
CO
LU

M
NS

By
Colin O’Flynn

Embedded System Essentials

Attacking USB Gear with EMFI
Pitching a Glitch

I n past articles I’ve taken you through
various theoretical attacks on embedded
systems, demonstrated various attacks
in standard systems and summarized

recent work from relevant conferences.
This article is something new. I’m going to
be presenting a new attack. While it’s been
disclosed to the vendor—and should have
been fixed by the time you read this—you are
getting as close to the bleeding edge of attack
information as I can present in this article.

Our victim will be a Trezor bitcoin wallet.
This little device can be used to store Bitcoins,
which ultimately means a method of securely
storing a private key used for cryptographic
operations. We don’t need to dig into details
of the wallet operation, but a critical piece
of information to understand is the idea of a
“recovery seed”. This recovery seed is a series
of words which encodes a recovery key, and
knowing that recovery seed is sufficient to
recover the secret key.

This means someone who steals only that
recovery seed—without further access to the
wallet—could access funds stored on the wallet
itself. It goes without saying that an attack
finding that key would be rather detrimental
to our experience using the wallet.

Many products use USB, but have you ever considered there may be a
critical security vulnerability lurking in your USB stack? In this article,
Colin walks you through an example product that could be broken using
electromagnetic fault injection (EMFI) to perform this attack without
even removing the device enclosure.

FIGURE 1
The Trezor wallet is shown here with the enclosure removed.

TECHNOLOGIES FOR DIGITAL SIGNAGE
MAY 2019 | ISSUE 346 EXCERPT
REPRINTED WITH PERMISSIONcircuitcellar.com

Inspiring the Evolution of Embedded Design

circuitcellar.com 45
CO

LU
M

NS
REPRINTED WITH PERMISSION © CIRCUIT CELLAR

It should be noted that there has been
some other work that inspired this attack.
The “wallet.fail” presentation at the Chaos
Communication Congress (CCC) by Dmitry
Nedospasov, Josh Datko and Thomas Roth
demonstrated how one could break the
STMicroelectronics (ST) STM32F2 security
protection, allowing the dumping of its SRAM
contents. Instead, I’m going to be showing
you how to directly dump flash memory
where the seed is stored. So, it’s a different
attack but with similar end results.

I’m going to be using electromagnetic
fault injection (EMFI), enabling us to actually

perform the attack without even removing
the enclosure. This means someone can
perform the attack without leaving a trace of
modifying the wallet, no matter how carefully
you inspect it. Before we get to the real
attack, we need to cover some background.

POWERFUL EMFI
EMFI is a powerful method of performing

fault injection attacks. Typically, we use some
sort of pulse generator to drive an inductor
and the inductor will generate a strong
magnetic field. If you bring this magnetic field
near a chip, this will induce voltages inside

LISTING 1
memory.h showing FLASH_META_
START occurs after the bootloader
and before the application

#define FLASH_BOOT_START	(FLASH_ORIGIN)
#define FLASH_BOOT_LEN		 (0x8000)

#define FLASH_META_START	(FLASH_BOOT_START + FLASH_BOOT_LEN)
#define FLASH_META_LEN		 (0x8000)

#define FLASH_APP_START		 (FLASH_META_START + FLASH_META_LEN)

LISTING 2
The function winusb_control_vendor_request from winusb.c responds to requests for various information related to WinUSB over the control USB endpoint. Note the call
“MIN(*len, guid.header.dwLength)” which decides on the length of the returned response.

static int winusb_control_vendor_request(usbd_device *usbd_dev,
 struct usb_setup_data *req,
 uint8_t **buf, uint16_t *len,
 usbd_control_complete_callback* complete) {
 (void)complete;
 (void)usbd_dev;

 if (req->bRequest != WINUSB_MS_VENDOR_CODE) {
 return USBD_REQ_NEXT_CALLBACK;
 }

 int status = USBD_REQ_NOTSUPP;
 if (((req->bmRequestType & USB_REQ_TYPE_RECIPIENT) == USB_REQ_TYPE_DEVICE) &&
 (req->wIndex == WINUSB_REQ_GET_COMPATIBLE_ID_FEATURE_DESCRIPTOR)) {
 buf = (uint8_t)(&winusb_wcid);
 *len = MIN(*len, winusb_wcid.header.dwLength);
 status = USBD_REQ_HANDLED;

