripe B

Proposal 14440 (STScI Edit Number: 2, Created: Friday, July 29, 2016 12:34:30 PM EST) - Overview WCA spectra.

OBSERVING DESCRIPTION

The process is to perform back-to-back ACQ/IMAGES in two different modes (e.g., PSA/MIRRORB then BOA/MIRRORA). This will allow us to test the cross-calibration to ensure that all TA modes are centering the target to the same point in the aperture. Lamp+target exposures are interleaved throughout the visit to measure and verify the imaging TA AD (along-dispersion and XD (cross-dispersion) WCA-to-PSA offsets. Images will usually use the PtNe#2 (P2) lamp, as it is the primary TA lamp, but some images will use PtNe#1 (P1) to monitor the lamps in imaging mode.

Program 14452 contains a back-to-back PSA/MIRRORA & PSA/MIRRORB ACQ/Images on the target 206W3, should visit 02 of 14452 not execute, we will activate Visit 03 as a replacement.

Visit 01 of this program takes back-to-back PSA/MIRRORB & BOA/MIRRORA ACQ/Images and images (with flashes) and also takes G230L, G285M, G130M, and G140L spectra to test the WCA-to-PSA offsets.

Visit 02 of this program takes back-to-back BOA/MIRRORA & BOA/MIRRORB ACQ/Images and images (with flashes) and also takes G225M, G185M, and G160M spectra to test the WCA-to-PSA offsets. To test Ywalk, we also take G160M/1600 exposures at +/- 0.7"

Visit 02 of this program also takes a "family portait" of all the P1/P2 MIRRORA/B WCA lamp images to track any drifting of the centroids, or changes in the lamps.

Visit 03 is an on-hold contigency visit in case, for whatever reason, visit 2 of 14452, does not execute as planned in the fall of 2016. This visit (which is not expected to be executed) would compare the PSA/MIRRORA and PSA/MIRRORB imaging WCA-to-PSA offsets and those of several important FUV cenwaves, G140L/1280, G130M/1309, & G160M/1600.

All lamp+target images now use the QESIPARMS USECURRENT and CURRENT to specificially set the lamp and current values.

See the comment of the first exposure of Visit 03 for a description of the expected count rates, exposure times, & buffer times (for the lamps).

------ Additional Comments -------

Proposal 14440 (STScl Edit Number: 2, Created: Friday, July 29, 2016 12:34:30 PM EST) - Overview Must be performed on 2 guidestar fine-lock and must not use FGS2. Guidestar pair must be reviewed by the PC.

Proposal 14440 - PSA/B & BOA/A (01) - COS Imaging TA and Spectroscopic WCA-PSA/BOA offset verifications

Proposal 14440, PSA/B & BOA/A (01), implementation Fri Jul 29 17:34:30 GMT 2016

Diagnostic Status: Warning

Scientific Instruments: COS/FUV, COS/NUV

Special Requirements: SCHED 100%; GROUP 01,02 WITHIN 45D

Comments: Test to compare the centering of PSA/MIRRORB to BOA/MIRRORA. The target will be the standard star WD1657+343. 100% Schedubility. This Visit (01) should be executed within 45 days of Visit 02 of 14452. Visits 01 & 02 of this program should also execute within 45 days of each other, but in no particular order. The closer in time that they can all be executed, the better. We also take some G230L, G285M, G130M, and G140L spectra to test the WCA-to-PSA offsets.

Diagnostics

(PSA/B & BOA/A (01)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting.

ets
Ď
Ta
ō
×
-

(2)

Targ. Coord. Corrections Name **Target Coordinates** WD-1657+343 RA: 16 58 51.1200 (254.7130000d) Dec: +34 18 53.30 (34.31481d)

V=16.1

Fluxes

Reference Frame: ICRS

Miscellaneous

Equinox: J2000

Comments: COS.ta.432603 indicates this is a good PSA/MIRB to BOA/MIRA target PSA/MIRB counts = S/N=60 in 11.6s (S/N = 40 in 5.2s); COS.ta.432604 gives S/N=60 in 150.7s for BOA/MIRA

Extended=NO

Proposal 14440 - PSA/B & BOA/A (01) - COS Imaging TA and Spectroscopic WCA-PSA/BOA offset verifications

