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A B S T R A C T   

This paper quantifies the impact of the COVID-19 disruption on U.S. meatpacking production. We employ a 
confidential plant-level meatpacking plant data set from USDA that gives daily livestock (cattle, swine, broilers) 
slaughter by individual firms and their individual plants. We found a larger underutilization rate of processing 
capacity for larger-sized beef and pork plants during the peak of plant slowdowns in April-May 2020, while no 
such relationship was found for broiler plants. In our panel analysis of beef packing plants, we found that higher 
COVID-19 infection rates in a county were associated with greater plant disruptions, but that plants appear to 
have been able to adjust relatively quickly to these disruptions. Our empirical analysis suggests a beef plant 
distribution with fewer large plants could have meant smaller shocks to production during the initial surge of 
COVID-19 disruptions. However, beef plant size was significantly less important to maximizing utilization of 
processing capacity after the initial surge.   

1. Introduction 

The U.S. food system experienced significant impacts due to the 
COVID pandemic. Within the food system, meat supply chains were 
among the most disrupted sectors. Starting in early March 2020, meat
packing plants and processors of poultry, pork, and beef were forced to 
scale back production or temporarily close as COVID-19 spread through 
the workforce (Balagtas and Cooper, 2021; Lusk et al., 2021; Martinez 
et al., 2021). According to a congressional report, between March 1, 
2020, and February 1, 2021, roughly 59,000 meat workers contracted 
the coronavirus, and deaths totaled at least 269 (Congress, 2021). Rural 
counties dependent on meatpacking experienced COVID-19 rates almost 
10 times higher than other rural counties not dependent on meatpacking 
(Krumel and Goodrich, 2022).1 

The resulting illness, or fear of illness, contributed to absenteeism 
among plant workers. Moreover, some plants were forced to temporarily 

close to prevent spread of the pandemic virus. Plants remaining open 
slowed production lines in order to comply with public health guidelines 
for reducing COVID-19 spread (e.g., social distancing). As plants were 
idled or forced to limit operations, daily capacity at U.S. cattle and hog 
facilities declined by as much as 45 percent in May 2020 relative to May 
2019 (Cowley, 2020). Slaughter rates rebounded by June 2020 (Vai
knoras et al., 2022). For example, by mid-June, capacity utilization in 
pork processing plants rebounded to near 95 percent, and increases in 
consumer price dissipated (Haley, 2020). 

Partial plant closures and increased social distancing protocols were 
implemented at meatpacking plants across the country starting in late 
April 2020 through early June. These preventative measures appear to 
have had some effect on infection rates, as late May/early June saw the 
beginning of a sharp reduction in the number of new cases per 100,000 
for these meatpacking-dependent counties relative to manufacturing 
dependent counties. At its peak the ratio of the two-week moving 

☆ The findings and conclusions in this paper are those of the authors and should not be construed to represent any official USDA or U.S. Government determination or policy. 
* Corresponding author at: U.S. Department of Agriculture, 1400 Independence Ave, S.W., Washington, DC 20250, USA. 

E-mail addresses: joseph.cooper@USDA.gov (J. Cooper), vince.breneman@usda.gov (V. Breneman), mameilin@purdue.edu (M. Ma), jlusk@purdue.edu 
(J.L. Lusk), josh.maples@msstate.edu (J.G. Maples), shawn.arita@usda.gov (S. Arita).   

1 Using topographic regression methods, Saitone et al. (2021) also find that counties with large meat packing plants experienced significantly higher levels of 
infections—110% per capita infection rates for beef and 160% for pork relative to similar counties without meatpacking plants. 
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average of new daily cases per 100,000 population between rural 
meatpacking and manufacturing dependent counties was over 12, but 
fell to 1 by late July 2020 (Krumel and Goodrich, 2022).2 

This paper econometrically assesses the impact of the COVID-19 
disruption on U.S. meatpacking production based on unique plant- 
level data. There has been much attention in the popular press and ac
ademic study to the role of COVID-19 on meat packing plants. Previous 
studies have provided descriptive evidence showing the impacts of the 
disruption (Balagtas and Cooper, 2021). Other studies have economet
rically examined the relationship (Saitone et al., 2021; Bina et al., 2022). 
However, these have had to employ county-level data on COVID-19 
infection rates and packing plant locations. Instead, we employ a 
confidential plant-level meatpacking plant data set from USDA that 
gives daily livestock (cattle, swine, broilers) slaughter by individual 
firms and their individual plants. While regionally aggregated produc
tion and capacity data are publicly available from USDA, our plant-level 
data allow for a more detailed analysis with less aggregation bias. 

We estimate the impact of COVID-19 on daily slaughter and plant 
utilization metrics via a rigorous panel estimation strategy, controlling 
for a set of relevant market factors and shocks. Specifically, we explore 
the relationship between slaughter with COVID-19 infection metrics (e. 
g., cases, hospitalization, deaths) across counties and times, so that we 
may exploit spatial and time variation. We employ several dependent 
variables that measure the degree (e.g., percent loss) of the plant’s loss 
in slaughter quantity relative to its capacity. The following empirical 
questions are addressed:  

1. What has been the quantified impact of COVID-19 on meatpacking 
production and plant utilization?  

2. How did the COVID-19 effect evolve across time?  
3. Have some types of firms or plants (e.g., small sized) performed 

better than other types?  
4. What is the quantitative relationship between beef plant size and 

resilience towards COVID-19 disruptions? 

We contribute innovative research and new insights on impacts of 
COVID-19 disruptions using previously unexplored confidential micro- 
level data. To our knowledge, this paper is the first to examine plant- 
level impacts of the COVID-19 disruptions on cattle production and 
utilization. Our findings inform policy makers interested in promoting 
policies using federal and state investments in expanding small and mid- 
sized packing capacity by providing analysis of resiliency impacts 
associated with plant size. 

