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Abstract: With the rapidly increasing availability of large-scale streaming data,

there has been a growing interest in developing methods that allow the processing

of the data in batches without requiring storage of the full dataset. In this paper, we

propose a hybrid likelihood approach for scalable estimation of the Cox model using

individual-level data in the current data batch and summary statistics calculated

from historical data. We show that the proposed scalable estimator is asymptoti-

cally as efficient as the maximum likelihood estimator calculated using the entire

dataset with low data storage requirements and low loading and computation time.

A challenge in analyzing survival data batches that is not accommodated in ex-

tant methods is that new covariates may become available midway through data

collection. To accommodate addition of covariates, we develop a hybrid empirical

likelihood approach to incorporate the historical covariate effects evaluated in a re-

duced Cox model. The extended scalable estimator is asymptotically more efficient
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than the maximum likelihood estimator obtained using only the data batches that

include the additional covariates. The proposed approaches are evaluated by nu-

merical simulations and illustrated with an analysis of Surveillance, Epidemiology,

and End Results (SEER) breast cancer data.

Key words and phrases: batch processing, hybrid empirical likelihood, scalable esti-

mation

1 Introduction

In recent years, unprecedented technological advances in data collection

systems, such as medical devices, health apps, surveillance systems, and

wearable sensors, have led to a proliferation of large-scale streaming data.

The key characteristics of such data include massive sample size and high

velocity, posing challenges in data storage and statistical analysis. As an

example, continuous glucose monitors that report blood sugar levels as fre-

quently as once per minute are becoming more common and readily avail-

able (Vettoretti et al., 2018). The huge amount of streaming glucose data

can provide valuable insight into how well diabetic patients are manag-

ing their disease and, in case of frequent hypoglycemia, may promote re-

evaluation of care. As another example, the Surveillance, Epidemiology

and End Results (SEER) Program began collecting demographic, clinical,
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treatment, and outcome variables on nearly all types of incident cancer pa-

tients in 1973 (https://seer.cancer.gov). The SEER program has expanded

over time to now include 21 cancer registries, covering approximately 35%

of the U.S. population. In 2018 alone, data on 724, 852 newly diagnosed

cancer cases were submitted to the database, which now has more than 150

data fields. As these data collection systems become widespread, efficient

scalable estimation techniques that can process data in batches without

high cost of storage are in great need.

Recently, there has been a significant surge in interest in developing

approaches that avoid using and storing individual participant data (IPD)

for statistical analysis of large-scale data and data batches. For large-scale

data, Chen and Xie (2014) proposed a split-and-conquer approach for simul-

taneous parameter estimation and variable selection. Jordan et al. (2019)

presented a surrogate likelihood framework for low-dimensional estimation,

high-dimensional regularized estimation, and Bayesian inference that uses

distributed computation. For data batches, Schifano et al. (2016) proposed

online-updating methods to update parameter estimation sequentially in

the linear model and estimating equation framework, while Luo and Song

(2020) presented renewable estimation and incremental inference using the

current data and historical summary statistics. It is worthwhile pointing
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out that many existing meta-analysis approaches, such as Lin and Zeng

(2010) and Liu et al. (2015), can also be modified for combining results

from different data batches and/or historical information when analyzing

large-scale data and/or data batches.

In this paper, we consider the situation where the censored data arrive

in sequential batches, and statistical analysis within each batch is feasible.

Existing methods for complete data, such as Jordan et al. (2019) and Luo

and Song (2020), are only applicable when the likelihood of the full data

can be decomposed into a linear combination of the likelihood of each data

batch. However, this property does not hold under the Cox model and thus

these approaches can not be applied directly to right-censored survival data.

To tackle this problem, we propose a hybrid likelihood approach for scalable

estimation of the Cox model. Specifically, estimates of unknown parameters

can be updated sequentially by synthesizing historical estimates of covariate

effects. We show that the proposed scalable estimator can achieve the same

estimation efficiency as the oracle maximum likelihood estimator (MLE),

which is calculated using the full dataset. Moreover, since only historical

summary information and IPD from the current batch are stored at each

update, the proposed approach can greatly reduce the data storage cost and

is computationally efficient, making it particularly appealing in analyzing
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high velocity survival data.

In applications, it is common that new covariates are added during data

collection due to advances in scientific knowledge or advances in data col-

lection technology. Since 1988, the SEER program has added more than 40

data fields to the database. For example, after being identified as important

predictors of survival outcomes in breast cancer, collaborative stage (CS)

tumor size was added to the SEER database in 2004, and human epider-

mal growth factor receptor 2 (HER2) status was incorporated in 2010. For

completely observed data, Wang et al. (2018) proposed a bias-correcting ap-

proach by incorporating the cumulative coefficient estimate from reduced

working models under generalized linear models. Kundu et al. (2019) devel-

oped a generalized meta-analysis approach to estimate the parameter in the

maximal model by combining parameter estimates from different reduced

models. These approaches, however, are not readily applicable when the ob-

servation of the outcome event is subject to right censoring. For large-scale

survival data or survival data batches, although researchers have developed

estimation procedures utilizing historical estimates or test statistics (see, for

example, Xue et al., 2019; Wang et al., 2021; Wu et al., 2021), approaches

that apply to accommodate addition of covariates have been lacking.