 } else if (((req->bmRequestType & USB_REQ_TYPE_RECIPIENT) == USB_REQ_TYPE_INTERFACE) &&
 (req->wIndex == WINUSB_REQ_GET_EXTENDED_PROPERTIES_OS_FEATURE_DESCRIPTOR) &&
 (usb_descriptor_index(req->wValue) == winusb_wcid.functions[0].bInterfaceNumber))
{

 buf = (uint8_t)(&guid);
 *len = MIN(*len, guid.header.dwLength);
 status = USBD_REQ_HANDLED;

 } else {
 status = USBD_REQ_NOTSUPP;
 }

 return status;
}

CIRCUIT CELLAR • MAY 2019 #34646
CO

LU
M

NS
REPRINTED WITH PERMISSION © CIRCUIT CELLAR

metal on the chip. The result is an ability to
manipulate internal voltage levels and insert
ringing onto the power bus, causing the device
to misbehave. These misbehaving activities
are what we refer to as faults or glitches. Such
faults or glitches could corrupt data (registers,
SRAM) or corrupt program flow.

The Trezor wallet is open-source, which
makes this attack a wonderful demonstration
to teach you about EMFI and fault injection.
You can freely modify the code, program
old versions before they patched the bug,
and generally perform other useful work to
demonstrate this attack.

You can see the sources for Trezor on
github. See the Circuit Cellar article materials
webpage for the specific github link. If you
want to follow this article, be sure to select the
“v1.7.3” tag on GitHub. These flaws are fixed
in a firmware release that will be available by
the time you read this article, so you should
look at the older (vulnerable) code to better
understand the exact attack. The Trezor is
based on ST’s STM32F205 and you can see
with Trezor sans enclosure in Figure 1. Note
that the STM32F205 is just below the surface
of the enclosure—a feature we will use to
improve our attack.

The actual sensitive recovery seed is
stored in flash memory. It’s located just after
the bootloader, as shown in Listing 1. The
bootloader can be entered by holding down
the two buttons on the front of the Trezor,
and allows a firmware update to be loaded
over USB. Since a malicious firmware update

could simply read out this flash location, the
bootloader will verify that various signatures
are present on a firmware update to prevent
such an attack. Loading unverified firmware
would be one method of attack, but isn’t what
we are going to use. The problem with all of
these attacks is that the design of the Trezor
erases the flash memory before loading and
validating the new file, storing the sensitive
metadata in SRAM during this process. The
wallet.fail disclosure actually attacked this,
since it’s possible to glitch the STM32 to go
from code read protection level RDP2 (which
completely disables JTAG) to level RDP1 (which
enables JTAG to read from the SRAM, but not
from the code).

If our attack corrupted the SRAM—
or needed a power cycle to recover from
error states—performing that erase is very
dangerous. The wallet.fail attack was able to
recover the SRAM, but the attack method we
will use could corrupt the SRAM. That means
any mistake would permanently destroy the
recovery seed. Instead, we are going to try
and directly read out the flash memory. This
is much safer since we never perform an
erase command, meaning the data is safely
stored in memory waiting for us to extract it.

USB READ REQUEST
Because the bootloader contains USB, it

also contains very standard USB processing
code. Part of this is shown in Listing 2, which
comes from the file winusb.c. I’ve chosen
this particular request because there are
actually two data structures present that are
returned by this code—one is stored in FLASH
and one is stored in SRAM. The USB request
being processed first checks some information
sent about the request. It looks for a matching
bRequest, bmRequestType and wIndex
which are all attributes of a USB request. Finally,
the USB request itself contains a wLength
field, which is how much data the computer is
requesting be sent back. I can freely request
up to 0xFFFF bytes of data—and that is exactly
what I will do. But, as you can see, the code
does a MIN() operation to limit the length of
the actual data sent back to be the minimum
of either the requested length or the size of the
descriptor I will send back.

So, what happens if that check was
wrong? While it would let me send back the
descriptor, along with all the 64K (0xFFFF)
bytes of data that lies after the descriptor
itself. This includes our precious metadata—
the USB stack simply sends back the block of
data as the computer requested. The entire
security of the system depends on one simple
length check!