2. Background 

Figs. 1 through 3 summarize yearly streams of national-level data on 
federally-inspected processing for cattle, hogs, and broilers over 
2018–2022. Most of the dips and peaks are cyclical in nature. The peaks 
usually appear before the Labor Day, 4th of July, Christmas, and New 
Year’s Day holidays due to demand increases, and the dips come on the 
holidays themselves as most plants take holidays off. However, the cattle 
and hog charts show major dips in April/May/June 2020 relative to the 
other years which are indicative of COVID-related plant slow-downs and 
shutdowns (see Figs. 1 and 2). Cattle and hog packing largely rebounded 
to typical patterns circa July 2020, and hog production tended to be 
above 2019 levels the rest of the year. 

On April 28, 2020, the President issued an executive order invoking 
the Defense Production Act to keep meat-packing plants open (United 

States Department of Agriculture, 2020). The executive order exempted 
plants from state and local orders to close nonessential businesses, but 
did not solve plants’ problems with sick workers. COVID-19 outbreaks 
among the workforce continued to force plants to close and slow down 
even after the Executive Order. However, the bulk of the COVID-related 
slowdowns and shutdowns were relatively short-lived. Processing re
covery that took place later in early summer through September may 
have been facilitated by plants aggressively implementing many safety 
protocols to prevent the spread of COVID-19, such as requiring face 
coverings, educating workers on community spread, staggering shifts, 
testing workers, and installing physical barriers between workers 
(Waltenburg et al., 2020; NAMI, 2021). 

Herstein et al. (2021) found that 8 of the 13 packing plants they 
studied had a statistically significant reduction in COVID-19 incidence 
within 10 days of initiating universal mask policies and installing 
physical barriers. Rapid protocols such as these may account for why 
COVID cases among packer employees started a downward trend May to 
August 2020 while cases in the general population trended up over that 
period (NAMI, 2020). Krumel and Goodrich (2022) found that the dif
ference in COVID infection rates between meat packing dependent rural 
counties and nonmeat packing counties evaporated by mid-2020 and 
suggest from collating evidence that increased precautions to protect 
workers explains why the differences disappeared. 

Broiler processing in 2020 did not display any strong negative shocks 
compared to the same months in previous years (see Fig. 3). According 
to Lusk et al. (2020), the reasons that broiler slaughter did not suffer the 
same declines in the first half of 2020 relative to cattle and hog slaughter 
may be attributed to higher automation, lower worker density, and the 
geographic location of plants. The dip in broiler production in February 
2021 on account of freezing weather at the time appears to have been a 
bigger shock than any dips in 2020. 

3. Data 

Bina et al. (2022) examined the performance of the beef processing 
industry during the early stages of the COVID-19 pandemic, using 
aggregate data. The authors find limited statistical evidence for 
pandemic-induced production reductions being different for varying 
levels of regional reliance on larger processing facilities for most of 
2020, and suggests ‘caution’ in the plant size to resilience relationship. 
While the study represents an important initial empirical treatment of 
pandemic-induced production reductions, validation of such results re
quires the use of the plant-level data to avoid aggregation bias and more 
explicit quantification of the role of plant size. 

We use daily plant-level data covering April 6, 2020 through January 
18, 2022, which were supplied by packers to the USDA’s Agricultural 
Marketing Service (AMS).3 This confidential database contains daily 
production and daily “normal” production for each weekday, and plant 
capacity. Capacity is the maximum ability of the plant to produce on any 
given day given its physical construction and design, and is hence a 
physical/engineering measure. Plants provide AMS with new capacity 
values when they do an alteration to the plant that changes its capacity. 
The data cover 33, 41, and 111 cattle, hog, and broiler packing plants 
and represent 74%, 91%, and 72% of all U.S. federally inspected 
slaughters, respectively in 2021. The excluded plants are smaller ones 
not required to report to AMS. Indeed, the estimated shares of total U.S. 
production by plants covered by our dataset might be underestimated as 

2 Krumel and Goodrich (2022) define a county as dependent on a single in
dustry if said industry employs 20 percent or more of the county’s total 
workforce. The comparison cited in the text compares rural counties with 
employment rates of 20% or more in meatpacking to rural counties with 
employment rates of 20% or more in other single manufacturing industries. 

3 This daily data on reports complied from the plants does not exist before 
April 6, 2020 as until that date, USDA-AMS discarded this data on a moving 
basis after examination. As plants got largely back to normal in 2021, 2021 and 
early 2022 data serve as the state of normal operation data to compare to the 
height of COVID impacts in 2020. 
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they do not include weekend slaughter, which large-sized plants tend to 
conduct when facing demand peaks or supply shortages.4 

4. Econometric analysis 

In this section, we use the unique plant-level dataset to examine 
COVID impacts on plant operation. We first define the key variables and 
particularly study the correlation between plant capacity and the 
average underutilization rate of a plant for each commodity to drive 
home some basic intuitions. Next, we formally set up the econometric 
specifications and report the econometric outcomes. Some sensitivity 
tests are conducted to confirm the baseline findings. 

4.1. Plant underutilization rates – aggregated over time 

Our goal is to identify factors that determine the degree and intensity 
of COVID impacts on plant operation. We define the key dependent 
variable, plant i’s underutilization as (current productioni − capacityi)/ 
capacityi, where production and capacity are in terms of head slaugh
tered, and where plant capacity is an engineering/physical measure of 
packing ability per day. Hence, the more negative the value is, the 
greater the underutilization of the plant. The dataset has this informa
tion necessary to do this calculation on a daily basis for each packing 
plant on weekdays. From April 6, 2020 through January 18, 2022, for 
cattle, hogs, and broilers, the mean of plant-level average underutilization 
capacity was − 0.091 (standard deviation 0.056), − 0.063 (standard de
viation 0.068), and − 0.029 (standard deviation 0.053), respectively. 