To handle newly added covariates in survival analysis, we propose a
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hybrid empirical likelihood approach (Qin, 2000; Zhang et al., 2020) that

exploits summary statistics from historical data with a reduced set of co-

variates. Although empirical likelihood has gained its popularity in meta-

analysis (Chen and Qin, 1993; Qin et al., 2015; Huang et al., 2016; Han and

Lawless, 2019), existing approaches are not readily applicable for scalable

estimation for high velocity survival data with newly added covariates. We

demonstrate that the covariate effects evaluated in a reduced Cox model

can be summarized using population estimating equations under the full

Cox model. With the available IPD in the current data batch, the popula-

tion moments can be approximated by the corresponding sample moments.

Under the proposed hybrid empirical likelihood framework, the sample es-

timating equations can be incorporated as constraints to synthesize the

historical covariate effect information; moreover, variability in the histori-

cal information can be properly accounted for. Compared with the MLE

calculated only using batches of IPD that contain the full set of covariates,

the proposed scalable estimator enjoys a substantial efficiency gain.

2 Scalable estimation under the Cox model

Let T be the survival time of interest and assume that T is absolutely

continuous. Let X denote a d-dimensional vector of baseline covariates.
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2.1 Estimation of covariate effects

Denote by λ(t | X) the hazard function of T given X. We assume that the

survival time T follows the Cox proportional hazards model (Cox, 1972)

λ(t | X) = λ(t) exp(β⊺X), (2.1)

where β is a d-dimensional vector of regression parameters and λ(t) is an

unspecified baseline hazard function. Let Λ(t) =
∫ t

0
λ(u)du be the corre-

sponding baseline cumulative hazard function. Due to end of study or loss

to follow-up, the observation of the survival time may be subject to right

censoring. Denote by C the censoring time and assume that the survival

time T and the censoring time C are independent conditional on X. In-

stead of observing the survival time T , we observe the possibly censored

survival time Y = min(T,C) and the indicator of an observed failure event

∆ = I(T ≤ C).

2.1 Estimation of covariate effects

For b ≥ 1, the bth batch of data consists of nb independent and identically

distributed (i.i.d.) observations. Specifically, denote by Ybi, ∆bi, and Xbi

the observed survival time, the failure event indicator, and the vector of

covariates of the ith observation in the bth batch, i = 1 . . . , nb. The observed

data in the bth batch can be represented using Db = (Yb,∆b,Xb), where
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2.1 Estimation of covariate effects

Yb = (Yb1, . . . , Ybnb
), ∆b = (∆b1, . . . ,∆bnb

), and Xb = (Xb1, . . . ,Xbnb
).

Note that the bth batch collects the newly added cases only and does not

include the patients who are initially collected in previous batches but are

still at risk. Assume that the data batches Db, b ≥ 1, are independent.

Denote by Dc
B = {D1, . . . ,DB} the cumulative data up to the Bth batch.

For B ≥ 1, let β̂B be the scalable estimator for β up to the Bth data

batch. When B = 1, the initial scalable estimator β̂1 can be derived as

usual by the MLE using IPD in D1. If we consider an ideal case where

n1 → ∞, it can be shown that
√
n1(β̂1 −β0) converges in distribution to a

mean zero multivariate normal random variable with the covariance matrix

Σ, where β0 is the true value of β. Moreover, a consistent estimator of

Σ, denoted by Σ̂1, can be derived using IPD in D1. In what follows, a

hybrid likelihood approach is presented to update β̂B using IPD in DB and

summary statistics (β̂B−1, Σ̂B−1) calculated from Dc
B−1 for any finite B ≥ 2.

For k = 0, 1, 2, define S
(k)
B (t,β) = n−1

B

∑nB

i=1 I(YBi ≥ t) exp(β⊺XBi)X
⊗k
Bi

and let s(k)(t,β) = E{I(Y ≥ t) exp(β⊺X)X⊗k} , where x⊗0 = 1, x⊗1 = x

and x⊗2 = xx⊺. With the observed IPD in DB, the log partial likelihood is∑nB

i=1∆Bi

[
β⊺XBi − log{S(0)

