


The Limits Of Sandboxing
And Next Steps

Chris Palmer, Google Chrome Security



There are many links in the notes!

Link to slides
with speaker notes



About



What Is Sandboxing



A simplified view



Good Sandboxing Is Table Stakes

Extremely necessary to contain a variety of classes of bugs, leaks, and 
vulnerabilities.

It is not, by itself, sufficient for Chromium, nor arbitrarily applicable.

We’re pretty sure Chromium is near the practical limit…

...but your application might still have significant sandboxing headroom left. 
Use it!



How To Build A Sandbox

The fundamental building block available to us is the process boundary.

● Fault isolation
● System call filtering
● Low-privilege principals (UID/GID, SID, Access Tokens)

Segmented memory someday…?

https://docs.microsoft.com/en-us/windows/win32/secauthz/access-tokens


OS Mechanisms (Android)

● isolatedProcesses
● Medium-grained system call filtering (certain predefined Seccomp-BPF 

policies)
● SELinux

https://developer.android.com/guide/topics/manifest/service-element#isolated


OS Mechanisms (Linux, Chrome OS)

● Fine-grained system call filtering (freer use of Seccomp-BPF)
● User/PID/network namespaces
● Legacy setuid helper where namespaces not available



Limitations And Costs

Sadly, you can’t necessarily sandbox everything, nor at a sufficiently fine grain.

● Process space overhead
○ Large on Windows
○ Very large on Android

● Process startup latency
○ High on Windows
○ Very high on Android



Site Isolation

How do we decide when to create a new renderer process?















Moving Forward: Memory Safety



Investigating Safer Language Options

● Java/Kotlin on Android
● Swift on iOS/macOS
● Rust
● WebAssembly?



Migrating To Memory-Safe Languages

Not all-or-nothing! Thankfully!

We can focus on hot spots: areas of particularly large, soft, or easily-accessible 
attack surface.

Interoperability and overall complexity are huge concerns.

Learning curve, too.



Improving Memory-Unsafe Languages

Smarter pointer types (MiraclePtr)

Garbage collection (expanding the use of Oilpan) and semi-GC (MiracleScan)

Defining undefined behavior

New hardware features (memory tagging, control flow integrity)

https://docs.google.com/document/d/1pnnOAIz_DMWDI4oIOFoMAqLnf_MZ2GsrJNb_dbQ3ZBg/edit
https://docs.google.com/document/d/1WiZCu0D2RvdpBkYuUdL571oFlj0kSaXU1HhdoL7438Y/edit#heading=h.v9as6odlrky3
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/enhancing-memory-safety
https://software.intel.com/content/www/us/en/develop/articles/technical-look-control-flow-enforcement-technology.html


Implications



Roughly 70% of High+ Chromium vulnerabilities are memory unsafety



Sandboxing has given Chromium 10+ good years!

The next 10 require something more.

The Future



Questions?