If you’ve read a few of my articles, you
might guess I’ve got a plan. We will be using

FIGURE 2
IDA disassembly of the function in question ultimately shows a single assembly instruction separates your
sensitive data from being politely sent back on the USB port.

circuitcellar.com 47
CO

LU
M

NS
REPRINTED WITH PERMISSION © CIRCUIT CELLAR

fault injection to bypass the check that
depends on a single instruction. Before we
dive into details of performing the actual
fault, let’s do a bit of “sanity check” on my
claims. You can use these sanity checks in
your own code to help understand the impact
of similar vulnerabilities.

DISASSEMBLING CODE
The first sanity check is to confirm that

a simple fault model can cause our intended
operation. This can be trivially confirmed by
inspecting a disassembly of the code, done
with IDA in Figure 2. Note in particular that
due to the resulting code flow, we need to
skip only a single instruction to accomplish
our goal of having the user-supplied length
field be accepted.

The second sanity check will be to confirm
there is not some higher-layer protection.
For example, maybe the USB stack does not
actually accept such a large response given
that there’s no actual need for this? This is
a little harder to prove by simple inspection,
but the open-source nature of the Trezor
makes this possible. What we can do is modify
the code to simply comment out the security
check. If you didn’t want to recompile the
code, but did have debugger access, you
could also use an attached debugger. Use the
debugger to set a breakpoint before the new
value is copied over and toggle the status of
the flag, or manipulate the program counter
to bypass the instruction.

Validating this sanity check will be done in
the same way as the actual attack. This will
use the code from Listing 2. This code sends
the WinUSB control request which should
return with the guid structure. It sends a
length request of 0xFFFF for the request,
which should be paired down to 146 bytes
by the code. As you can see from Figure 3,
when I do not modify the instruction, the
USB request results in the expected-size
response. Modifying the instruction (or using
a debugger to manually clear the comparison
flag) to bypass this check results in a full-size
response. This demonstrates that there is
no “hidden feature” that will fundamentally
prevent the attack from working. With that
knowledge, let’s move onto getting this thing
talking to us!

USB TRIGGERING AND TIMING
Before we can talk about how we insert

the glitch, we need to know where to insert the
glitch. We do know the exact code that triggers
the glitch, and we do know the command we
sent over USB. But we need to get better than
that to introduce the exact instruction. In
my case, since I have access to the software
I’m going to “cheat” during my first test and
measure the actual execution time. If I didn’t
have this capability, I would end up with a
much slower sweep of possible locations.

The first thing I’ll do is get a more solid
trigger on the USB data itself. The entire area
of using USB for glitch triggering was actually
started by Micah Scott, who demonstrated
voltage glitching to dump the firmware from
a drawing tablet and developed a simple
module to perform real-time glitching (which
she called the FaceWhisperer). Instead I’m
going to use a Total Phase Beagle 480, which
can perform triggering based on physical data
going over the USB line. The setup for that
is shown in Figure 4. The Total Phase Beagle
480 also has a beautiful sniffer interface, so
I can sniff the traffic and better understand
what malformed packets are coming back.
This capability is very useful since I can see,
for example, the exact portion of the USB
request being interrupted/corrupted. That
might give me some hints about how far into
the code the program has executed.

FIGURE 3
Using a debugger to step over the
single check (or recompiling the code)
shows that large chunks of memory
will be sent back on request.

FIGURE 4
The USB protocol analyzer is setup to
trigger on a specific packet related to
our request.

CIRCUIT CELLAR • MAY 2019 #34648
CO

LU
M

NS
REPRINTED WITH PERMISSION © CIRCUIT CELLAR

Besides FaceWhisperer and the Beagle
480, there are other methods of triggering
the glitch. Great Scott Gadgets offers its
GreatFET device that has a module called
GlitchKit. GlitchKit provides similar triggering
capabilities, but generates the requests from
the GreatFET itself. As of this writing the
GlitchKit has more limited response capability,
so I wasn’t able to read the entire response
back. Finally, you could look into a simple
circuit using a USB PHY—such as Microchip
Technology’s USB3500—and an FPGA. Watch
for the future open-source PhyWhisperer-USB
from NewAE Technology which will give you
that capability.