B (YBi,β)}
]
. Following Zhang et al. (2020), we

synthesize the historical summary-level information, while accounting for

uncertainty therein, from Dc
B−1 by treating β̂B−1 as the realized value of a
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2.1 Estimation of covariate effects

random vector. Generally,
√

nc
B−1(β̂B−1−β0) converges in distribution to a

mean zero multivariate normal random variable with the covariance matrix

Σ as nc
B−1 → ∞. In the ideal case where Σ is known, we can derive the

asymptotic log likelihood, up to a constant, −nc
B−1(β̂B−1−β)⊺Σ−1(β̂B−1−

β)/2. In practice, the unknown Σ can be replaced with the consistent esti-

mator up to the (B − 1)th batch, denoted by Σ̂B−1, and hence we can de-

rive the hybrid likelihood ℓB(β) =
∑nB

i=1∆Bi

[
β⊺XBi − log{S(0)

B (YBi,β)}
]
−

nc
B−1(β̂B−1−β)⊺Σ̂−1

B−1(β̂B−1−β)/2.Maximizing the hybrid likelihood ℓB(β)

yields the scalable estimator, that is,

β̂B = argmax
β

ℓB(β). (2.2)

Moreover, we propose to update Σ by Σ̂B = nc
B

(
nc
B−1Σ̂

−1
B−1 + nBΣ̃

−1
B

)−1

,

where Σ̃B is a consistent estimator of Σ using the observed IPD in DB.

Given β̂B, the cumulative baseline hazard function can be estimated by

the Breslow-type estimator Λ̂B(t, β̂B) (Breslow, 1972), where Λ̂B(t,β) =

n−1
B

∑nB

i=1

∫ t

0
{S(0)

B (u,β)}−1dNBi(u) with NBi(t) = ∆BiI(YBi ≤ t). The

large-sample properties of the proposed scalable estimator β̂B and Λ̂B(t, β̂B)

are summarized below in Theorem 1. The derivation of Σ̂B and the proof

of Theorem 1 are given in Section 3 of the Supplementary Materials.
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2.1 Estimation of covariate effects

Theorem 1. Assume nB/n
c
B−1 → κB ∈ [0,∞) as nc

B → ∞. Under con-

ditions (C1) and (C2) in the Appendix, as nb → ∞, 1 ≤ b ≤ B, we

have (i)
√
nc
B(β̂B − β0) converges in distribution to a mean zero mul-

tivariate normal distribution with the covariance matrix Σ, where Σ =(∫∞
0
[s(2)(t,β0)− {s(0)(t,β0)}−1{s(1)(t,β0)}⊗2]dΛ0(u)

)−1
; (ii)

√
nB{Λ̂B(t, β̂B)−

Λ0(t)} converges in distribution to a mean zero normal distribution with the

variance
∫ t

0
{s(0)(u,β0)}−1dΛ0(u) + κB(1 + κB)

−1V(t)⊺ΣV(t), where V(t) =∫ t

0
{s(0)(u,β0)}−1s(1)(u,β0)dΛ0(u).

Denote by β̃c
B the oracle MLE calculated using IPD in the cumulative

data Dc
B. It can be shown that as nc

B → ∞,
√
nc
B(β̃

c
B − β0) converges in

distribution to a mean zero multivariate normal distribution with the co-

variance matrix Σ. Hence by Theorem 1, the proposed scalable estimator

β̂B is asymptotically as efficient as the oracle MLE β̃c
B. Let Λ̃B(t, β̃B) =

n−1
B

∑nB

i=1

∫ t

0
{S(0)

B (u, β̃B)}−1dNBi(u), where β̃B is the MLE for β calculated

only using IPD in DB. It can be shown that
√
nB{Λ̃B(t, β̃B)− Λ0(t)} con-

verges in distribution to a mean zero normal distribution with the variance∫ t

0
{s(0)(u,β0)}−1dΛ0(u)+V(t)⊺ΣV(t). Hence by incorporating historical co-

variate effects, the proposed estimator Λ̂B(t, β̂B) yields an efficiency gain

when compared with Λ̃B(t, β̃B), which is calculated only using IPD in DB.
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2.2 Equality of covariate effects across batches

2.2 Equality of covariate effects across batches

The validity of the proposed hybrid likelihood approach holds when the re-

gression coefficient in DB, denoted by βB, is the same as that in Dc
B−1, de-

noted by βc
B−1. When combining historical summary statistics with current

data, there is often a concern that covariate effects may have changed due

to changes in disease management or shifts in population demographics. To

test the conformity of the historical covariate effects with covariate effects in

the current batch, we develop a hybrid likelihood ratio test. We consider the

test statistic R1 = 2
{
supβB ,βc

B−1
ℓ(βB,β

c
B−1)− supβB=βc

B−1
ℓ(βB,β

c
B−1)

}
,

where ℓ(βB,β
c
B−1) =

∑nB

i=1∆Bi

[
β⊺
BXBi − log{S(0)

B (YBi,βB)}
]
−nc

B−1(β̂B−1−

βc
B−1)

