General Bayesian updating

Chris Holmes!

Department of Statistics and,
Wellcome Trust Centre for Human Genetics,
University of Oxford

UCL Big Data 2015

Ljoint work with Stephen Walker



Overview

Bayesian statistics in a “big-data” world
The problem of M-open
Decision theoretic solutions
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Background Motivation

o Bayesian analysis provide a coherent approach to updating of beliefs
typically through the use of “Bayes Theorem”

m(0|z) o f(x]0)w(0)
where
> f(x]0) is a sampling distribution (likelihood) for the data
» m(60) represents prior beliefs on the unknown true value of

» m(0|x) represents updated beliefs about the unknown 6 in light of
the data z

o Bayesian analysis is rooted in decision theory (Savage 1954), it is
axiomatic, intuitive, and coherent; where all aspects of uncertainty
are accommodated through the specification of a joint probability
model used as a vehicle to quantify uncertainty on all unknowns,

m(x,0) = f(x|0)m ()

> All of Bayesian statistics is model based



Challenges from a big-data world

o However, Bayesian updating is also highly restrictive in the need to
assume a joint probability for everything observed, and moreover
assume that the model is true,

> f(x|6’) true likelihood for all measurements

= [, f(x]0)7(0)d6, true joint density (“the model”) for x

o In modern applications such a requirement can be highly restrictive
and cumbersome (M-open problem)

o Information maybe highly heterogeneous, high-dimensional and
non-stochastic
> news snippets, twitter feeds,
» x = {your genome, medical image, electronic health record}
> partial information under privacy constraints, p-values

it's difficult to think of joint models for x, yet x is highly relevant to
learning about 6

o Taken together, Bayesian inference can be challenging, even for
supposedly simple problems



Motivation: International Mouse Phenotyping Consortium

o The International Mouse Phenotyping Consortium
(http://www.mousephenotype.org/) is a 10 year study to
systematically characterise the functional consequences of each of
around 20,000 genes in the mouse genome

o Recording over 1500 measurements per mouse (leading to around 700
phenotypes), around 7 mice per knockout (x 2 sexes) and matched
controls

o IMPC will deliver complex multivariate measurements on around
560,000 mice x 690 dependent phenotypes across 8 Centres

» costing $100M'’s



Example Data

ESLIM_003_001_002 : Body mass after experiment

Centre 1

Centre 2

o Time points represents a (robust) mean of (transformed) measurement
on a litter, on a particular day, at a specific Centre
o Lines connect repeated measurements; Black dots are controls; Circles
are mutant lines
o Red dots are putative mutants that show systematic differences
» controlling for meta-data collected on technician, reagents, ...



Many of the phenotypes show high dependence

ESLIM_007_001_007 : Periphery resting time

ESLIM_007_001_003 : Whole arena resting time




....and there are many phenotypes (90 of 690) of
35,000,000 data points
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Bayesian analysis

o Formal Bayesian analysis approaches of such data structures are hard
to formulate

o Of course we could use approximate models, for example Variational
Bayes, but then what are we targeting?

o That is, what does 7w (0|z) actually represent if | know that x does not
arise from f(x]0)?



Our research

o We have been considering a more general framework for updating of
beliefs
7w(0) = m(0|x)

on a well defined 6 of interest given information x, without having to
assume a known component = ~ f(x)

o The update needs to be coherent (to be defined later), principled
(decision theoretic) and open to inspection

o The central idea is the replacement of f(z|0) with a general loss
function [(x, #) that is used to connect information in the data to the
value of 6 minimising the population expected loss

» and [(z,0) can accommodate partial information, non-stochastic
information, ...

o Importantly the procedure should coincide with Bayesian inference if
f(z) = [ f(z]|0)7(6)do is assumed known



Toy Example — not only big problems cause problems

o Consider that you want to infer the median patient survival time, 6,
for a particular population,