We are particularly interested to test whether plants of different sizes 
experienced different rates of underutilization under COVID, because 
the size of plants is often discussed in policies and research aimed at 
boosting the resilience of meatpacking industry (e.g., Ma and Lusk, 
2021). We hence use the daily capacity of each plant as the key 
explanatory variable in the regression. For cattle, hogs, and broilers, the 
mean of capacity is 3,106 (standard deviation 1,704), 11,602 (standard 
deviation 7,779), and 244,473 head (standard deviation 90,805), 
respectively. 

Each livestock commodity has two regressions, one for the averages 
across the entire period, and one during the major shock period (for 
cattle and hogs) over April-May 2020, the approximate period for high 
levels of plant shutdowns or slowdowns related to COVID-19 infections. 
Over this period, mean plant-level average underutilization capacity was 
− 0.224 (standard deviation 0.145), − 0.206 (standard deviation 0.155), 
and − 0.042 (standard deviation 0.069) for cattle, hog, and broiler 
plants, respectively. Comparison of these value for those above for April 
2020-January 2022 show that mean plant-level average underutilization 
capacity for cattle, hogs, and poultry was significantly more negative (i. 
e., greater production shocks) during April-May 2020, but with the least 
impact for broilers. In particular, the ratios of the April 2020-May 2020 
shocks to the April 2020-January 2022 average shocks was 2.5, 2.3, and 
1.4 for cattle, hogs, and broilers, respectively. 

The complete shut-down (i.e., no production) rates are broadly 
consistent with the underutilization rates. The shut-down rate − in
stances of complete daily shutdowns divided by total plant days − for 
cattle, hog, and broiler packing plants over April 2020-May 2020 (April 
2020-January 2022) was 6.1% (1.6%), 8.1% (1.5%), and 2.1% (1.1%), 
respectively. Hence, the largest difference was for hogs and the smallest 
for broilers. 

Beyond plant size distributions, the available data does not provide 
much in the way to support speculation over why broiler plant utiliza
tion was apparently less impacted by COVID than for swine and cattle. In 
addition to the reasons noted above in Lusk et al. (2020), another pos
sibility could be that perhaps a significant number of broiler plants 
continued to operate in April-May 2020 despite COVID transmission 
among employees on the floor; broiler packing plants have even less 
leeway to delay processing before the animals get too large than do hog 
or beef packers. 

Fig. 1. Federally inspected cattle slaughter (weekly) Sources for Figs. 1 to 3: Quickstats, National Agricultural Statistics Service, USDA.  

4 Saturday slaughter can be considered as a catch-up day, including to make 
up for holiday shortened weeks. Plants are usually not slaughtering on Sundays. 
On average, Saturday slaughter is lower than on a weekday – around 8 percent 
of weekly slaughter over 2015–2019 – as can be seen in the data in Maples 
(2021). The rule of thumb in the Agricultural Marketing Service is 5.4 days of 
beef packing per week, with the 0.4 being Saturday, a result not far off from 
that drawn from the Maples paper. We assume that plants that had slow-downs 
or shutdowns on Monday-Friday on account of COVID would also have done so 
on the adjacent Saturday. Hence, we do not expect a major impact of the 
omission of the Saturday shift on our results. 
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Regression analysis to explain the plant underutilization should 
explicitly account for the dependent variable being defined over 0 ≤ yi 
≤ 1 in order to keep predictions within that space.5 We use the fractional 
logit approach (Papke and Wooldridge, 1996, 2008) to achieve this. Let 
the population model Φ

(
x′

iβ
)
= E

(
yi|xi

)
be a monotonic transformation 

that is bounded in the range 0 to 1. The transformation can conceivably 
be any number of models, but we assume Φ( • ) to be the logistic dis
tribution per Papke and Woodridge (ibid.). The log likelihood function is 
lnl(β) =

∑N
i=1[yilnΦ

(
x′

iβ
)
−
(
1 − yi

)
ln(1 − Φ

(
x′

iβ
))
], which is similar to the 

logit or probit regression model but with yi falling in the range 0 ≤ yi ≤ 1 
rather than being a dichotomous indicator variable [0,1]. The fractional 
logit model can be estimated via common statistical software, such as in 
STATA® with the Generalized Linear Model (GLM) approach with 

Fig. 2. Federally inspected hog slaughter (weekly).  

Fig. 3. Federally inspected broiler slaughter (monthly).  

5 Note that the boundaries [0,1] on underutilization represent corner solutions 
and not censoring or truncation. 

J. Cooper et al.                                                                                                                                                                                                                                  



Food Policy 119 (2023) 102522

5

logistic link function. To allow for an interpretation of the coefficients 
that are comparable those of a standard linear model, it is convenient to 
interpret the regression results for continuous variables as derivatives 
with respect to xi, or ∂E

(
yi|xi

)/
∂xi = βϕ

(
x′

iβ
)
, where the scale factor 

ϕ( • ) is the logistic probability density function in this case. 
Table 1 presents the fractional logistic and ordinary least square 

regressions of plant’s average underutilization rate as a function of the 
plant’s capacity over a given period.6 The number of observations is the 
number of plants that report data to AMS, and each observation was 
generated by taking the average for that plant’s reports over either the 
454 weekdays from April 6, 2020 through January 18, 2022, or over the 
number of weekdays covered by the major shock period. Results for the 
OLS regressions are similar to those of the fractional logistic. 

Considering the full time span of data, the average plant capacity 
does not have a statistically significant impact on the plant’s average 
underutilization rate. However, for both hogs and cattle during the 
major shock period, the underutilization rate tends to be larger for larger 
sized plants.7 This relationship is statistically significant and similar for 
both cattle and hogs during the peak of COVID slow-downs and shut- 
downs in April-May 2020. In contrast, for broilers, the relationship be
tween the average underutilization rate and average plant capacity was 
statistically insignificant even during the major shock period for COVID. 