⊺Σ̂−1
B−1(β̂B−1−βc

B−1)/2. Note that without the constraint βB = βc
B−1,

the hybrid likelihood ℓ(βB,β
c
B−1) is maximized by βB = β̃B and βc

B−1 =

β̂B−1. Under the conditions specified in Theorem 1 and the null hypothesis

H0 : βB = βc
B−1, the test statistic R1 converges in distribution to a χ2

random variable with d degrees of freedom as nc
B → ∞. The proof is given

in Section 4 of the Supplementary Materials. The hybrid likelihood ratio

test is developed to check if a certain batch deviates from the assumed Cox

model. In the case where hypotheses arrive sequentially, the α−investing

method proposed by Foster and Stine (2008) can be used to control the

false discovery rate.
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3 Scalable estimation incorporating newly added co-

variates

The premise of the proposed hybrid likelihood approach in Section 2 is

that the availability of covariates does not change over time. In practice,

however, it is common that new covariates, denoted by W , may become

available midway through data collection. For example, since 2010, vari-

ables including HER2 status and the American Joint Committee on Cancer

(AJCC) stage have been added to the SEER database to refine the prog-

nostic information. Since incorporation of the new covariates is likely to

improve the prediction accuracy, it is imperative to utilize a model with

the full set of covariates. In what follows, we propose to incorporate histor-

ical covariate effects evaluated in a reduced model to improve the estimation

of the full model.

3.1 Scalable estimation with addition of new covariates

Assume a set of new covariatesW is added starting from the B∗th (B∗ > 1)

data batch and let Z = (X⊺,W ⊺)⊺ be the full set of q covariates (q > d).

We assume the following Cox model for the survival time T given Z,

λ(t | Z) = λ∗(t) exp(θ⊺Z), (3.3)
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3.1 Scalable estimation with addition of new covariates

where θ is a q-dimensional vector of regression parameters and λ∗(t) is an

unspecified baseline hazard function. Note that the regression parameter θ

in model (3.3) is of interest, although a reduced working model λ(t | X) =

λ(t) exp(β⊺X) is fitted when the new covariates are not available.

The observed IPD in the bth (b ≥ B∗) data batch are denoted by

Db = (Yb,∆b,Zb). For k = 0, 1, 2 and b ≥ B∗, define functions S
(k)
b,Z(t,θ) =

n−1
b

∑nb

i=1 I(Ybi ≥ t) exp(θ⊺Zbi)Z
⊗k
bi . Solving the partial score estimating

equation n−1
B∗

∑nB∗
i=1

∫∞
0

{
ZB∗i − S

(1)
B∗,Z(YB∗i,θ)/S

(0)
B∗,Z(YB∗i,θ)

}
dNB∗i(t) =

0 yields the MLE of θ based on DB∗ , denoted by θ̃B∗ . The baseline cu-

mulative hazard function Λ∗(t) (i.e.,
∫ t

0
λ∗(u)du) can be estimated by the

Breslow-type estimator Λ̃∗
B∗(t, θ̃B∗), where

Λ̃∗
B∗(t,θ) =

1

nB∗

nB∗∑
i=1

∫ t

0

dNB∗i(u)

S
(0)
B∗,Z(u,θ)

. (3.4)

However, the MLE θ̃B∗ does not utilize the historical data and thus may

not be efficient.

To exploit the historical covariate effects for constructing the hybrid

empirical likelihood function, we first establish the asymptotic normality of

β̂B∗−1, which is the scalable estimator obtained via the proposed hybrid like-

lihood approach (2.2) in Section 2.1. Although the reduced model is likely

to be misspecified, it can be shown that
√

nc
B∗−1(β̂B∗−1 − β0) converges in
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3.1 Scalable estimation with addition of new covariates

distribution to a mean zero normal random variable as nc
B∗−1 → ∞. Here

the limiting value β0 is the unique solution of the following equation,

E

[∫ ∞

0

{
X − s(1)(t,β)

s(0)(t,β)

}
dN(t)

]
= 0, (3.5)

where s(k)(t,β) = E{I(Y ≥ t) exp(β⊺X)X⊗k} for k = 0, 1, and the ex-

pectations are evaluated under the full Cox model (3.3). Moreover, the

asymptotic covariance matrix of
√
nc
B∗−1(β̂B∗−1 −β0) up to the (B∗ − 1)th

data batch can be consistently estimated by Σ̂B∗−1, derivation of which is

given in Section 5 of the Supplementary Materials.

In what follows, we propose a hybrid empirical likelihood approach to

estimate θ using IPD in DB∗ and summary statistics (β̂B∗−1, Σ̂B∗−1). De-

note by F the joint distribution function of (Y,∆,Z). For i = 1, . . . , nB∗ ,

let pi be the jump of F at (YB∗i,∆B∗i,ZB∗i). Then the log empirical likeli-

hood based on the observed data in DB∗ can be expressed as
∑nB∗

i=1 log pi.