Once we have a trigger based on the
USB request going “over the wire”, we can
insert a trigger by setting an I/O pin high
when the sensitive code runs. We use this for
characterizing the system, since we can use
an oscilloscope to measure the time from the
USB packet going over the wire to the sensitive
code operating. In this case, the time ends up

being around 4.2 µs to 5.5 µs. It’s not perfect
timing, because there appears to be some
jitter due to the USB packets being processed
by a queue. We have just learned that, when
performing the fault injection demo, we
should expect that we do not achieve perfect
reliability.

GLITCHING THROUGH THE CASE
For inserting the glitch, I’m using a

setup as shown in Figure 5. This includes
a ChipSHOUTER EMFI platform, a manual
XY table for positioning the coil, the Trezor
target, the Beagle 480 to generate a trigger,
a ChipWhisperer to generate the timing offset
and a Yepkit USB hub which provides a simple
API to power cycle attached devices. The
power cycle capability is useful as we will be
very frequently crashing the target device.

A very simple script (shown in Listing 3)
enables me to power-cycle the device and
issue the WinUSB request. The physical “jig”
that holds the Trezor actually holds the two
power buttons down, ensuring it always
enters bootloader mode on start-up. We want
to use the bootloader since the bootloader
is at a lower address then the metadata,
so dumping any memory from within the
bootloader is more useful when it comes time
to recover the metadata.

The success rate is low—less than 0.1%
of glitches are successful. We can however
achieve a successful glitch within about 1-2
hours on average, making it a relatively
useful attack in practice. A successful glitch
is one where the USB request comes through
with the full length of data, since I was able

FIGURE 5
Complete setup of the EMFI attack
including Beagle 480 for trigger
generation, ChipWhisperer for timing
modifications, ChipSHOUTER for EMFI
insertion and a USB hub to power
cycle the target.

ABOUT THE AUTHOR
Colin O’Flynn (colin@oflynn.com) has been
building and breaking electronic devices for
many years. He is an assistant professor
at Dalhousie University, and also CTO of
NewE Technology both based in Halifax, NS,
Canada. Some of his work is posted on his
website at www.colinoflynn.com.

circuitcellar.com 49
CO

LU
M

NS
REPRINTED WITH PERMISSION © CIRCUIT CELLAR

import time
import time
import usb
import usb.core
import chipwhisperer as cw

def get_winusb(dev, scope):
 “””WinUSB Request is most useful for glitch attack”””
 scope.io.glitch_lp = True #Enable glitch (actual trigger comes from Total Phase USB Analyzer)
 scope.arm()
 resp = dev.ctrl_transfer(int(‘11000001’, 2), ord(‘!’), 0x0, 0x05, 0xFFFF, timeout=1)
 resp = list(resp)
 scope.io.glitch_lp = False #Disable glitch
 return resp

def reset_trezor():
 “””Requires a YK USB Hub - has power control of each port”””
 subprocess.check_output([r’ykushcmd.exe’,’-d’, ‘1’])
 time.sleep(0.5)
 subprocess.check_output([r’ykushcmd.exe’, ‘-u’, ‘1’])
 time.sleep(1)

ChipWhisperer used for trigger delay only
scope = cw.scope()
target = cw.target(scope)

Values found from sweeping around
scope.clock.clkgen_freq = 147E6
scope.adc.basic_mode = “rising_edge”
scope.adc.samples = 500
scope.glitch.clk_src = “clkgen”
scope.glitch.output = “enable_only”
scope.glitch.trigger_src = “ext_single”
scope.glitch.repeat = 1
Original extclock was 100MHz, so we scale offset
relative to our actual clock to maintain 4.4uS
scope.glitch.ext_offset = 440
scope.glitch.ext_offset = (scope.glitch.ext_offset / 100.0E6) * scope.clock.clkgen_freq

dev = None

#Loop until we get too large a response
while True:
 if dev is None:
 dev = usb.core.find(idProduct=0x53c0)
 dev.set_configuration()

 try:
 #Perform USB request - glitch trigger happens via
 # TotalPhase Beagle 480
 res = get_winusb(dev, scope)
 if(len(res)) > 146:
 print(“Data Over-Run Detected - DONE”)
 break
 except usb.USBError:
 reset_trezor()
 res = None
 dev = None
f = open(“outputresults.bin”, “wb”)
f.write(bytearray(res))
f.close()

LISTING 3
Shown here is a complete attack script in Python, which sends the USB requests while inserting faults.