0= F;'(0.5)

where I is the unknown distribution of survival times
Suppose:

o You hold subjective prior beliefs on 8, expressible via 7(6)
o You don't know Fj

o You obtain independent observations of survival times
x={x1,...,2n}

It feels that an update of beliefs, w(0) — m(0|x), should be possible

Yet the Bayesian solution to this problem is highly non-trivial



Functionals of interest

o Instead we consider learning about the minimiser of some functional,
o) = [u6.0)dkw).
6y = arg eirelgL(O)

for some loss function (6, x) introduced to target 6y, where Fy(z) is
the unknown distribution function from which i.i.d. observations arise

o It may be easier to think of this as

n—oo
0y = arg min [ ; l(&xi)]
z; ~  fo(z)

for fo unknown, and 6 represents the optimal value of 6 under an
infinite sample size



Update

o If w(0) represents prior beliefs about this 6y, and x is observed from
Fy, then we will argue that a valid and coherent update of 7(-) is to
the posterior 7 (-|x), where

7(0)z) x exp{—I(0,x)} w(0).

o It is important to note that:

> 7(6]z) does not involve the unknown fy(x) and

> this update is not an approximation, but a valid representation of
beliefs about the value of 6y in more general circumstances when
f(z) is unknown (M-open problems)

o We have replaced the more ambitious task of learning about a “true”
parameter for f(x|n), with that of learning about a 6y



Model Sufficiency

o Underlying the justification is the notion of model sufficiency, namely
that 6 is sufficient for the analyst to make a decision and that if 6
was ever known then the data x contains no further information to the
decision process

o That is, given 8y then the inference task is solved and the optimal
action will be revealed U(a, 6), where U denotes a utility function on
action space a

o In this sense m(0|x) is sufficient for the decision task, and the
remaining information in x can be discarded

o For example, the use of a logistic regression classification model, is a
statement that knowledge of he MAP estimates under an infinite
sample reveals the optimal action



Constructing the update

[e]

[¢]

We have two independent pieces of information in {7 (6),z}

We consider a coherent scoring rule on the space of probability
measures, given {7(0),z}, and then show that the optimal distribution
with highest score, w(6|x), can be identified

As the data and the prior represent independent pieces of information
we will naturally assume additivity of loss

So we can score any distribution (model), 7/(6), on 6 using

S(r's{z,m}) = Lu(n',2)+ L.(7',7)

= loss to data + loss to prior

and we will then select the optimal model (distribution) 7" which
minimizes expected loss, over the space of all valid probability measures

7 = argmin S(7’; {z, 7})

This is optimisation of probability measures, rather than parameters.
This is the formal way to proceed (Key, Pericchi, Smith; B&S)



Scoring belief distributions

o The empirical loss to each datum, L, (7', x;), is given by

L 20) = [ 16,27/ (6)a

0
where [(6, x;) is the loss-function targeting 6,

o The loss to the prior, L, (7', ), will be some divergence score between
probability measures,

D(n',7) = /g(dﬂ//dw)dﬂ/

where g is a convex function measuring divergence from (0, 00) to the
real line and g(1) = 0. See Ali and Silvey (1966).

o From the convexity of the g-divergence we can equivalently write the
optimisation as

7 = argmin [L,(7',2)] s.t. D(z',7) <C



Equivalent constraint based optimisation

o From the convexity of the g-divergence we can equivalently write the
optimisation as

7 = argmin [L, (7', 2)] s.t. D(z',7) <C

39 ()

Figure: Graphical representation of solution 7 as the minimiser of L, (7', x)
subject to a constraint that D(n’,w) < C



Canonical forms for (6, x;)

o If we have a good proxy model for Fy, or if we know we're in
Me-closed, then the natural choice for [(0, x;) is the self-information
loss (negative log-likelihood),

10, 2:) = —log f(xi;0)

and for M-closed this is the “honest” loss function (proper local
scoring rule)

o though equally, say for survival analysis, a partial-likelihood provides a
valid update