Based on the asymptotic normality of β̂B∗−1, we can derive the asymptotic

log likelihood −nc
B∗−1(β̂B∗−1 − β)⊺Σ̂−1

B∗−1(β̂B∗−1 − β)/2. Hence the hybrid

empirical likelihood is

nB∗∑
i=1

log pi −
nc
B∗−1

2
(β̂B∗−1 − β)⊺Σ̂−1

B∗−1(β̂B∗−1 − β). (3.6)
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3.1 Scalable estimation with addition of new covariates

The information from the current data batch DB∗ and the historical cu-

mulative data batches Dc
B∗−1 can then be expressed as constraints when

maximizing the hybrid empirical likelihood.

First, DB∗ can be used to construct an estimating equation for θ0 based

on the partial score equations under the full Cox model (3.3). Denote by

Λ∗
0(t) the true value of Λ∗(t). For k = 0, 1, define functions s

(k)
Z (t,θ) =

E{I(Y ≥ t) exp(θ⊺Z)Z⊗k}. For i = 1, . . . , nB∗ , define gi(θ) =
∫∞
0
{ZB∗i −

s
(1)
Z (t,θ)/s

(0)
Z (t,θ)} {dNB∗i(t)− I(YB∗i ≥ t) exp(θ⊺ZB∗i)dΛ

∗
0(t)} . Note that

{gi(θ), i = 1, . . . , nB∗} provides the asymptotic i.i.d. representation of the

partial score estimating function, or, equivalently, n−1
B∗

∑nB∗
i=1

∫∞
0
{ZB∗i −

S
(1)
B∗,Z(YB∗i,θ)/S

(0)
B∗,Z(YB∗i,θ)}dNB∗i(t) = n−1

B∗
∑nB∗

i=1 gi(θ)+op(n
−1/2
B∗ ). More-

over, it can be shown that E{gi(θ0)} = 0. Heuristically, a set of constraints

can be constructed as
∑nB∗

i=1 pigi(θ) = 0. Using DB∗ , we replace the un-

known functions s
(k)
Z (·,θ) with their empirical estimates S

(k)
B∗,Z(·,θ) and

replace Λ∗
0(·) with the Breslow-type estimator Λ̃∗

B∗(·,θ) defined by (3.4).

Hence we can construct the constraint
∑nB∗

i=1 piĝi(θ) = 0, where ĝi(θ) =∫∞
0
{ZB∗i−S

(1)
B∗,Z(t,θ)/S

(0)
B∗,Z(t,θ)}{dNB∗i(t)−I(YB∗i ≥ t) exp(θ⊺ZB∗i)dΛ̃

∗
B∗(t,θ)}.

Second, motivated by Equation (3.5) from the reduced working model,

we can further construct another estimating equation for (θ0,β0). Define

hi(θ,β) =
∫∞
0
{XB∗i−s(1)(t,β)/s(0)(t,β)}{dNB∗i(t)−I(YB∗i ≥ t) exp(β⊺XB∗i)
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3.1 Scalable estimation with addition of new covariates

s
(0)
Z (t,θ)/s(0)(t,β)dΛ∗

0(t)}. It can be shown that E{hi(θ0,β0)} = 0 and

n−1
B∗

∑nB∗
i=1

∫∞
0
{XB∗i−S

(1)
B∗ (YB∗i,β)/S

(0)
B∗ (YB∗i,β)}dNB∗i(t) = n−1

B∗
∑nB∗

i=1 hi(θ,β)+

op(n
−1/2
B∗ ). By replacing the unknown functions with the corresponding em-

pirical estimates using observed IPD in DB∗ , we construct the constraint∑nB∗
i=1 piĥi(β,θ) = 0, where ĥi(β,θ) =

∫∞
0
{XB∗i−S

(1)
B∗ (t,β)/S

(0)
B∗ (t,β)}{dNB∗i(t)−

I(YB∗i ≥ t) exp(β⊺XB∗i)S
(0)
B∗,Z(t,θ)/S

(0)
B∗ (t,β)dΛ̃∗

B∗(t,θ)}.

We propose to maximize the hybrid empirical likelihood in (3.6) subject

to the constraints

pi ≥ 0,

nB∗∑
i=1

pi = 1,

nB∗∑
i=1

piĝi(θ) = 0,

nB∗∑
i=1

piĥi(θ,β) = 0.