#	Label (ETC Run)	Target	Config,Mode,Aperture	Spectral Els.	Opt. Params.	Special Reqs.	Groups	Exp. Time (Total)/[Actual Dur.]	Orbit
1	` /	(2) WD-1657+343	COS/NUV, ACQ/IMAGE, PSA	MIRRORB		GS ACQ SCENARI O BASE1B3	Sequence 1-12 Non-I nt in PSA/B & BOA/ A (01)	13 Secs (13 Secs) [==>]	[1]
C	omments: COS.t	a.433946 gives S/N=6	0 in 11.65s. BP = 43 cps. We observe	d this target in 131	24 and the target count r	ate was 400 cts/s, total	$cts = 4800 \ total$, $BP =$	24 cts/s That's sqrt(2/3 * 4800) = 56 ((S/N)
2		(2) WD-1657+343	COS/NUV, TIME-TAG, PSA	MIRRORB	FLASH=S0040D016	QESIPARM USELA		16 Secs (16 Secs)	
	ORB/P2/ME D + Target (COS.ta.433 946)				; BUFFER-TIME=50 0	MP LINE2; QESIPARM CURR ENT MEDIUM	nt in PSA/B & BOA/ A (01)	[==>]	[1]
C	omments: COS.t	a.433946 gives S/N=6	0 in 11.65 s. BP = 42 cps.						
S	o buffer time sho	uld be < 0.67 *(2.35E)	11q7q) yielded a total (lamp+target+b 5/1538.) = 1024. Just be safe, we go w we get enough counts in the lamp ima	rith 500s.	rate of 24617 counts in 16	ós (1538 cps).			
3			COS/NUV, TIME-TAG, BOA	MIRRORA	BUFFER-TIME=20		Sequence 1-12 Non-I	150 Secs (150 Secs)	
	ORA/Target (no lamp) (COS.ta.433 949)				00		nt in PSA/B & BOA/ A (01)	[==>]	[1]
	uffer should be <	(2.35E6/20.) o WAVE	is a BOA image, so we need to add a r < 7800. We use 2000 just to be safe. COS/NUV, TIME-TAG, WCA		this exposure. The WAVI		Sequence 1-12 Non-I nt in PSA/B & BOA/ A (01)		[1]
C	omments: For P	2/LOW/MIRRORA we	get 2900 counts in 7s. Buffer Time is o	calculated automati	ically.				1
5	ACQ/IMAG E (BOA/MI RRORA/P2/ LOW) (COS.ta.433 949)	(2) WD-1657+343	COS/NUV, ACQ/IMAGE, BOA	MIRRORA			Sequence 1-12 Non-I nt in PSA/B & BOA/ A (01)	150 Secs (150 Secs) [==>]	[1]
C	omments: COS.t	a.433949 gives S/N=6	0 in 150s						•
6	WCA/MIRR		COS/NUV, TIME-TAG, WCA	MIRRORA			Sequence 1-12 Non-I	10 Secs (10 Secs)	
	ORA/P2/LO W (no target)					MP LINE2; QESIPARM CURR ENT LOW	nt in PSA/B & BOA/ A (01)	[==>]	[1]
C		2/LOW/MIRRORA we							
7	PSA/MIRR ORB/P2/ME		COS/NUV, TIME-TAG, PSA	MIRRORB	FLASH=S0040D016	QESIPARM USELA MP LINE2;	Sequence 1-12 Non-I nt in PSA/B & BOA/	16 Secs (16 Secs)	
	D + Target (COS.ta.433 946)				BUFFER-TIME=50	QESIPARM CURR ENT MEDIUM	A (01)	[==>]	[1]
c	omments: COS.t	a.433946 gives S/N=6	0 in 11.65 s. BP = 42 cps.						
A S	previous exposu o buffer time sho	re of this target (lcgq0 uld be < 0.67 *(2.35E	11q7q) yielded a total (lamp+target+b 6/1538.) = 1024. Just be safe, we go w	ackground) count r vith 500s.	rate of 24617 counts in 16	ós (1538 cps).			
И	Ve insert a 16s la	mp flash to make sure	we get enough counts in the lamp ima	ge					

Proposal 14440 - PSA/B & BOA/A (01) - COS Imaging TA and Spectroscopic WCA-PSA/BOA offset verifications Sequence 1-12 Non-I | 13 Secs (13 Secs) ACO/IMAG (2) WD-1657+343 COS/NUV, ACO/IMAGE, PSA MIRRORB E (PSA/MIR nt in PSA/B & BOA/ f = = > 1RORB/P2/ A (01) MED) [1] (COS.ta.433 946) Comments: COS.ta.433946 gives S/N=60 in 11.65s, BP = 43 cps. We observed this target in 13124 and the target count rate was 400 cts/s, total cts = 4800, BP=24 cts/s That's sart(2/3 * 4800) = 56 (S/N) PSA/G230L (2) WD-1657+343 COS/NUV, TIME-TAG, PSA G230L BUFFER-TIME=70 QESIPARM USELA Sequence 1-12 Non-I 21 Secs (21 Secs) nt in PSA/B & BOA/ $\int_{f==>1}$ MP LINE2; /2950 0; 3000 A (COS.sa.433 A (01) **OESIPARM CURR** FP-POS=3; 964) [1] ENT MEDIUM FLASH=S0100D02 Comments: COS.sa,4333964 gives S/N=40 in 2 s, we go for 21s, BT=2/3*1270 = 800 (we use 700 just to be safe) Based upon the data from 13124, we expect 3800 counts in 30s in the B-stripe. We set the lamp to the e xposure time to get more counts. PSA/G285 (2) WD-1657+343 COS/NUV, TIME-TAG, PSA G285M BUFFER-TIME=14 QESIPARM USELA Sequence 1-12 Non-I 151 Secs (151 Secs) nt in PSA/B & BOA/ M/2676 MP LINE2; I==>12676 A (COS.sp.744 A(01)QESIPARM CURR FP-POS=3; 073) [1] ENT MEDIUM FLASH=S0100D05 Comments: COS.sp.744073 gives S/N=30 in the XD (per stripe) in 151 seconds, $BT=2/3*2470=\sim1600$. Normal Tagflashing is not sufficient for our WCA needs, so we go for 100s. To allow for lamp counts, we drop the BT down to 1400. PSA/G130 (2) WD-1657+343 COS/FUV, TIME-TAG, PSA G130M FP-POS=3; QESIPARM USELA Sequence 1-12 Non-I 25 Secs (25 Secs) M/1309/3 MP LINE2; nt in PSA/B & BOA/ 1309 A BUFFER-TIME=22 I = = > 1(COS.sp.433 A (01) OESIPARM CURR 0; 966) [1] ENT MEDIUM FLASH=S0060D02 Comments: COS.sp.433966, BT=2/3*442=295, We use 220 just to be safe. We previously used a 30s lamp flash and got 4750 counts. We have reduced that to match the exposure time (25s). This should give us ~4000 counts, which is plenty for our purposes PSA/G140L (2) WD-1657+343 COS/FUV, TIME-TAG, PSA G140L FP-POS=3; QESIPARM USELA Sequence 1-12 Non-I 10 Secs (10 Secs) nt in PSA/B & BOA/I==>1/1280/3 MP LINE2; 1280 A BUFFER-TIME=40 (COS.sp.433 A(01)QESIPARM CURR 0; [1] 967)

FLASH=YES

FLASH=YES

ENT MEDIUM

Comments: COS.sp.433967, BT=2/3*647<430 ET=17s, Normal TAGFLASH. In 13124, we got 71K in 30s, we need <10K to get an excellent centroid, so we are taking this exposure time down to 10s, The lamp duration is 7s (2700 counts).