Figs. 4 to 7 show the relationship between the capacity underutili
zation rate and plant capacity graphically, where each dot represents a 
plant. Fig. 4 (cattle and hogs) and 6 (broilers) cover the whole of April 6, 
2020 through January 18, 2022. For hogs, the average underutilization 
rate is increasing (in the absolute value sense) as plant size increases, 
and the reverse for cattle, but as Table 1 shows, the slopes of the fitted 
lines are not significantly different from zero. The average underutili
zation rate for broilers is invariant to plant size. 

Fig. 5 shows that during the peak of the COVID shock, the average 
underutilization rate for hog and cattle plants was increasing (in the 
absolute value sense) as plant size increases, and the relationship is 
markedly stronger (and statistically significant per Table 2) than over 

the full time span of the data. Put differently, production of larger plants 
tended to be relatively more negatively impacted as plant size increased 
during the peak of COVID spread. Comparison of Figs. 5 and 7 shows 
than for broilers, the capacity underutilization rate was invariant to 
average plant capacity both over the full time span of the data and also 
during April-May 2020, echoing the regression results in Table 1. 

4.2. Plant underutilization rates under extreme shocks – pooled time 
series-cross section regression analysis 

The preliminary examination in the previous sub-section utilized 
data consisting of the average of utilization rate of each plant across 
time. However, this approach potentially suffers from temporal aggre
gation bias and does not facilitate adding useful control variables. We 
hence turn to inter-temporal analysis of the individual plants over April 
6, 2020 through January 18, 2022, focusing on cattle plants for the sake 
of brevity. 

In addition to plant underutilizationit, we examine underperformanceit 
for plant i and day t, which is (current productionit − normal productionit)/ 
normal productionit, where normal production for this plant is what the 
plant reports to AMS as being “normal”. This variable is also available 
for each plant on a daily weekday basis. The underperformance variable is 
perhaps a less precise variable than underutilization as a plant is not 
required to follow a strict statistical protocol in the definition of normal 
production. 

Table 2 provides the descriptive statistics for the variables used in the 
econometric analysis as well as variables used to construct the regres
sion variables. In addition to daily plant capacity, among the variables 
we include are daily dummies to control for time-invariant daily effects, 
such as Monday’s being off to a slower start production wise, as well as a 
holiday dummy in the case that holidays affect production. Company (e. 
g., Tyson), monthly, and year fixed effects are also included. The prin
ciple for the company fixed effects is that plants under the same 
ownership may exhibit a similar response to shocks and market in
dicators in general. The S&P500 index is included to capture some 
common demand variation. COVID-19 impacts are modelled via CovRtp, 
the county-level seven day moving average of COVID-19 cases for the 
county in which the plant resides. 

We perform two sets of regressions: Table 3 with underutilization 
(uuit) as the dependent variable and Table 5 with underperformance as 

Table 1 
Plant-level average underutilization rate as a function of the plant’s capacity over the time period.   

Cattle Hogs Broilers  

April 2020-Jan 2022 April-May, 2020a April 2020-Jan 2022 April-May, 2020a April 2020-Jan 2022 April-May, 2020a 

OLS (dep var = average underutilization) 
Intercept − 0.111*** − 0.082* − 0.054*** − 0.087** − 0.028* − 0.019  

(0.020) (0.046) (0.020) (0.040) (0.0146) (0.019) 
Average Plant Capacity 0.642 − 4.686*** − 0.337 − 4.775*** − 0.126 − 2.54 

(0.589) (1.32) (0.679) (1.337) (1.516) (1.687)) 
Adj. R2 0.005 0.266 − 0.020 0.232 − 0.009 0.006  

Fractional logit (dep var = − average underutilization) 
Intercept − 2.060*** − 2.065*** − 2.841*** − 1.974*** − 3.524*** − 0.0282***  

(0.292) (0.306) (0.337) (0.201) (0.226) (0.009) 
Average Plant Capacity − 8.189 25.643*** 5.412 24.042*** 3.076 − 0.126 

(6.702) (7.430) (7.627) (6.273) (23.908) (1.017) 
Deriv. Average Plant Capacityb 0.677 − 4.318*** − 0.318 − 3.870*** − 0.0878 − 1.851 

(0.604) (1.141) (0.424) (1.061) (0.688) (1.087) 
McFadden Pseudo R2 0.013 0.244 0.002 0.215 0.000 0.005  

Obs. 33 33 40 40 111 111 

Note: The plant’s capacity for these regressions was measured as a share of total sector capacity. aThe number of observations is the number of plants that report data to 
AMS, and each observation was generated by taking the average for that plant’s reports over the time span in question. bThe coefficient is shown as the derivative of the 
function to allow comparison to the OLS coefficient. The sign of dependent variable is reversed from the actual estimated value to facilitate comparison to the OLS 
estimate given that the fractional logit estimation assumes 0 ≤ y ≤ 1. The delta method was used to obtain the standard error of the derivative. Standard errors are in 
parenthesis. ***p < 0.01, **p < 0.05, *p < 0.1. 

6 Note that none of the plants in the dataset reported their daily capacity 
changing over the time span of the data.  

7 The result for hogs is consistent with that of Padilla et al. (2023), which 
examined impacts of COVID on hog plants. 
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the dependent variable. As in the previous section, we use the fractional 
logit estimation approach, but with the data disaggregated across days, 
over a logistic function Φ(uuicst) where uuicst is expressed as: 

uuicst = a+ βpci + γCovRtpit + δSPXindext +Tt + Ss × Mt +Cc + eit (1)  

where Tt is a vector of time fixed effects (weekday dummies to capture 
within week effects, and 12 month dummies to capture seasonality ef
fects), Ss × Mt is a vector that interacts state fixed effects with dummy 
variables for each of the 22 months in the sample to allow the evolution 
of state effects over time, and Cc a vector of company effects (dummies 
reflecting multiple plants being under the same company ownership). 
Subscript i = 1,…,I plants (33 cattle plants), and subscript t indicates 
weekdays from April 6, 2020 through January 18, 2022. As plant ca
pacity did not change for any plant over the timespan of the analysis – 
note that it is an engineering/physical measure of packing ability per 
day, pcit effectively reduces to pct. The S&P index is added as a control 
for economic activity at the macro level – we expect a positive sign on its 
coefficient, i.e., an increase in the S&P index is a proxy for demand, and 
perhaps even supply factors, that lessen the probability of production 
shocks. The error term is denoted eit. 