The Lagrange function for the constrained maximization problem is L =∑nB∗
i=1 log pi−nc

B∗−1(β̂B∗−1−β)⊺Σ̂−1
B∗−1(β̂B∗−1−β)/2−nBξ0 (

∑nB∗
i=1 pi − 1)−

nB∗
∑nB∗

i=1 piξ
⊺
1 ĝi(θ) − nB∗

∑nB∗
i=1 piξ

⊺
2 ĥi(θ,β), where ξ0, ξ1 and ξ2 are La-

grange multipliers. Taking the derivative of the objective function L with

respect to pi and setting the derivative equal to 0 yields ξ0 = 1 and

p̂i = n−1
B∗{1 + ξ⊺1 ĝi(θ) + ξ⊺2 ĥi(θ,β)}−1. Moreover, the Lagrange multipliers

ξ1 and ξ2 are determined by n−1
B∗

∑nB∗
i=1 {1+ξ⊺1 ĝi(θ)+ξ⊺2 ĥi(θ,β)}−1ĝi(θ) = 0

and n−1
B∗

∑nB∗
i=1 {1+ξ⊺1 ĝi(θ)+ξ⊺2 ĥi(θ,β)}−1ĥi(θ,β) = 0. Substituting p̂i back

to the Lagrange function yields the constrained hybrid empirical likelihood
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3.1 Scalable estimation with addition of new covariates

minξ1,ξ2 ℓ(β,θ, ξ1, ξ2), where, up to a constant,hybrid likelihood approach.

ℓ(β,θ, ξ1, ξ2) = −
nB∗∑
i=1

log
{
1 + ξ⊺1 ĝi(θ) + ξ⊺2 ĥi(θ,β)

}
(3.7)

−
nc
B∗−1

2
(β̂B∗−1 − β)⊺Σ̂−1

B∗−1(β̂B∗−1 − β).

Arguing as in Newey and Smith (2004), the proposed constrained maxi-

mization can be carried out by solving the following optimization problem,

(β̂B∗ , θ̂B∗) = argmax
β,θ

min
ξ1,ξ2

ℓ(β,θ, ξ1, ξ2). (3.8)

The large-sample properties of the proposed scalable estimator θ̂B∗ are sum-

marized below in Theorem 2, with the proof given in Section 6 of the Sup-

plementary Materials.

Theorem 2. Assume that nB∗/nc
B∗−1 → κB∗ as nc

B∗ → ∞. Under condi-

tions (C3)-(C5) in the Appendix, as nb → ∞, 1 ≤ b ≤ B∗,
√
nB∗(θ̂B∗ − θ0)

converges in distribution to a zero mean multivariate normal distribution

with the covariance matrix V {V −1− (1+κB∗)−1Ω⊺HΩ}V , where V , Ω and

H are given in the Supplementary Materials.

In the proof of Theorem 2, we show that
√
nB(θ̃B∗ − θ0) converges

in distribution to a zero mean multivariate normal distribution with the

covariance matrix V as nB∗ → ∞. Hence the proposed scalable estimator
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3.2 Scalable estimation with the full set of covariates

θ̂B∗ is asymptotically more efficient than θ̃B∗ , with larger efficiency gains

for smaller values of κB∗ . In the case with equal sized data batches, the

asymptotic covariance matrix of θ̂B∗ is V {V −1− (B∗− 1)Ω⊺HΩ/B∗}V and

thus the efficiency gain increases with B∗. When B∗ is large, the covariance

matrix is approximately V (V −1 − Ω⊺HΩ)V and θ̂B∗ enjoys a substantial

efficiency gain.

Moreover, based on Theorem 2, we can estimate the asymptotic covari-

ance matrix by Π̂B∗(θ̂B∗ , β̂B∗), where

Π̂B∗(θ,β) = V̂ (θ)
{
V̂ (θ)−1 − cB∗Ω̂(θ,β)Ĥ(θ,β)Ω̂(θ,β)⊺

}
V̂ (θ), (3.9)

with V̂ (θ), Ĥ(θ,β), and Ω̂(θ,β) given in Section 6 of the Supplementary

Materials and cB∗ =
(
1 + nB∗/nc

B∗−1

)−1
.

3.2 Scalable estimation with the full set of covariates

We then apply the hybrid likelihood approach in Section 2.1 to update θ̂B,

B ≥ B∗ + 1. We note that the convergence rate of θ̂B−1 is controlled by

the cumulative sample size of data batches with fully observed Z, that

is, nc
B−1 − nc

B∗−1, because the new covariates W are not observed in the

first B∗ − 1 data batches. It can be shown that as nb → ∞, 1 ≤ b ≤

B− 1,
√
nc
B−1 − nc

B∗−1(θ̂B−1−θ0) converges in distribution to a mean zero
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3.2 Scalable estimation with the full set of covariates

multivariate normal distribution and the asymptotic covariance matrix can

be consistently estimated by Π̂B−1 up to the (B−1)th batch. Applying the

hybrid likelihood approach in Section 2.1, θ can be estimated by

θ̂B = argmax
θ

{
ℓB(θ)−

nc
B−1 − nc

B∗−1

2
(θ̂B−1 − θ)⊺Π̂−1

B−1(θ̂B−1 − θ)

}
,(3.10)

where ℓB(θ) =
∑nB

i=1∆Bi[θ
⊺ZBi − log{S(0)

B,Z(YBi,θ)}] is the partial likeli-

hood based on the IPD in DB. Moreover, we can update the asymptotic

covariance matrix by

Π̂B = (nc
B − nc

B∗−1){nBV̂B(θ̂B)
−1 + (nc

B−1 − nc
B∗−1)Π̂

−1
B−1}

−1. (3.11)

The large-sample properties of θ̂B are summarized in Theorem 3. The

derivation of Π̂B and the proof of Theorem 3 are given in Section 7 of the

Supplementary Materials.