ENT MEDIUM

Proposal 14440 - BOA/A & BOA/B (02) - COS Imaging TA and Spectroscopic WCA-PSA/BOA offset verifications

Proposal 14440, BOA/A & BOA/B (02), implementationFri Jul 29 17:34:30 GMT 2016

Diagnostic Status: Warning

Scientific Instruments: COS/FUV, COS/NUV

Special Requirements: SCHED 100%; ORIENT 120D TO 30 D; GROUP 02,01 WITHIN 45D

Comments: Test to compare the centering of BOA/MIRRORA to BOA/MIRRORB. 100% Schedubility. This Visit (02) should be executed with 45 days of Visit 02 of 14035. Visits 01 & 02 of this program should also execute within 45 days of each other, in no particular order. The closer in time that they can all be executed, the better. The Orientation Requirement avoids a potential nearby bright object. This roll angle constraint means that this Visit (02) must execute after Sept 14, 2015. We also take G185M, G225M, and G160M spectra to test the WCA-to-PSA offsets. To test Ywalk, we also take G160M/1600 exposures at +/- 0.7"

(BOA/A & BOA/B (02)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting.

	#	Name	Target Coordinates	Targ. Coord. Corrections	Fluxes	Miscellaneous		
ş	(3)	HIP66578	RA: 13 38 50.4757 (204.7103154d)	Proper Motion RA: -403.65 mas/yr	V=12.773+/-0.024	Reference Frame: ICRS		
Ιğ		Alt Name1: PG1337+705	Dec: +70 17 7.66 (70.28546d)	Proper Motion Dec: -22.0 mas/yr	F(1300)=1.3E-12,			
<u>a</u>		Alt Name2:	Equinox: J2000	Parallax: 0.03829"	F(1800)=5.2E-13			
٦		GRW+70.5824		Epoch of Position: 2000				
Į.≝				Radial Velocity: 26 km/sec				
Ι╙	Comments: COS.ta.432623 S/N=60 in 12s BOA/MIRRORA, BOA/MIRROB (COS.ta.432624) in 175s							
	Extended=	NO						

Proposal 14440 - BOA/A & BOA/B (02) - COS Imaging TA and Spectroscopic WCA-PSA/BOA offset verifications