For CovRtpit, the subscript i denotes the county that plant i resides in. 
The only panel variable in the regression is CovRtpit. For estimation of 
the coefficient on this variable over panel data to be unbiased and 
consistent in the fractional logit we include the time averages of CovRtpit 
and cluster the standard errors using the plant identifiers per Papke and 
Woolridge (2008), with this model being implemented in Stata®. We 
add a simple linear model with robust standard errors for comparison. 
Tables 3 and 4 show both ordinary least squares and fractional logistic 
outcomes. For Table 3 we also add a specification with quadratic effects 
for the continuous variables. For the fractional logit regressions, the 

results for the continuous variables are shown as derivatives as 
described in the previous section, while the results for the discrete 
variables are shown as discrete changes Φ

(
x(1)β

)
− Φ

(
x(0)β

)
, where x(1) 

and x(0) are different values of the variables (e.g., Papke and Woodridge, 
2008). 

The OLS and fractional logit coefficient results in Table 3 are 
generally in the same ballpark in spite of the differences between the 
two approaches. The coefficient(s) on plant capacity is negative and 
significant, meaning that the larger the plant, the greater the underuti
lization rate.8 The effect is less than unitary elasticity, however. Like
wise, the coefficient on CovRtp is negative and significant in all the 
models, meaning the higher the COVID infection rate the county, the 
greater the underutilization, or plant disruption.9 The coefficient on 
DefensePA (dummy variable equaling 1 for April 28, 2020 and after, 
covering the period after the Defense Production Act was invoked) is 
insignificant. The positive coefficient on the S&P indicates smaller 
production shocks as the index increases, as expected. For the fractional 
logistic regression there is a mild benefit of adding the quadratic terms: 
based on likelihood ratio tests, the hypothesis of no quadratic effects is 
rejected at the 2.5% level of significance. For the OLS model however, 
the hypothesis of no quadratic effects is rejected at the one percent 
significance level. 

Results in Fig. 1 and Table 1 suggest the possibility of a structural 
break in the plants’ response to COVID-19 occurring in late Spring to 
early Summer 2020. We examine the break point by using an 

Fig. 4. Hog and cattle plant average underutilization rate relative to production capacity (April 2020 to January 2022) Note: For charting of the individual plant 
values in Figs. 4–7, but not for the fitted lines, normally distributed noise with mean zero has been added in generating the X-axis values in order to obscure 
confidential data. Also, to ensure confidentiality, markers for several plants have been omitted from each chart, but all the data were included in the regressions for 
the fitted lines. 

8 For the fractional logit, the net derivative over the base plant capacity and 
the squared value is − 0.033 evaluated at the variable means.  

9 For the fractional logit, the net derivative over the base COVID value and 
the squared value is − 0.591 evaluated at the variable means. 
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econometrically-based structural break test. But first, we examine the 
breaks visually to make sure the results of the structural break tests are 
in the ballpark of reasonable values. A visual examination is facilitated 
by the production shock variable being mean reverting – looking at each 
individual plant, it is clear that plants make efforts to return the under- 

utilization rate to their desired optimal utilization rate, which tends to 
be around 5% under-utilization (i.e., plants will seek to operate at 95% 
of their physical production capacity). Fig. 8 presents the under- 
utilization rate across all plants in the analysis. The figure clearly 
shows that the major COVID slow-down and shut-downs occur in the 

Fig. 5. Hog and cattle plant average underutilization rate relative to production capacity (April to May 2020) Note: Same as Fig. 4.  

Fig. 6. Broiler plant average underutilization rate relative to production capacity (April 2020 to January 2022) Note: Same as Fig. 4.  
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April-June 2020 period with the structural break occurring around mid- 
June to mid-July. The spikes after that are for less plants and of shorter 
duration (Note that some of the 1 and 2 day spikes after mid-July 2020 
will reflect floating holidays, but we cannot distinguish those from 
COVID shutdowns). 

Next, we turn to using an econometric approach to determining the 
structural break. To do this for panel data, we use the xtbreak procedure 
(Ditzen, Karavias, and Westerlund, 2021) in STATA®, which allows the 
dynamic programming approach to finding structural breaks to mini
mize the sum of squared residuals from Bai and Perron (2003) to be 
applied to panel data. Applying this approach, we find the structural 
break occuring on 7/10/2020 (p-value significant at better than the 1% 
level of significance). This estimated break seems reasonable given that 
visual inspection of the data in Fig. 8 suggests a break somewhere be
tween the end of May and early July 2020, with greatest amount of 
production shock occuring in April and May 2020. 

Table 4 shows results for fully nested versions of regression (1) in 
Table 3, using the subsample of April 6 – July 10, 2020, post July 
10–2020 and the whole time span. Comparison of the April 6 – July 10, 
2020, post July 10–2020 shows that the impact of plant capacity on 
underutilization was three times higher and the impact of the county 
COVID infection rate on underutilization becomes insignificant after July 
10, 2020. Most likely, changes in production practices at the plants 
lowered the impact of plant capacity and COVID on production shocks 
after the initial shock period. 

The dependent variable in Table 5 is underperformance, which is an 
alternatives plant underutilization. The outcomes generally align with 
Table 3. However, the coefficient on plant capacity in the fractional logit 
regression in Table 5 is not significant, although the coefficient value is 
similar to that for OLS. This result suggests that plants’ assessments of 
changes to the “normal production” variable reported by the plants and 
used to construct underperformance was not affected by plant size. 