Theorem 3. For B > B∗, assume that nB∗(nc
B − nc

B∗−1)
−1 → rB ∈ [0,∞)

as nc
B → ∞. Under the conditions specified in Theorem 2, as nb → ∞,

1 ≤ b ≤ B,
√

nc
B − nc

B∗−1(θ̂B − θ0) converges in distribution to a mean

zero multivariate normal distribution with the covariance matrix (V −1 +

rBΩH̃Ω⊺)−1, where V , Ω and H̃ are given in the Supplementary Materials.

Denote by θ̃∗
B the MLE calculated using IPD in {DB∗ , . . . ,DB}, that is,
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3.3 Conformity of the covariate effects information

the data batches with fully observed Z. We have
√

nc
B − nc

B∗−1(θ̃
∗
B − θ0)

converges in distribution to a mean zero multivariate normal distribution

with the covariance matrix V as nc
B → ∞,. Hence the proposed estimator

θ̂B enjoys an efficiency gain when compared with the MLE θ̃∗
B. In the case

with equal size data batches, we have rB = (B−B∗+1)−1, where B−B∗+1

is the number of data batches with fully observed Z. When B = B∗ + 1,

we have rB = 1/2 and the efficiency gain is substantial. Moreover, when

the number of data batches with fully observed Z is very large, we have

rB → 0 and not unexpectedly, the efficiency gain is limited.

3.3 Conformity of the covariate effects information

The validity of the proposed hybrid empirical likelihood approach in Section

3.1 holds when the historical covariate effect information is consistent with

the current IPD, which is equivalent to the null hypothesisH0 : ξ2 = 0. Mo-

tivated by Qin and Lawless (1994) and Qin and Lawless (1995), we develop

a hybrid empirical likelihood ratio test to check the conformity of the histor-

ical covariate effects information in a reduced model. To be specific, we con-

sider the test statisticR2 = 2
{
supβ,θ,ξ1,ξ2 ℓ(β,θ, ξ1, ξ2)− supβ,θ,ξ1 ℓ(β,θ, ξ1,0)

}
,

where ℓ(β,θ, ξ1, ξ2) is defined by (3.7). Under the conditions specified in

Theorem 2 and the null hypothesis H0 : ξ2 = 0, the test statistic R2 con-
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verges in distribution to a χ2 random variable with d degrees of freedom as

nB∗ → ∞. The proof of the large-sample properties of the test statistic R2

is given in Section 8 of the Supplementary Materials.

4 Computation

In this section, we focus on the computational aspects of the algorithms.

The outline of the algorithm used for scalable estimation when new co-

variates are added (i.e., Section 3) is described in Section 4.1. Scalable

estimation based on the hybrid likelihood in Section 2 can be implemented

using the Newton-Raphson method and thus is omitted. We then give some

details on comparison of computational efficiency.

4.1 Algorithm

Step 0. Initialization: Obtain initial values β̂1 and Σ̂1 using D1.

Step 1. Scalable estimation under the reduced Cox model: For B =

2, . . . , B∗−1, calculate β̂B and Σ̂B by maximizing the hybrid likelihood

using the Newton-Raphson method. The details are given in Section

5 of the Supplementary Materials.
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4.1 Algorithm

Step 2. Scalable estimation with addition of new covariates: For B =

B∗, calculate θ̂B∗ and by solving the constrained maximization in (3.8)

and calculate Π̂B∗ using Equation (3.9). This can be solved using a

nested coordinate descent algorithm presented below.

Step 3. Scalable estimation with the full set of covariates: For B ≥

B∗+1, calculate θ̂B by maximizing the hybrid likelihood in (3.10) using

Newton-Raphson method and calculate Π̂B using Equation (3.11).

In what follows, a nested coordinate descent algorithm is developed to

solve the constrained maximization maxβ,θ minξ1,ξ2 ℓ(β,θ, ξ1, ξ2) in Step 2.