#	Label (ETC Run)	Target	Config,Mode,Aperture	Spectral Els.	Opt. Params.	Special Reqs.	Groups	Exp. Time (Total)/[Actual Dur.]	Orbit
1	ACQ/IMAG E (BOA/MI RRORA/P2/ LOW) (COS.ta.432 623)	(3) HIP66578	COS/NUV, ACQ/IMAGE, BOA	MIRRORA		GS ACQ SCENARI O BASE1B3	Sequence 1-13 Non-I nt in BOA/A & BOA /B (02)	16 Secs (16 Secs) [==>]	[1]
Co in	omments: Using the BOA/MIRRO	the standard star Hi DRA mode. We obse	IP66578 to compare the centerings betw rved this target in 13124, with 2961 cou	veen the BOA/MIRI ents in 12s (target +	RORA and BOA/MIRROR -background in 50x50 bo	RB ACQ/IMAGE cente. x). We will need to follo	ring options. The ETC g	gives 12 seconds to reach S/N=60 with /WCA/A image.	h this targe
2	WCA/MIRR	WAVE	COS/NUV, TIME-TAG, WCA	MIRRORA	BUFFER-TIME=27		Sequence 1-13 Non-I	14 Secs (14 Secs)	
	ORA/P2/LO W (no target)				0	MP LINE2; QESIPARM CURR ENT LOW	nt in BOA/A & BOA /B (02)	[==>]	[1]
$C\epsilon$	omments: For P2	/LOW/MIRRORA w	ve get 2900 counts in 7s. The BT for this	must be $< 0.37*(2)$.35E6/4800) or < 270				
3		(3) HIP66578	COS/NUV, TIME-TAG, BOA	MIRRORB	BUFFER-TIME=10		Sequence 1-13 Non-I	183 Secs (183 Secs)	
	ORB/Target (no lamp) (COS.ta.432 624)				00		nt in BOA/A & BOA /B (02)	[==>]	[1]
*2	.35E6/(1000) <	up BOA/MIRRORB 1575. as we are onl separate lamp imag	calibration IMAGE with a wavecal to v y getting about 20 cps from the source, e	verify proper initial most of the counts	centering (The ETC give are noise. This is a BOA	es 175 seconds to reach image, so we need to a	n S/N=60 with this targe add a WAVE image after	et in the BOA/MIRRORA mode.) The I r this exposure. The WAVECAL=YES	3T is ~ 0.0 paramete
4	WCA/MIRR	WAVE	COS/NUV, TIME-TAG, WCA	MIRRORB	BUFFER-TIME=20		Sequence 1-13 Non-I		
	ORB/P2/ME D (no target)				00	MP LINE2; QESIPARM CURR ENT MEDIUM	nt in BOA/A & BOA /B (02)	[==>]	[1]
C	omments: For P2	MED, we expect 30	00-460 cps, with a Brightest Pixel = $9 c$	ts/s. So $BT < 0.67*$	f(2.35E6/460) < 3400.				
5	ACQ/IMAG	(3) HIP66578	00-460 cps, with a Brightest Pixel = 9 c COS/NUV, ACQ/IMAGE, BOA	ts/s. So BT < 0.67* MIRRORB	£(2.35E6/460) < 3400.		Sequence 1-13 Non-I	183 Secs (183 Secs)	
5			<u> </u>		(2.35E6/460) < 3400.		Sequence 1-13 Non-I nt in BOA/A & BOA /B (02)	183 Secs (183 Secs) [==>]	[1]
5	ACQ/IMAG E (BOA/MI RRORB/P2/ MED) (COS.ta.432 624)	(3) HIP66578	<u> </u>	MIRRORB		he ETC gives 175 secon	nt in BOA/A & BOA /B (02)	[==>]	
5	ACQ/IMAG E (BOA/MI RRORB/P2/ MED) (COS.ta.432 624) omments: Compo	(3) HIP66578	COS/NUV, ACQ/IMAGE, BOA	MIRRORB	AGE centering options. TI BUFFER-TIME=20	QESIPARM USELA	nt in BOA/A & BOA /B (02) ads to reach S/N=60 wi Sequence 1-13 Non-I	[==>] th this target in the BOA/MIRRORB n 24 Secs (24 Secs)	
5 <i>Ca</i>	ACQ/IMAG E (BOA/MI RRORB/P2/ MED) (COS.ta.432 624) omments: Compo	(3) HIP66578	COS/NUV, ACQ/IMAGE, BOA	MIRRORB IRRORB ACQ/IMA	AGE centering options. Th	•	nt in BOA/A & BOA /B (02) ands to reach S/N=60 wi	[==>] th this target in the BOA/MIRRORB n 24 Secs (24 Secs)	
<u>Co</u>	ACQ/IMAG E (BOA/MI RRORB/P2/ MED) (COS.ta.432 624) mments: Compo WCA/MIRR ORB/P2/ME D (no target)	(3) HIP66578 are the centerings be WAVE	COS/NUV, ACQ/IMAGE, BOA	MIRRORB IRRORB ACQ/IMA MIRRORB	AGE centering options. TI BUFFER-TIME=20 00	QESIPARM USELA MP LINE2; QESIPARM CURR	nt in BOA/A & BOA/B (02) nds to reach S/N=60 wi Sequence 1-13 Non-Int in BOA/A & BOA	[==>] th this target in the BOA/MIRRORB n 24 Secs (24 Secs)	node.
<u>Co</u>	ACQ/IMAG E (BOA/MI RRORB/P2/ MED) (COS.ta.432 624) mments: Compo WCA/MIRR ORB/P2/ME D (no target)	(3) HIP66578 we the centerings be WAVE WAVE	COS/NUV, ACQ/IMAGE, BOA etween the BOA/MIRRORA and BOA/M COS/NUV, TIME-TAG, WCA	MIRRORB IRRORB ACQ/IMA MIRRORB	AGE centering options. TI BUFFER-TIME=20 00 6(2.35E6/460) < 3400. BUFFER-TIME=27	QESIPARM USELA MP LINE2; QESIPARM CURR ENT MEDIUM	nt in BOA/A & BOA/B (02) nds to reach S/N=60 wi Sequence 1-13 Non-I nt in BOA/A & BOA/B (02)	th this target in the BOA/MIRRORB n 24 Secs (24 Secs) [==>]	node.
<u>Co</u>	ACQ/IMAG E (BOA/MI RRORB/P2/ MED) (COS.ta.432 624) mments: Compo WCA/MIRR ORB/P2/ME D (no target)	(3) HIP66578 we the centerings be WAVE WAVE	COS/NUV, ACQ/IMAGE, BOA etween the BOA/MIRRORA and BOA/M COS/NUV, TIME-TAG, WCA 00-460 cps, with a Brightest Pixel = 9 c	MIRRORB IRRORB ACQ/IMA MIRRORB ts/s . So $BT < 0.67$ *	AGE centering options. TI BUFFER-TIME=20 00 c(2.35E6/460) < 3400.	QESIPARM USELA MP LINE2; QESIPARM CURR ENT MEDIUM	nt in BOA/A & BOA/B (02) nds to reach S/N=60 wi Sequence 1-13 Non-I nt in BOA/A & BOA/B (02)	th this target in the BOA/MIRRORB n 24 Secs (24 Secs) [==>]	node.
6 6 7	ACQ/IMAG E (BOA/MI RRORB/P2/ MED) (COS.ta.432 624) mments: Compo WCA/MIRR ORB/P2/ME D (no target) wCA/MIRR ORA/P2/LO W (no target)	(3) HIP66578 WAVE WAVE WAVE WAVE	COS/NUV, ACQ/IMAGE, BOA etween the BOA/MIRRORA and BOA/M COS/NUV, TIME-TAG, WCA 00-460 cps, with a Brightest Pixel = 9 c	MIRRORB IRRORB ACQ/IMA MIRRORB IS/S. So BT < 0.67* MIRRORA	AGE centering options. TI BUFFER-TIME=20 00 6(2.35E6/460) < 3400. BUFFER-TIME=27 0	QESIPARM USELA MP LINE2; QESIPARM CURR ENT MEDIUM QESIPARM USELA MP LINE2; QESIPARM CURR	nt in BOA/A & BOA /B (02) nds to reach S/N=60 wi Sequence 1-13 Non-I nt in BOA/A & BOA /B (02) Sequence 1-13 Non-I nt in BOA/A & BOA	th this target in the BOA/MIRRORB n 24 Secs (24 Secs) [==>]	[1]
5 Ca 6	ACQ/IMAG E (BOA/MI RRORB/P2/ MED) (COS.ta.432 624) Omments: Compo WCA/MIRR ORB/P2/ME D (no target) Omments: For P2 WCA/MIRR ORA/P2/LO W (no target)	(3) HIP66578 WAVE WAVE WAVE WAVE	COS/NUV, ACQ/IMAGE, BOA etween the BOA/MIRRORA and BOA/M. COS/NUV, TIME-TAG, WCA 00-460 cps, with a Brightest Pixel = 9 c. COS/NUV, TIME-TAG, WCA	MIRRORB IRRORB ACQ/IMA MIRRORB IS/S. So BT < 0.67* MIRRORA	AGE centering options. TI BUFFER-TIME=20 00 6(2.35E6/460) < 3400. BUFFER-TIME=27 0	QESIPARM USELA MP LINE2; QESIPARM CURR ENT MEDIUM QESIPARM USELA MP LINE2; QESIPARM CURR	nt in BOA/A & BOA /B (02) nds to reach S/N=60 wi Sequence 1-13 Non-I nt in BOA/A & BOA /B (02) Sequence 1-13 Non-I nt in BOA/A & BOA	[==>] th this target in the BOA/MIRRORB in $24 Secs (24 Secs)$ $[==>]$ $14 Secs (14 Secs)$ $[==>]$	node.