1(9, Sﬂz) = - logg(mi; 9)

o or for inference on the median of a population

The key point is that I(-) is targeting 6, sufficient for Your decision



Loss to prior

o The g-divergence D(r’,7) = [ g(dn’/dm)dn’ provides a large class of
loss function; and some special cases include
> g(s) =1 — /s, the Hellinger divergence, which is equivalent to
the L1 metric;
» g(s) = s7! — 1 yields the chi-squared divergence

o For coherency it turns out D(#’, 7) must be the Kullback Leibler loss

between updated 7’ and the prior ; i.e. g(s) = —logs,
/ 9)
L.(n',7n)=KL(x', 7 :/ 7’ 9)log7r( do
( ) ; ( =0

for proof see Bissiri, Holmes & Walker

o By coherency we mean

7T(9) — 7~T(9|Ilﬂ) = 7T(9) — 77((0|171]) — 7~T(9|1‘1;j,117j+1m)



Updating

o We require 7 to minimize [Ly (7', z) + L. (7', 7)],

7 arg min [Ly (7', x) + L (', )]

= am { /@ ' (0)1(6, 2)d6 + /@ /W’log :((g))de}
= o | [ woon () o

o From which we see that the optimal measure 7 follows

7(0) o< arg min [KL(7',7(0) x exp[—1(6,x)])]



Best beliefs

o Hence under this decision theoretic construction we are led to use

expl—1(8, 2)](6)

7(0) = 1
O) = T expli(0, 2| (0)d0 S
as our best updated measure of beliefs for 6
o where [ exp[—I(8,x)]m(0)df is the prior predictive utility of the
model 7(6)
o We have not had to assume knowledge of f(x), i.e. M-closed, to get
here

o The solution coincides with other recent ideas on risk minimisation

» Gibbs posteriors — (Zhang, 2006)
» PAC-Bayes — (Langford, 2005)

although we arrive at (1) through an axiomatic principle of coherency



Points to Note

o If you really believe your model to be true then you're in M-closed
then we are led to use I(6,2;) = —log f(x;;0) and we recover Bayes
Theorem

o So one way to view Bayesian updating is by maximising the posterior
predictive log-likelihood

/ lz log f(:ci;e)] ' (9)d0
o1
Subject to a KL constraint,

KL('(0)z),7(0)) < C

o However, the update here has been obtained under much weaker
conditions — just loss functions and a KL loss on the prior

o In particular, we have treated the prior 7 as just another piece of
information; so 7 could be elicited after the data has arrived, or during,
or updated based on additional knowledge obtained



[[lustration

o We illustrate the General Bayesian updating for understanding the
contribution of genetic variation to risk of colon cancer involving
right-censored time-to-event data

o Collaborators at the Wellcome Trust Centre for Human Genetics,
University of Oxford, obtained survival times on 918 cancer patients
with germline genotype data at 100,000’s of markers genome-wide

o For demonstration purposes we only consider one chromosomal
previously identified as holding a potential association signal containing
15,608 genotype measurements



[[lustration

o The data table X then has n = 918 rows and p = 15,608 columns,
where (X);; € {0,1,2} denotes the genotype of the i'th individual at
the j'th marker.

o Alongside this we have the corresponding (n x 2) response table of
survival times Y with a column of event-times, 7;; € T and a column
of indicator variables y;2 € {0,1}, denoting whether the event is
observed or right-censored at ;1.



Full Bayesian Model

o For the full Bayesian model we require a joint model for the data and
parameters

o For example, a log-linear proportional hazards model

ply | 2.8) = holy HZ’”@) ~(B)mlho()

JER; exp(xjﬁ)

where ho(y) is the baseline hazard, assumed a nuisance parameter
(process), and 7[ho(+)] would usually be a NP measure

o If interest is in w(f|x, y) then this is obtained from the marginal

T (Ble.y) = /h (8, hol,y)dho

o But this is challenging as ho(y) is an infinite dimensional nuisance
parameter for the decision



Use of Bayesian partial loss

o Using our construction we can consider only the conditional order of
events as partial-information relevant to the decision, 3, via the
cumulative loss function,

exp (Z§:1 J/‘ijﬁj)
> ieR, XD <Z§:1 xuﬂj)

where R; denotes the risk set, those individuals not censored or at time
t;, and in this way obtain a conditional distribution 7(5|x)

, ()

1(B,x) = Zlog
i=1

o We assume, ; ~ N(0,v;) and set v; = 0.5 for our study, reflecting
beliefs that associated coefficients will be modest; although we note
that one advantage of our approach is that subjective prior information
can be integrated into the analysis.