CIRCUIT CELLAR • MAY 2019 #34650
CO

LU
M

NS
REPRINTED WITH PERMISSION © CIRCUIT CELLAR

FIGURE 6
A physical USB analyzer (compared
to attempting to use a software-only
solution) is critical to see mangled
packets on the bus, which lets us
understand how far into requests the
target got before freezing.

to bypass the length check. Finding the exact
location takes some experimentation—you
will get many system crashes due to memory
errors, hard faults and resets. But if you are
using a hardware USB analyzer such as the
Beagle 480 you can see where these errors
are happening, which helps you understand
the glitch timing. If we didn’t have the inside
knowledge of the I/O pin we could toggle, this
would be very valuable.

Figure 6 shows such an example. Note the
USB transaction when performed correctly
has a few steps. The upper part of that figure
shows a number of correct 146-byte control
transfers. The first part is the SETUP phase.
The Trezor has ACK’d the SETUP packet, but
then never sends the follow-up data. The
Trezor entered an infinite loop as it jumped
to one of the various interrupt handlers for
error detection. As the location of the fault is
shifted along in time, various effects on the
USB traffic are observed: moving the glitch
earlier often prevents the ACK of the setup
packet, moving the glitch later allows the first
packet of follow-up data to be sent but not
the second, and moving the glitch much later
allows the complete USB transaction but then
crashes the device. This knowledge helps me
understand which part of the USB code the
fault is being inserted into, even if that fault
is still a sledgehammer causing a device reset
instead of an intended single instruction skip.

The final step of fine-tuning the fault to
get a useful effect again is helped with our
protocol analyzer. I physically moved the coil
around over the surface, along with adjusting
the glitch width and power level. It was
possible—from the LCD screen—to visually
see when the device entered an error handler

or seemed to continue unaffected. Finding a
location that did not always enter an error
is typically a useful starting point, and from
there I searched through various parameters
until a successful glitch occurred. Again, note
that due to the deterministic nature of the
glitch timing, you must be careful to search
sufficiently long in possible candidate glitch
settings.

PREVENTING THE ATTACK
While it’s all good to cause the attack,

how would you prevent against it? The first
thing is to evaluate if your USB stack can
be modified to prevent sending such large
responses. If you never need to perform
transfers of more than say 256 bytes, why
not use an 8-bit number internally, or mask
off the upper bits? Such a mask can be
applied at multiple locations to complicate
glitch attacks.

The second easy fix is to take advantage
of memory protection, if your specific device
supports it. This fault saw me slide from the
USB descriptors in flash memory and read
beyond them into sensitive metadata. But if
we had bounded the sensitive metadata with
invalid memory segments, our “slide” would
have caused an exception due to the memory
access error. When storing sensitive data in
memory—either flash or SRAM—, bounding
it with traps can be useful to catch any sort
of attack that reads beyond an array. More
generic countermeasures to fault attacks can
also be applied, but I wanted to concentrate
on specific countermeasures relevant to the
memory ready attack shown here.

USE THE (MAGNETIC) FORCE
I hope you enjoyed this case study on

electromagnetic fault injection. I’ve taken
you through how EMFI could be used to
attack a real product, with an exploit that
has recently been disclosed to the Trezor
team. Many other USB stacks use an almost
identical code flow however, so I suspect
you’ll find this vulnerability could exist in
your own system. Ultimately it depends on
the use-case, but anything where sensitive
data is stored in standard internal memory
needs great care to keep that data inside
your device.

Additional materials from the author are available at:
www.circuitcellar.com/article-materials

RESOURCES
Great Scott Gadgets | www.greatscottgadgets.com
Microchip Technology | www.microchip.com
NewAE Technology | www.newae.com
STMicroelectronics | www.st.com
Total Phase | www.totalphase.com
Trezor | www.trezor.io
Yepkit | www.yepkit.com