<u>posal 14</u>	<u> 1440</u>) - BOA/A 8	<u>k BOA/B (02) - COS Imag</u>	ging IA and	Spectroscopic	WCA-PSA/BO	<u>Ja offset verif</u>	cations	
9 PSA/C		(3) HIP66578	COS/NUV, TIME-TAG, PSA	G225M		QESIPARM USELA	Sequence 1-13 Non-I		
M/230 (COS. 936)	sp.433			2306 A		MP LINE2; QESIPARM CURR	nt in BOA/A & BOA /B (02)	[==>]	m
730)					5;	ENT MEDIUM			[1]
C	COS	122026 airra a/a	/re =10 in 53 seconds. BT=2/3 * 851 < .	567 Waynest to a	FP-POS=3	So about the ab EDDO	C_ 2		
		(3) HIP66578	COS/NUV, TIME-TAG, PSA	G185M	1.		Sequence 1-13 Non-I	40 Secs (40 Secs)	
M/191	3	(3) 1111 00378	COS/NOV, TIME-TAG, ISA	1913 A	0;	MP LINE2;	nt in BOA/A & BOA	[==>]	
(COS. 079)	sp.744			171371	FLASH=S0070D03 5;	QESIPARM CURR ENT MEDIUM	/B (02)		[1]
					FP-POS=3				
Comments:	COS.sp	.744079 gives s/n	$\sqrt{re} = 10.7 \text{ in } 40 \text{ seconds. } BT = 2/3 * 612 < 612$	< 408. We want to	get a good lamp flash, so 3	35s should be ok. FPP	OS=3		
		(3) HIP66578	COS/FUV, TIME-TAG, PSA	G160M	FP-POS=3;		Sequence 1-13 Non-I	22 Secs (22 Secs)	
M/160 0	0/3-0.			1600 A	BUFFER-TIME=20	MP LINE2; OESIPARM CURR	nt in BOA/A & BOA /B (02)	[==>]	
(COS. 394)	sp.615				0; FLASH=S0100D02	ENT MEDIUM			[1]
394)					1;				[1]
					SEGMENT=A				
Comments:	COS.sp	.615394 gives us	4200 counts/s (seg A only). We set the lan	mp flash to be ET -	1 s. Buffer time set to mir	ı.			
		(3) HIP66578	* (2.35E6/4200) < 374, to be safe we'll u	use 200. Segment B G160M	FP-POS=3;	POS TARG null,+0.	Sequence 1-13 Non-I	25 Saas (25 Saas)	
M/160		(3) HIP003/8	COS/FUV, TIME-TAG, PSA	1600 A	BUFFER-TIME=20	7;	nt in BOA/A & BOA	[==>]	
.7 (COS.	en 615			1000 A	0;	QESIPARM USELA	/B (02)	[>]	
394)	sp.013				FLASH=S0100D02	MP LINE2;			[1]
					4;	QESIPARM CURR ENT MEDIUM			
a .	COS	(15304 :	4200		SEGMENT=A		. 1 111	1.120/ (070/ · · · 1) H/	
.omments: ınts here on	SEGA,	.015394 gives us 4 , so the exposures	4200 counts/s (seg A only). We set the land time is $22/0.87 = 25$ s, which gives $ET =$	np flash to be the s 137s. The BT coul	same as the 0° position fla: d be as large as 2/3 * 120	sn (24s). At 0.7", the ta /0.87 = 535s, We'll jus	erget should be vignette t use 200 to be safe. Se	a 13% (8/% original). We wan gment B is too bright and must	it the same # of co be turned off.
		(3) HIP66578	COS/FUV, TIME-TAG, PSA	G160M	FP-POS=3;	POS TARG null,-0.7	Sequence 1-13 Non-I		
M/160 7	0/3-0.			1600 A	BUFFER-TIME=20	;	nt in BOA/A & BOA	[==>]	
(COS.	sp.615				0;	QESIPARM USELA MP LINE2;			
394)					FLASH=S0100D02 4;	QESIPARM CURR			[1]
					SEGMENT=A	ENT MEDIUM			
Comments:	COS.sp	.615394 gives us 4	4200 counts/s (seg A only). We set the lar	mp flash to be the s	same as the 0" position fla	sh (24s). At -0.7", the t	arget should be vignett	ed 13% (87% original). We wa	nt the same # of c
ounts here o	n SEĜ	A, so the exposures	s time is $22/0.87 = 25$ s, which gives ET =	137s. The BT cou	ald be as large as 2/3 * 2.3	35E6/4200 = 535s, We	'll just use 200 to be sa	fe. Segment B is too bright and	must be turned off
14 WCA/	MIRR	WAVE	COS/NUV, TIME-TAG, WCA	MIRRORA		OESIPARM USELA	Sequence 14-17 Non	14 Secs (14 Secs)	
ORA/I	P1/LO					MP LINE1;	-Int in BOA/A & BO		
W (no	target					QESIPARM CURR	A/B (02)		[1]
Tommonto.	Eon D1	/I OW/A wa arnaa	at 2620 counts/s $PP = 45$ on/s. This is do	rived from data in	nnoanam 12124	ENT LOW			<u> </u>
		WAVE	ct 2620 counts/s. BP = 45 cp/s. This is de COS/NUV, TIME-TAG, WCA	MIRRORA	program 13124.	OESIDADM LISELA	Sequence 14-17 Non	24 Sacs (24 Sacs)	
ORA/I	P2/LO	WAVE	COS/NOV, TIME-TAG, WCA	MIKKOKA		MP LINE2;	-Int in BOA/A & BO	[==>]	
W (no	target					QESIPARM CURR	A/B (02)	[>]	[1]
,						ENT LOW			
Comments:	For P2	/LOW/MIRRORA	we get 2900 counts in 7s						

Proposal 14440 - BOA/A & BOA/B (02) - COS Imaging TA and Spectroscopic WCA-PSA/BOA offset verifications