Fig. 7. Broiler plant average underutilization rate relative to production capacity (April 2020 to May 2020) Note: Same as Fig. 4.  

Table 2 
Descriptive statistics of key variables, cattle model.  

Variable Description No. Obs. Mean SD 

Plant capacity Plant’s long term capacity (daily head) as reported by the plant 15,014 3,106 1,704 
Normal production “Normal production” expected for the day as reported by the plant (head) 15,014 2,963 1,673 
Current production The day’s total production (head) as reported by the plant 15,014 2,842 1,681 
Underutilization (current production − capacity)/capacity; daily measure 15,014 − 0.091 0.152 
Underperformance (Current production − normal production)/normal production; daily measure 15,014 − 0.038 0.152 
SPX_index Log of S&P500 index 15,014 8.250 0.153 
PostJune2020 Dummy to differentiate the period after the heaviest plant shutdowns and slowdowns. 14,981 0.868 0.339 
CovRtp County-level seven day moving average of COVID-19 cases (source: Center for Disease Control) 14,981 33.698 43.770 
Plant age Age of plant (years) 14,981 29.576 6.111  

Note: Other variables include fixed effects for state, month, and company in the regression tables), dummy variables for holiday periods, and a dummy variable 
indicating the invoking of the Defense Production Act (denoted as DefensePA). 
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Table 3 
Regressions using Underutilization of cattle plants as the dependent variable.   

Base Quadratic terms  

Linear Fract. Logita Linear Fract. Logita 

Plant capacity − 0.021*** (0.002) − 0.029*** (0.002) − 0.042*** (0.012) − 0.065*** (0.009) 
Plant capacity Sq.    0.003* (0.002) 0.005*** (0.002)  
Year2021 0.016 (0.012) 0.009 (0.007) 0.015 (0.012) 0.003 (0.005) 
SPX index 0.021 (0.043) 0.078 (0.061) 0.028 (0.043) 0.032 (0.022) 
PostJune2020 0.078*** (0.020) 0.063* (0.037) 0.075*** (0.020) 0.059 (0.039) 
CovRtp − 0.648*** (0.068) − 0.406*** (0.071) − 0.919*** (0.100) − 0.652*** (0.102) 
CovRtp Sq.     0.935** (0.374) 0.780*** (0.222) 
CovRtp time averageb   − 0.656 (0.975)   − 1.626*** (0.504) 
Plant age − 0.005*** (0.001) − 0.005*** (0.000) − 0.005*** (0.001) − 0.003*** (0.001) 
Easter week 0.046*** (0.013) 0.028*** (0.007) 0.044*** (0.013) 0.025*** (0.007) 
July 4 week 0.008* (0.004) 0.015 (0.010) 0.008* (0.004) 0.014 (0.010) 
Thanksgiving w. 0.009* (0.005) 0.010 (0.009) 0.009* (0.005) 0.012 (0.009) 
Xmas week − 0.003 (0.003) 0.002 (0.005) − 0.004 (0.003) 0.000 (0.004) 
DefensePA − 0.006 (0.036) − 0.006 (0.012) − 0.004 (0.036) − 0.002 (0.012) 
Constant − 0.213 (0.370)   − 0.234 (0.370)    

Week day dummies Yes  Yes  Yes  Yes  
Month dummiesc Yes  Yes  Yes  Yes  
Month by state dummiesd Yes  Yes  Yes  Yes  
Company dummies Yes  Yes  Yes  Yes   

Scale factor   0.075    0.075   

Adj. R2. 0.314    0.315     

McFadden Pseudo R2  0.151    0.151  
LnL 9,968.7  − 3,140.7  9,978.6  − 3,138.1  
Obs. 14,981  14,981  14,981  14,981  

Note: To reduce leading zeros after the decimals, in these and subsequent regressions, Plant_capacity was divided by 1,000 and CovRtp, PCapPreJune_COVIDRtp, and the 
COVIDRtp variable by 10,000. 
aFor the fractional logit regressions, the coefficients on continuous variables are shown as the derivative of the function and as differences in the logistic PDFs for two 
different values for the discrete variables so as to allow comparison to the linear coefficient. The delta method was used to obtain the standard error of these co
efficients. Their sign is reversed from the actual estimated value to facilitate comparison to the linear estimate given that the fractional logistic estimation assumes 0 ≤
y ≤ 1, and thus required the dependent variable to be − underutilization. 

b This coefficient is for the average across time for each plant i of CovRtpit and is used as part of the fixed effects estimation (Papke and Wooldridge, 2008). Standard 
errors are in parenthesis. cPlant age could not be included for reasons of collinearity in the OLS model with quadratic terms. 

c These are dummies for each of the 12 months to capture seasonality at the monthly level. 
d These are dummies for each state in the sample multiplied by dummies for each of the 22 months in the study, thus allowing state effects to vary over time. ***p <

0.01, **p < 0.05, *p < 0.1. 

Table 4 
Nested fractional logit regressions using Underutilization of cattle plants as the dependent variable.   

