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Suppose that we have a class of n = 30 students who have taken an exam, and the mean grade
was x = 75 with a standard deviation of σ = 10. We have taught the class many times before, and
past test means have given us an overall mean µ of 70, but the class means have varied over time
giving us a standard deviation of the class means of τ = 5.

Our goal is to update our knowledge of µ, the unobservable population mean test score with
the new test grade data; i.e., we wish to find p(µ|X) where X is the new test data. Using Bayes’
rule:

p(µ|X) ∝ p(X|µ) p(µ) (1)

where p(X|µ) is the likelihood function for the current data and p(µ) is the prior for the test mean.
Assuming the current test scores are Normally distributed with a mean of µ and a variance of σ2,
then our likelihood function for X is

p(X|µ) =
n∏

i=1

1√
2πσ2

exp

{
−(xi − µ)2

2σ2

}
. (2)

Our previous test scores have provided us with an overall mean of 70, but we are uncertain about
µ’s actual value, given that class means vary semester by semester (giving us τ = 5). So our prior
distribution for µ is:

p(µ) =
1√

2πτ2
exp

{
−(µ−M)2

2τ2

}
(3)

where M is the prior mean (=70) and τ2 (=25) reflects the variation of µ around M . Plugging the
likelihood and prior into Bayes’ rule gives us:

p(µ|X) ∝ 1√
τ2σ2

exp

{
−(µ−M)2

2τ2
+
−∑n

i=1(xi − µ)2

2σ2

}
. (4)

This posterior can be re-expressed as a Normal distribution, but it takes some algebra to do so.
Since the terms outside the exponential are normalizing constants with respect to µ, we can drop
them. We therefore focus on the exponential. Let’s re-write the terms inside the exponential:

−1
2

[
µ2 − 2µMM2

τ2
+

∑
x2 − 2nxµ + nµ2

σ2

]
. (5)
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Any term that does not include µ can be viewed as a proportionality constant, can be factored
out of the exponent, and can be dropped (recall that ea+b = eaeb). Using algebra (and dropping
constants with respect to µ), we obtain

−1
2

[
σ2µ2 − 2σ2µM − 2τ2nxµ + τ2nµ2

σ2τ2

]
(6)

−1
2

[
(nτ2 + σ2)µ2 − 2(σ2M + τ2nx)µ

σ2τ2

]
(7)

−1
2


µ2 − 2µ (σ2M+nτ2x)

(nτ2+σ2)

σ2τ2

(nτ2+σ2)


 (8)

−1
2




(
µ− σ2M+nτ2x

(nτ2+σ2)

)2

σ2τ2

(nτ2+σ2)


 . (9)

In other words, µ|X is Normally distributed with mean

σ2M + nτ2x

nτ2 + σ2
(10)

and variance
σ2τ2

nτ2 + σ2
. (11)

After a bit of algebra, the mean can be re-written as

1
τ2

1
τ2 + n

σ2

M +
n
σ2

1
τ2 + n

σ2

x (12)

and the variance can be re-written as
σ2

n τ2

τ2 + σ2

n

. (13)

This is an important result. Note that the mean is a weighted average of the prior mean M and
the data mean x. The weight on the prior mean is inversely proportional to the variance of the
prior mean (1/τ2), and the weight on the data mean is inversely proportion to the variance of the
data mean (n/σ2). This makes sense, right? If the prior mean is very precise relative to the data
mean, then we should weight it highly. Alternatively, if the data mean is more precise, then it
should be assigned a larger weight. In addition, also note that the variance of µ|X is smaller than
the variance of the prior mean (τ2) and smaller than the variance of the data mean (σ2/n). That
is, combining the information from the prior and the data gives us a more precise estimate than if
we used either information source by itself.

To illustrate the ideas presented so far, consider the following scenario. Suppose that data is
sampled from a Normal distribution with a mean of 80 and standard deviation of 10 (σ2 = 100).
We will sample either 0, 1, 2, 4, 8, 16, 32, 64, or 128 data items. We posit a prior distribution
that is Normal with a mean of 50 (M = 50) and variance of the mean of 25 (τ2 = 25). Figure 1
shows the posterior distribution of µ|X when we take different sample sizes. (The horizontal axis
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Figure 1: Posterior distribution of µ|X. See text for explanation.

shows a value, and the vertical axis shows the probability assigned to that value by the posterior
distribution. Actually, the probabilities have been linearly scaled so that the largest probability is
always equal to 1.) Note that the upper left graph (0 data items) shows the prior distribution. With
small sample sizes, the mean of the posterior distribution is a compromise between the mean of the
prior distribution and the mean of the data. As sample sizes increase, the mean of the posterior
distribution is closer to the mean of the data, and the variance of the posterior distribution shrinks.

This example is useful, but it can be regarded as unrealistic because we’ve assumed that the
variance σ2 is a known quantity. More realistically, we should try to estimate its value. A full
probability model for µ and σ2 would look like:

p(µ, σ2|X) ∝ p(X|µ, σ2) p(µ, σ2). (14)

We now need to specify a prior distribution for µ and σ2. If we assume that these variables are
independent, then p(µ, σ2) = p(µ) p(σ2), and we can establish separate priors for each.

In this example, we assume noninformative priors for µ and σ2. That is, we assume a uniform
prior over the real line for µ and the same uniform prior for log(σ2). We assign a uniform prior on
log(σ2) because σ2 is a non-negative quantity, and the transformation to log(σ2) stretches this new
parameter across the real line. If we transform the uniform prior on log(σ2) into a density for σ2,
we obtain p(σ2) ∝ 1/σ2. Thus, the joint prior is p(µ, σ2) ∝ 1/σ2.

Using Bayes’ rule, we can compute the posterior distributions for µ|X, σ2 and for σ2|X, µ. For
the sake of brevity, we won’t go through all the details here. Suffice it to say that µ|X,σ2 is Normally
distributed with mean x and variance σ2/n, and σ2|X,µ has an inverse gamma distribution with
parameters a = n/2 and b =

∑
(xi − µ)2/2.
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