Comments: For P1/LOW, we expect 82 cts/s, to get 1600 counts in the primary spot, we need 2400 counts. 2400./82 = 30 seconds 17 WCA/MIRR WAVE COS/NUV, TIME-TAG, WCA MIRRORB ORB/P2/ME ORD (no target) OESIPARM CURR OESIPARM CURR OESIPARM CURR A/B (02) [1]	16	WCA/MIRR WAVE ORB/P1/LO W (no target)	COS/NUV, TIME-TAG, WCA	MIRRORB	QESIPARM USELA MP LINE1; QESIPARM CURR ENT LOW	Sequence 14-17 Non -Int in BOA/A & BO A/B (02)		[1]
ÈNT MEDIUM	<i>Coi</i> 17	WCA/MIRR WAVE ORB/P2/ME		* *	QESIPARM USELA MP LINE2; QESIPARM CURR	-Int in BOA/A & BO	` ′	[1]

Proposal 14440 - BOA/A & BOA/B (02) - COS Imaging TA and Spectroscopic WCA-PSA/BOA offset verifications Server Version: 20160601 Orbit 1 Exp. 6 Exp. 7 Exp. 8 Exp. 9 Exp. 10 Pointing Maneuver Exp. 11 Pointing Maneuver Exp. 12 **Orbit Structure** Pointing Maneuver Exp. 13 Occultation Unused Orbital Visibility = 0 Exp. 2 Exp. 15 Exp. 3 Exp. 16 GS Acq Exp. 17 Exp. 4 Exp. 1 Exp. 5 Exp. 14 Home 500 1000 2500 3000 5000 1500 2000 3500 4000 4500 5500 sec

Proposal 14440 - PSA/A & PSA/B (03) - COS Imaging TA and Spectroscopic WCA-PSA/BOA offset verifications

Proposal 14440, PSA/A & PSA/B (03), implementation Fri Jul 29 17:34:30 GMT 2016

Diagnostic Status: Warning

Scientific Instruments: COS/FUV, COS/NUV Special Requirements: SCHED 100%; ON HOLD

Comments: This visit has been reconfiguded to test the most important FUV cenwaves after the PSA/A vs PSA/B comparison

On Hold Comments: This is a on-hold contingency replacement for visit 02 of 14452

(PSA/A & PSA/B (03)) Warning (Form): For the best data quality, it is strongly recommended that all four FP-POS positions be used when observing at a given COS CENWAVE setting.

#	Name	Target Coordinates	Targ. Coord. Corrections	Fluxes	Miscellaneous
(1)	206W3	RA: 06 08 55.4600 (92.2310833d)	Proper Motion RA: 0.5 mas/yr	V=14.53+/-0.1	Reference Frame: ICRS
	Alt Name1: MCNAM209	Dec: +24 15 39.59 (24.26100d)	Proper Motion Dec: -2.2 mas/yr	J=13.441,	
	Alt Name2: J060855.46+241539.7	Equinox: J2000	Epoch of Position: 2012.7	B=14.930	

Comments: Target previously observed in Visit 2 of 12781.

According to Colin, the target coordinates given here have been adjusted to ~2012.7. I include the UCAC3 PM in case this visit is used again at a later date.

The PSA/MIRRORA had 21,063 counts in 60s (351 ct/s). Max pixel = 1965/60 = 32.75 ct/s

The PSA/MIRRORB had 12,570 counts in 300s (41.9 cts/s). Max pixel = 238/300 = 0.8 ct/s

So, PSA MirrorA/MirrorB = 351.0/41.9 = 8.4 (for this target)

This target is N8CV022007 in GSC2.3.2

From SIMBAD:

Basic data:

Diagnostics

Cl* NGC 2168 M 178 -- Star in Cluster Other object types: *iC (Cl*), IR (2MASS)

ICRS coord. (ep=J2000): 06 08 55.46 +24 15 39.8 (Infrared) [70 60 0] B 2003yCat.2246....0C

FK5 coord. (ep=J2000 eq=2000): 06 08 55.46 +24 15 39.8 [70 60 0]

FK4 coord. (ep=B1950 eq=1950): 06 05 51.62 +24 16 12.1 [70 60 0]

Gal coord. (ep=J2000): 186.6569 +02.1612 [70 60 0]

Fluxes (6): B 14.930 [~] D ~

V 14.481 [~] D ~

R 14.600 [~] E 2003yCat.2246....0C

J 13.441 [0.023] C 2003yCat.2246....0C

H 13.354 [0.022] C 2003yCat.2246....0C

K 13.227 [0.026] C 2003 vCat.2246....0C

Extended=NO

Proposal 14440 - PSA/A & PSA/B (03) - COS Imaging TA and Spectroscopic WCA-PSA/BOA offset verifications

Label (ETC Rur	Target	Config,Mode,Aperture	Spectral Els.	Opt. Params.	Special Reqs.	Groups	Exp. Time (Total)/[Actual Dur.]	Orbit
PSA/MIRI ORA ACQ MAGE (P LOW) (COS.ta.63 846)	/	COS/NUV, ACQ/IMAGE, PSA	MIRRORA		GS ACQ SCENARI O BASE1B3	Sequence 1-10 Non-I nt in PSA/A & PSA/ B (03)	15.0 Secs (15 Secs) [==>]	[1]
Comments: This	target has previously be	een observed in 13171.						

The measured direct count rates are (S/N are just photon statistics of the lamp or target) PSA/MIRRORA = 245 count/s (S/N = 40 in 7s, 60 in 15s)

PSA/MIRRORB = 15.6 count/s (S/N = 40 in 102s, 50 in 160, 60 in 230s)

A/B = 15.7 for this target

 $WCA/P2/MIRRORA@LOW = 7s \ produced \ 2900 \ counts(S/N = 54)$ WCA/P2/MIRRORB@LOW = 30s produced 420 counts (S/N = 21)

WCA/P2/MIRRORB@MED = 10s is estimated to produce \sim 4000 counts (S/N = 52 in the primary spot)

WCA/P1/MIRRORB@LOW = 82 hz, so S/N = 50 in 30s

WCA/A(LOW)/B(LOW) = 25-30

WCA/B(MED)/B(LOW) is estimated to be 15-20

To get everything at S/N = 50 we need at least the following exposure times

PSA(target)/A = 10sPSA(target)/B = 160sWCA/P2/LOW/A = 6s

WCA/P2/LOW/B = 180s (low current), S/N = 47 in 160s

WCA/P1/LOW/B is 5x brighter than lamp#2, so at least 36s

WCA/P2/MED/B is unknown, but we estimate it to be 15-20x the 2/LOW rate, so at least 12s

For each target image, we will use the 9x9 checkbox method, so the background for PSA exposures is 9x9*(500/(50*300)/30s) based upon 500 counts in 30s in the WCA 50x300 box. This is 1 count in 10s, so we ignore this for the PSA.

