





# Scalability in RDF Stream Processing Systems

# Alejandro Llaves and Oscar Corcho

Ontology Engineering Group Universidad Politécnica de Madrid Madrid, Spain

allaves@fl.upm.es

May 31 2015







# What we do to improve Scalability in our RDF Stream Processing System

# Alejandro Llaves and Oscar Corcho

Ontology Engineering Group Universidad Politécnica de Madrid Madrid, Spain

allaves@fi.upm.e

May 31 2015

#### Outline

- Towards efficient processing of RDF data streams
- Architecture overview
- Parallelizing the pre-processing of sensor data streams
- Example of use: CSIRO's Sensor Cloud
- Discussion and future work



# Towards efficient processing of RDF data streams

- **Goal:** to develop a stream processing engine capable of adapting to variable conditions, such as changing rates of input data, failure of processing nodes, or distribution of workload, while serving complex continuous queries.
- Example of query execution parallelization (OrdRing 2014)

#### Storm topology example (4 nodes)

```
SELECT ?obs.value ?sensors.location
FROM NAMED STREAM <obs> [60 SEC TO NOW]
FROM NAMED STREAM <sensors> [60 SEC TO NOW]
WHERE obs.sensorId = sensors.id ;
```





# morph-streams++ architecture



# Parallelizing the pre-processing of sensor data streams

#### Methodology

- 1. Transform data input into field-named tuples
- 2. Add semantic annotations (if needed)
- 3. Publish tuples to multiple channels
- 4. Convert tuples to RDF on (query) demand

#### **Focus**

- Storm topologies
- Environmental sensor observations
- Using Semantic Sensor Network (SSN) ontology



# Example of use: CSIRO's Sensor Cloud (1/3)

#### **Sensor Cloud**

- Viticulture, water management, weather monitoring, oyster farming...
- RESTful API JSON
- Network → Platform →
   Sensor → Phenomenon →
   Observation
- Lack of semantic descriptions, e.g.
   rain trace vs Rain.
- Multiple HTTP requests to query various streams.





### Example of use: CSIRO's Sensor Cloud (2/3)

#### 1. Sensor Cloud messages to field-named tuples

#### 2. SWEET annotations for phenomena

| Sensor Cloud phenomena                    | SWEET annotations |
|-------------------------------------------|-------------------|
| rain_trace, Rain, rainfall-per-hour       | Rainfall          |
| air_temp, temperature_deg_c, temperature, | Temperature       |
| average-air-temperature                   |                   |
| wind_dir, average-wind-direction          | Direction         |
| wind_spd_kmh, average-wind-speed          | WindSpeed         |
| rel_hum, average-relative-humidity        | RelativeHumidity  |
| dewpt                                     | DewPoint          |
| Evap                                      | Evaporation       |



# **Example of use: CSIRO's Sensor Cloud (3/3)**



4. Convert tuples to SSN model on (query) demand



#### **Discussion and future work**

#### Conclusion

- Division of work into simple tasks.
- Parallelize any parallelizable task.
- Delay RDF generation and convert on demand.

#### **Future work**

- Evaluation and benchmarking.
- SSN mapping interface.
- Topology package: executing distributed queries (Storm).
- theObserver (theO) package: monitoring scalability metrics for adaptive query processing.









# Thanks!

The presented research has has been funded by Ministerio de Economía y Competitividad (Spain) under the project "4V: Volumen, Velocidad, Variedad y Validez en la Gestión Innovadora de Datos" (TIN2013-46238-C4-2-R), by the EU Marie Curie IRSES project SemData (612551), and supported by an AWS in Education Research Grant award.

Alejandro Llaves allaves@fi.upm.es