> Note: this is substantive prior knowledge as we know that ||3;||'s
will be small



General Bayes factors

o To initially explore for evidence of effects; i.e. 3; # 0, we can calculate
the general Bayes Factor of association at the j th marker as,

s, exp [=1(B5];)] 7(8;)dB;
exp [—I(B; = 0|x;)]

o This involves a one-dimensional integral via importance sampling for
the prior expected loss in using 3; on the numerator

BF; =

Log Bayes Factor

0 5000 10000 15000

marker index

Figure: Log Bayes Factor vrs marker index along chromosome



Comparing BFs with p-values

o It is interesting to compare the evidence of association provided by the
Bayes Factor to that obtained using a conventional Cox PH analysis

10
|

log Bayes Factor
4
1

-log10(pval)
Figure: Log Bayes Factor vrs -logl10 p-value of association

o We see general agreement, although interestingly there appears to be
greater dispersion at markers of weaker association



Comparing BFs with p-values

o We colour the points by the standard error of the MLE

log Bayes Factor
-0.5 0.0 0.5

-1.0

-15

-log10(pval)
Figure: Log BF vrs -logl0 p-value coloured by standard error in MLE

o We can see a tendency for markers with less information, greater
standard error, to get attenuated towards a logBF of 0



Comparing BFs with p-values

log Bayes Factor

-log10(pval)

Figure: Log BF vrs -logl0 p-value coloured by standard error in MLE

o High standard errors relate to genotypes of rarer alleles and the
attenuation reflects a greater degree of uncertainty for association at
these markers that contain less information; whereas the p-value is
uniform under the null no matter what the power is in the alternative



Multivariate variable selection

o We can explore the uncertainty in the multiple regression model via the
cumulative loss function

n P pi B
15 =S log | —— (ZH: %)
i=1 Y ier, ©XP (Zj:l l‘ljﬁj)

o We assume proper priors, 7(3) on the regression coefficient,

f0 if 6, =0
m(8;) = { N(0,v;) otherwise,

where ¢; € {0, 1} is an indicator variable selection on covariate
relevance with, 7(6;) = Bin(a;)

o In this way the joint marginal posterior m(4|x) quantifies beliefs about
which variables are important to the regression



Prior-predictive Utility

o As we are using the partial-loss (likelihood) model we have

w(6le) = | [ exol=1(6.5.0)m(518)05] =(5)
where the first term is the marginal partial-loss or prior-predictive utility
o We can implement a MCMC algorithm for this General Bayesian model

(with efficient independence proposal densities) without specifying a
full probability model



Posterior probability of marker inclusion

1.0

Posterior prabability of inclusion
00 02 04 06 08

T T T I
9800 10000 10200 10400 10600

marker index

Figure: Posterior marginal inclusion probability from multiple marker model

o The model suggest overwhelming evidence for a single marker in the
region of index 10200 but also weaker evidence of independent signal
in a couple of other regions



Current work / Open Questions

[¢]

We have a constructive, decision theoretic, approach to coherent
Bayesian updating in the absence of a true model
> this is not an approximation but a valid representation of beliefs

This allows the modeller to concentrate on those aspects important to
the decision

The method has clear connections with penalised log-likelihood (c.f.
Lasso, splines etc) but here for penalised probability measures

> We are selecting 7(6) rather than 6
Interpretation of the normalising constant [ exp[—1(0, z)|x(0)df
which arises in model-choice 7w(M;) for models M € {M;, ..., M} as,
L(M;,x) = / exp[—1(0, x)]|mar, (0)dO
e

But in general [ exp[—I(0,z)]dz # 1

Do we obtain the same parsimony as for M-closed Bayes Factors?
Does it make sense to consider normalised relative loss and impose this
constraint?