For the WCA images, we will be working a 50x300 box, so the rate here is 18 hz, but we are using a median to find the center, so it is not a straightforward S/N situation. We are interested in measuring the centroid in presence of the noise and 2500 lamp counts are sufficient for our needs for WCA/P2/LOW/B. Since, we are defining the WCA-to-PSA offset for WCA/P1/LOW/B and WCA/P2/MED/B, we will shoot for 3000 lamp count

For the Buffer Time, we are shooting for S/N = 50. in both the target and the lamp. Lets overshoot to S/N of 60, that's 7200 counts -> BT = 2/3 * 326 = 217. We'll be extra conservative and stay short of this.

For PSA/MIRRORA: (COS.ta.634846) We Simulated in ETC as G5, V=13.5 (lit says 14.5), S/N = 60 gives: Time = 13 seconds. Target count rate = 275 cts/s Brightest Pixel 38 cps PSA/MIRRORB: (COS.ta.634849) We Simulated in ETC as G5, V=13.5 (lit says 14.5), S/N = 50 gives: Time = 217 seconds. Target count rate = 11.6 cts/s Brightest Pixel 1.6 cps

This target was also previously observed in Visit A2 of 12781, with the following REAL count rates (imaging mode)

The PSA/A had 21,063 total counts in 60s (Target = 206W3), after background subtraction = 20,100 = 335 cts/s, PSA/A Brightest Pixel = 32.8 counts/s The PSA/MIRRORB had 12,570 total counts in 300s, after background subtraction=7150 = 23.8 cts/s. PSA/B Brightest Pixel = 0.8 counts/s

PSA A/B = 14x (lbx1a2ffq/lbx1a2fhq) & PSA A/B (BP) = 41x

Remember that the SED of the target is important in this ratio as the two modes have different responses.

For PSA/A We get S/N = 60 in 3600/335 = 11sFor PSA/B, We get S/N = 60 in 3600/23.8 = 151s

PSA/MIRR (1) 206W3 COS/NUV, TIME-TAG, PSA QESIPARM USELA Sequence 1-10 Non-I 15.0 Secs (15 Secs) MIRRORA BUFFER-TIME=15 ORA IMAG MP LINE2; nt in PSA/A & PSA/ I = = > 1E (P2/LOW) B (03) **QESIPARM CURR** FLASH=S0060D01 (COS.ta.634 [1] ENT LOW 846) CURRENT=LOW

Comments: Lamp and target image to measure the WCA-to-PSA offset for PSA/MIRRORA/P2/LOW current. Expect 416 counts/s from lamp, about the same from the target. We need 12s of each