April 6–July 10 2020 Post July 10, 2020 Whole time span 

Plant capacity − 0.060*** (0.013) − 0.020*** (0.003) − 0.021** (0.009) 
SPX index 0.635** (0.262) − 0.028* (0.017) 0.149*** (0.050) 
CovRTP − 1.577*** (0.157) 0.035 (0.050) − 0.429*** (0.075) 
CovRtp time averagea 5.215** (2.393) − 0.995 (1.176) − 3.025 (3.144) 
Plant age − 0.006*** (0.001) − 0.003*** (0.000) − 0.002* (0.001) 
Dummy variables Yes  Yes  Yes   

Scale Factor 0.112  0.067  0.075   

McFadden Pseudo R2 0.245  0.111  0.144  
LnL. − 621.9  − 2,482.6  − 3,166.1  
Obs. 2,243  12,771  15,014  

Note: the coefficients on continuous variables are shown as the derivative of the function and as differences in the logistic PDFs for two different values for the discrete 
variables. The delta method was used to obtain the standard error of these coefficients. Their sign is reversed from the actual estimated value in keeping with the 
previous tables. aThis coefficient is for the average across time for each plant i of CovRTPt and is used as part of the fixed effects estimation using the approach in Papke 
and Wooldridge (2008). Dummy variables include weekday, state, and company fixed effects (time dummies excluded for consistency across the regressions). ***p <
0.01, **p < 0.05, *p < 0.1. 
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4.3. Plant size and county COVIID-19 infections – pooled time series- 
cross section regression analysis 

Saitone et al. (2021) found that the presence of a large beef plant 
increased COVID-19 infection rates by 110% relative to comparable 
counties without meatpacking plants. Here we examine the continuous 
relationship between plant size and COVID-19 infections, conditional on 
the presence of a plant in the county. 

We aim to test whether the larger the plant capacity, and hence the 
larger the number of employees, the larger the potential COVID trans
mission. As with Table 4, in Table 6 we split the sample into April 6 – 
July 10, 2020 and post-July 10, 2020 periods. State, month, and com
pany fixed effects are added as control variables, along with plant age. 
Note that plant capacity for all plants was unchanged over the span of the 
data, allowing little prospect for an endogenous relationship between it 
and CovRtp; plant capacity is pre-determined, having been set by some 
fixed investment made long before COVID. Also, that the estimation has 
fixed effects and is run at the daily level, which should alleviate much of 
the endogeneity issues. 

The results show that the coefficient on plant capacity was positive 
and statistically significant on CovRtp in April 6 – July 10, 2020, and 
negative statistically significant afterwards. Pandemic protocols intro
duced by plants after the initial COVID wave seem to have significantly 
reduced the impact of plant size on community transmission, and even 
slightly reversed the impact. The elasticity of the {CovRtp, plant capacity} 
relationship was 1.21 over April 6 – July 10, 2020 and − 0.096 after
wards. The decrease in county-level COVID infections as plant size in
creases after July 10, 2020 could be due to a combination of factors, 
including adoption of more stringent COVID-19 protocols by larger 
plants than smaller ones after July 10 and the initial infection surge prior 
to this date providing higher levels of resistance in the county later on. 
Plant age was not a factor in county level COVID-19 transmission rates 
during the initial surge but after July 10, 2020 was actually decreasing 
in plant age, albeit with an elasticity of − 3.787. Perhaps older plants 
have more experienced management in dealing with labor issues. The R- 
squared for the April 6 – July 10, 2020 regression is 0.33 and increases to 
0.66 afterwards. 

While endogeneity cannot exist between COVID infection and plant 
capacity, at least over the span of this study, there could in principle be 
endogeneity between production and the COVID infection rate variable, 
but this is likely a complicated relationship. For instance, zero produc
tion suggests a shutdown, which might be expected to lead to a decrease 
in COVID rates in the community as long as transmissibility from 
workers staying at home to family members and then to others is less 
than the spread when transmission occurs at work. 

Table 5 
Regressions using underperformance of cattle plants as the dependent variable.   

Linear Fract. Logita 

Plant capacity − 0.009*** (0.002) − 0.006 (0.005) 
SPX index 0.014 (0.040) 0.005 (0.049) 
PostJune2020 0.093*** (0.019) 0.097 (0.076) 
CovRtp100 − 0.710*** (0.069) − 0.262*** (0.030) 
CovRtp100 bar   0.344** (0.146) 
Plant age − 0.004*** (0.001) − 0.130*** (0.003) 
Easter week 0.049*** (0.013) 0.016*** (0.005) 
July 4 week 0.006 (0.005) 0.022** (0.010) 
Thanksgiving w. 0.010* (0.005) 0.017 (0.012) 
Xmas week − 0.003 (0.003) 0.015 (0.010) 
DefensePA 0.027 (0.036) − 0.006 (0.006) 
Constant − 0.109 (0.338)   
Dummy variables Yes  Yes   

Scale factor   0.0296  
Adj. R-sq. 0.2314    
McFadden Pseudo R2   0.352  
lnL 9,100  − 1,447  
Obs. 14,981  14,981  

aThe coefficients on continuous variables are shown as the derivative of the 
function and as differences in the logistic PDFs for two different values for the 
discrete variables so as to allow comparison to the linear coefficient. The delta 
method was used to obtain the standard error of these coefficients. Their sign is 
reversed from the actual estimated value to facilitate comparison to the linear 
estimate given that the fractional logit estimation assumes 0 ≤ y ≤ 1, and thus 
required the dependent variable to be − underperformance. Dummy variables 
include weekday, state, month, year, and company fixed effects. ***p < 0.01, 
**p < 0.05, *p < 0.1. 

Fig. 8. Average Daily Under-utilization Rate for the Plants in the Analysis.  
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5. Policy implications 

Our analysis addresses how plant disruptions caused by the COVID- 
19 outbreak varied by plant size and over time. It is clear from the 
analysis that while shocks were relatively large initially, and were 
increasing in plant size, they started dissipating within a couple of 
months, likely due to COVID-protocols undertaken by the plants. That 
production shocks were initially larger for large plants might motivate 
the question of how the resiliency of the meat packing sector could have 
differed if policy initiatives were undertaken to support construction of 
more small plants. The econometric results suggest that it is possible that 
small plants were nimbler in initially responding to COVID. However, 
beef plant size was significantly less important to maximizing utilization 
of processing capacity after the COVID initial surge. 