1) 206W3	COS/NUV, TIME-TAG, PSA easure the WCA-to-PSA offset for PSA COS/NUV, ACQ/IMAGE, PSA	MIRRORB A/MIRRORB/P2/MI MIRRORB	0; FLASH=S0100D02 0; CURRENT=MEDI UM	MP LINE2; QESIPARM CURR ENT MEDIUM	nt in PSA/A & PSA/B (03)	170.0 Secs (170 Secs) [==>] et time, and at least 12s of lamp t	[1]
1) 206W3			FLASH=S0100D02 0; CURRENT=MEDI UM	QESIPARM CURR ENT MEDIUM	B (03)		
1) 206W3			CURRENT=MEDI UM		We need 160s of targe	et time, and at least 12s of lamp t	
1) 206W3				counts/s from the lamp	We need 160s of targe	t time, and at least 12s of lamp t	me We'll get ?
1) 206W3	COS/NUV, ACQ/IMAGE, PSA	MIRRORB					me. He u gei 2x
,					Sequence 1-10 Non-I	170.0 Secs (170 Secs)	
POPR ACO/Imax					nt in PSA/A & PSA/B (03)	[==>]	[1]
KOKD ACQ/Image	using P2/MED current. we setting the	lampflash time in	commanding to 12s. We i	nay update the ACQ/In	nage MIRRORB time aj	fter we analyze this visit.	· · ·
1) 206W3	COS/NUV, TIME-TAG, PSA	MIRRORB		QESIPARM USELA	Sequence 1-10 Non-I	170.0 Secs (170 Secs)	
			0; FLASH=S0100D02	MP LINE2; QESIPARM CURR	nt in PSA/A & PSA/ B (03)	[==>]	
			0; CURRENT=MEDI	ENT MEDIUM			[1]
d target image to re d measurement.	-measure the WCA-to-PSA offset for F	PSA/MIRRORB/P2/		5-400 counts/s from the	lamp. We need 160s o	L f target time, and at least 12s of	amp time. We'll
1) 206W3	COS/NUV, TIME-TAG, PSA	MIRRORA	BUFFER-TIME=20			15 Secs (15 Secs)	
			FLASH=S0060D01	QESIPARM CURR	nt in PSA/A & PSA/ B (03)	[==>]	[1]
			5; CURRENT=LOW	ENT LOW			
d target image to re	-measure the WCA-to-PSA offset for F	PSA/MIRRORA/Lai	mp2/LOW current. Expec	t 416 counts/s from lan	p, about the same from	the target. We need at least 12s	of each
1) 206W3	COS/NUV, ACQ/IMAGE, PSA	MIRRORA			Sequence 1-10 Non-I	15 Secs (15 Secs)	
					nt in PSA/A & PSA/ B (03)	[==>]	[1]
tion PSA/A ACQ/in	nage, see first exposure of this visit for	r complete commen	ıt.				
1) 206W3	COS/FUV, TIME-TAG, PSA	G130M	FP-POS=3;			31 Secs (31 Secs)	
		1309 A	FLASH=S0060D02 5;	QESIPARM CURR	nt in PSA/A & PSA/ B (03)	[==>]	
			BUFFER-TIME=10	ENT MEDIUM			[1]
y low counts: 1 at A 67.112 at B 278.346			get S/N ~ 45				
nt B 278.346	must be > 1600./67 = 23. We go for ~	30s, which should	get S/N ~ 45				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	measurement. 2) 206W3 Example 1 image to record 2) 206W3 Sign PSA/A ACQ/in 2) 206W3 Sign PSA/A ACQ/in 2) 206W3 Sign PSA/A ACQ/in 2) 206W3	Target image to re-measure the WCA-to-PSA offset for Italy 206W3 COS/NUV, TIME-TAG, PSA Target image to re-measure the WCA-to-PSA offset for Italy 206W3 COS/NUV, ACQ/IMAGE, PSA Toology 1206W3 COS/FUV, TIME-TAG, PSA	Interest image to re-measure the WCA-to-PSA offset for PSA/MIRRORA Starget image to re-measure the WCA-to-PSA offset for PSA/MIRRORA/La. O 206W3 COS/NUV, ACQ/IMAGE, PSA MIRRORA Stion PSA/A ACQ/image, see first exposure of this visit for complete comments O 206W3 COS/FUV, TIME-TAG, PSA G130M 1309 A SUV G230L spectra which puts the target at about 1.5E-15 at 1750A. NOW counts: A 67.112 B 278.346	FLASH=S0100D02 0; CURRENT=MEDI UM target image to re-measure the WCA-to-PSA offset for PSA/MIRRORB/P2/MED current. Expect 22: Imeasurement.) 206W3 COS/NUV, TIME-TAG, PSA MIRRORA BUFFER-TIME=20 0; FLASH=S0060D01 5; CURRENT=LOW target image to re-measure the WCA-to-PSA offset for PSA/MIRRORA/Lamp2/LOW current. Expect 0) 206W3 COS/NUV, ACQ/IMAGE, PSA MIRRORA tion PSA/A ACQ/image, see first exposure of this visit for complete comment. 1) 206W3 COS/FUV, TIME-TAG, PSA G130M FP-POS=3; 1309 A FLASH=S0060D02 5; BUFFER-TIME=10 00 VUV G230L spectra which puts the target at about 1.5E-15 at 1750A.	FLASH=S0100D02 QESIPARM CURR ENT MEDIUM CURRENT=MEDI UM target image to re-measure the WCA-to-PSA offset for PSA/MIRRORB/P2/MED current. Expect 225-400 counts/s from the measurement. 2006W3 COS/NUV, TIME-TAG, PSA MIRRORA BUFFER-TIME=20 QESIPARM USELA MP LINE2; FLASH=S0060D01 SET LOW CURRENT=LOW 1 target image to re-measure the WCA-to-PSA offset for PSA/MIRRORA/Lamp2/LOW current. Expect 416 counts/s from lam. 2006W3 COS/NUV, ACQ/IMAGE, PSA MIRRORA 1309 A FLASH=S0060D02 SET LASH=S0060D02 SE	FLASH=S0100D02 QESIPARM CURR ENT MEDIUM CURRENT=MEDI UM target image to re-measure the WCA-to-PSA offset for PSA/MIRRORB/P2/MED current. Expect 225-400 counts/s from the lamp. We need 160s of the lamp of the	FLASH=S0100D02 QESIPARM CURR ENT MEDIUM CURRENT=MEDIUM O: CURRENT=MEDIUM DIM Target image to re-measure the WCA-to-PSA offset for PSA/MIRRORB/P2/MED current. Expect 225-400 counts/s from the lamp. We need 160s of target time, and at least 12s of 1 on in 1 no psa/s & PSA/ PSA/ PSA/ PSA/ PSA/ PSA/ PSA/ PSA/

Proposal 14440 - PSA/A & PSA/B (03) - COS Imaging TA and Spectroscopic WCA-PSA/BOA offset verifications PSA/G140L (1) 206W3 COS/FUV, TIME-TAG, PSA G140L FP-POS=3; QESIPARM USELA Sequence 1-10 Non-I 26 Secs (26 Secs) /1280/3 MP LINE2: nt in PSA/A & PSA/ 1280 A FLASH=YES; (COS.sp.753 B (03) QESIPARM CURR ENT MEDIUM [1] 189) BUFFER-TIME=80 Comments: We have NUV G230L spectra which puts the target at about 1.4E-15 at 1750A. Count rate entire detector 151.888 Count rate Segment A 85.283 Count rate Segment B 66.606 We want at least 1600 FUVA counts, so the ET must be > 1600./85 = 18. We go for 25s, which should get S/N ~ 46 PSA/G160 (1) 206W3 COS/FUV, TIME-TAG, PSA G160M FP-POS=3: QESIPARM USELA Sequence 1-10 Non-I 31 Secs (31 Secs) M/1600/3 nt in PSA/A & PSA/ MP LINE2; *I==>1* FLASH=S0100D02 1600 A (COS.sp.753 B (03) OESIPARM CURR [1] ENT MEDIUM BUFFER-TIME=80 Comments: We have NUV G230L spectra which puts the target at about 1.4E-15 at 1750A. Count rate entire detector 136.795 Count rate Segment A 70.104 Count rate Segment B 66.691 We want at least 1600 FUVA counts, so ET > 1600./70 = 23s. We go for ~30 to get $S/N \sim 46$ Orbit 1 Server Version: 20160601 Exp. 5 Exp. 6 Exp. 7 Pointing Maneuver Exp. 8 Exp. 9 Orbit Structure Exp. 10 Exp. 2 Unused Orbital Visibility = 1 GS Acq Exp. 3 Occultation Home Exp. 1 Exp. 4 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 sec