Marginal and average processing costs per head decreases in plant 
processing capacity. For example, the data presented in Koontz (2021) 
implies an elasticity of average total costs of slaughter and fabrication 
with respect to processing capacity for a beef packing plant of − 0.23. 
This result does suggest a trade-off between increasing cattle packer 
producer resiliency via increasing the number of smaller plants and 
lowering costs per unit. While economics cannot determine the optimum 
level of resilience versus efficiency without information on the relevant 
parameters of the social welfare function, the analysis in this paper 
provides the public and policymakers input into the political economy of 
this trade-off. The political economy space would have to decide how 
much it wants to reduce production uncertainty for perhaps relative 
short periods at the cost of less efficient production, and the potential 
need to support the plants in the face of excess capacity in normal 
periods. 

While our results showed that production shocks were increasing in 
plant size during the initial surge of COVD-19, these result are contin
gent on the current distribution of plants by size. What might be the 
change in reaction of packing plants to COVID-19 if the industry struc
ture was many small packing plants producing the same number of head 
instead of the current distribution with fewer but larger plants?10 A 
distribution with many small plants to process the same number of head 
would collectively employ many more people than current large plants 
because small plants use significantly more labor per animal. In addi
tion, if a 5,000 head per day plant did not exist, but was replaced with, 
say, 50 100 head per day plants, they would be located in the same 
general area as the large plant because that is where cattle are fed. The 
smaller production impacts we find at small plants could be likely the 
result of a lower concentration of the labor force and less illness. How
ever, labor would not be less concentrated if more people were 
employed in the same area. While there would be fewer people in any 
single plant under a distribution with many smaller plants, the larger 

total group of plant workers would have more connections to others 
outside of plants. Hence, because of more total workers in area, having 
had more small plants with the same total capacity as the current dis
tribution dominated by fewer larger plants might not necessarily have 
meant a smaller production shock in the first half of 2020. 

Our analysis addresses the possible causes of plant disruptions from a 
largely physical standpoint and does not address the issue of market 
power, concentration, cattle producer profits, livestock prices or retail 
prices. Hadachek, Ma, and Sexton (2023) use a simulation model to 
show that adding smaller plants could improve resilience, but only if the 
market initially has high market power and if adding small plants is able 
to reduce the power. 

Observed price patterns that are of concern—high retail prices and 
low livestock prices—are not themselves evidence of market power; 
Lusk, Tonsor, and Schultz (2021) find they are consistent with perfectly 
competitive models of the meat-packing sector. Some increase in the 
beef price spread due to the COVID-related packing plant shutdowns 
would be expected given that the processing bottleneck would lower 
prices received by the grower (live price or dressed weight). In the 
meantime, lower supply of processed beef would lead to increased box 
beef prices and retail prices, although the latter would have been 
affected by the food service disruptions as well. However, packing plant 
capacity rebounded by summer, and retail meat prices declined but 
remained 10% above pre-pandemic levels (Balagtas and Cooper, 2021). 

Azzam and Dhoubhadel (2022) do not find evidence of price/margin 
manipulation by cattle packers during the COVID-19 disruptions, either. 
Their result does not necessarily mean that price manipulation does not 
occur outside the context of the COVID-disruptions. Cattle markets may 
be thin in some regions at some points in time due to the share sold on 
spot markets being low relative to those sold via alternative marketing 
arrangements. It could be possible that lower transparency associated 
with thin markets led to price manipulations, echoing increased con
centration in packing. For instance, Bolotova (2022) finds evidence 
consistent with the oligopoly and monopoly pricing in cattle over 
2015–2019. Smaller packing plants under less concentrated ownership 
may lead to more competitive outcomes, and lower production shocks 
due to unexpected disruptions, at least in the short run, or they may not 
due to redistribution of labor issue noted above. Future research could 
weigh any benefits of smaller plants against potentially higher prices 
associated with lower economies of scale. 

6. Conclusion 

Our work capitalizes on a unique data set to analyze important 
questions about the impact of COVID-19 on meat processing and to 
contribute to the ongoing discussions surrounding this sector. Our 
finding of a greater pandemic impact on beef and pork processing as 
opposed to broilers is consistent with previous studies (e.g., Lusk et al. 
2020), but we are also able to deeper analyze the impact using plant- 
level data as opposed to aggregate. An important contribution of this 
article is the finding of a larger underutilization rate for larger-sized beef 
and pork plants during Spring 2020, while no such relationship was 
found for broiler plants. In our panel analysis of beef packing plants, we 
found that higher COVID-19 infection rates in a county are associated 
with greater plant disruptions, but that plants appear to have been able 
to relatively quickly adjust to these disruptions. Our results suggest 
pandemic protocols by plants after the first COVID-19 wave significantly 
reduced the impact of plant size on community transmission. 

Our results suggest there was a tradeoff between cattle plant size and 
utilization during the initial COVID surge in Spring and early summer of 
2020. However, plant size was significantly less important concerning 
utilization after the initial surge. This leads to future questions about the 
potential implications of additional processing capacity and plant size. 
While small plants may be more resilient for short periods during 
extreme shocks similar to COVID-19 – at least under the current distri
bution of plants, firms will be concerned about plant profitability during 

Table 6 
Least squares regression results for county-level infection rates.   

April 6–July 10 2020 Post July 10 2020 

Plant capacity 0.010*** (0.001) − 0.001** (0.000) 
Plant age 0.000 (0.003) − 0.005*** (0.001) 
Constant − 0.009*** (0.003) 0.188*** (0.024) 
Dummy variables for fixed 

effects 
Yes  Yes   

Adj R-sq. 0.330  0.655  
Obs. 2,243  12,771  

Note: Robust standard errors for the regressions are in parenthesis. ***p < 0.01, 
**p < 0.05, *p < 0.1. 

10 We thank one of the anonymous reviewers for pointing out the key issues 
raised in this paragraph. 
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more normal times. Future work could consider the tradeoffs between 
plant size and profitability, noting data limitations on assessing profit
ability, as well as linking these to market competition. 
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