When such min-max representation is available, the nested optimization

algorithm has been commonly adopted to obtain the empirical likelihood

estimator (Chen et al., 2002; Imbens, 2002; Han and Lawless, 2019). Define

ℓ(γ, ξ) = ℓ(β,θ, ξ1, ξ2) and ℓ(γ) = minξ ℓ(γ, ξ), where γ = (θ⊺,β⊺)⊺ and

ξ = (ξ⊺1 , ξ
⊺
2)

⊺. For each γ, ℓ(γ, ξ) is a strictly convex function of ξ, and thus

ℓ(γ) can be easily evaluated. Moreover, ℓ(γ) is an asymptotically concave

function of γ in the sense that ∂2ℓ(γ)/∂γ∂γ⊺ = Jγ(γ, ξ(γ))+ op(1), where

Jγ(γ, ξ(γ)) is a negative definite matrix. The details are given in Section

9 of the Supplementary Materials. Given the above properties of ℓ(γ, ξ),

we propose a nested optimization algorithm consisting of two loops: the

outer loop maximizes ℓ(γ) using the Newton method, and the inner loop
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4.1 Algorithm

calculates ℓ(γ) by minimizing ℓ(γ, ξ) for each given value of γ. In both

loops, solving the (d+q)-dimensional optimization problems with respect to

ξ or γ could be computationally challenging due to the complicated forms

of the Hessian matrices. Motivated by the coordinate descent algorithm

(Wright, 2015), we solve the inner loop optimization by updating ξ1 and

ξ2 sequentially and solve the outer loop optimization by updating θ and β

sequentially. In this way, each subproblem is a lower-dimensional problem,

and thus can be solved more easily than the original problems. The nested

coordinate descent algorithm is described below.

Outer Loop

Step 0: Set l = 0 and obtain initial values γ(0)=(θ(0)⊺ ,β(0)⊺)⊺ =

(θ̃⊺
B∗ , β̂

⊺
B∗−1)

⊺, where θ̃B∗ is the MLE calculated using DB∗ .

Step (l + 1): At the (l + 1)th iteration, calculate θ(l+1) = θ(l) −

τ1{Jθ(θ
(l),β(l), ξ(γ(l)))}−1Uθ(θ

(l),β(l), ξ(γ(l))) and β(l+1) = β(l) −

τ1{Jβ(θ
(l+1),β(l), ξ(γ(l))}−1Uβ(θ

(l+1),β(l), ξ(γ(l)), where Jacobian

matrices Uθ(θ,β, ξ(γ)) and Uβ(θ,β, ξ(γ)), and Hessian matrices

Jθ(θ,β, ξ(γ)) and Jβ(θ,β, ξ(γ)) are given in Section 9 of the

Supplementary Materials, and τ1 is a step-length parameter to

avoid overshooting; set γ(l+1) = (θ(l+1)⊺ ,β(l+1)⊺)⊺.

Repeat step (l + 1) until ∥γ(l+1) − γ(l)∥ is smaller than a pre-
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4.1 Algorithm

specified threshold.

Inner Loop

Step 0: Set k = 0 and obtain initial values ξ
(k)
1 = ξ

(k)
2 = 0; let

ξ(k) = (ξ
(k)⊺
1 , ξ

(k)⊺
2 )⊺;

Step (k+1): At the (k+1)th iteration, given γ, calculate ξ
(k+1)
1 =

ξ
(k)
1 − τ2{Jξ1(γ, ξ

(k)
1 , ξ

(k)
2 )}−1Uξ1(γ, ξ

(k)
1 , ξ

(k)
2 ) and ξ

(k+1)
2 = ξ

(k)
2 −

τ2{Jξ2(γ, ξ
(k+1)
1 , ξ

(k)
2 )}−1Uξ2(γ, ξ

(k+1)
1 , ξ

(k)
2 ) where Jacobian matri-

ces Uξ1(γ, ξ1, ξ2) and Uξ2(γ, ξ1, ξ2), and Hessian matrices Jξ1(γ, ξ1, ξ2)

and Jξ2(γ, ξ1, ξ2) are given in Section 9 of the Supplementary Ma-

terials, and τ2 is a step-length parameter; let ξ(k+1)(γ) = (ξ
(k+1)⊺

1 , ξ
(k+1)⊺

2 )⊺.

Repeat step (k + 1) until ∥ξ(k+1)(γ) − ξ(k)(γ)∥ is smaller than a

pre-specified threshold.

In the inner loop, the objective functions are strictly convex functions

of ξ1 and ξ2 and thus the iterative algorithm of the optimization almost

always converges (Chen et al., 2002; Han and Lawless, 2019). In the outer

loop, the convergence of the proposed algorithm is usually fast since initial

values θ̃B∗ and β̂B∗−1 are consistent estimators of θ and β, respectively.

Following Han and Lawless (2019), one can sequentially try step-lengths

1, 2−1, . . . , 2−5 for updating the unknown parameters. The first length that
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4.2 Computational efficiency

makes the value of objective function increase is accepted, and the step

length 2−5 is used if no such step-length is found.

4.2 Computational efficiency

We conducted Monte-Carlo simulations to compare computational efficiency

and required memory of the proposed based scalable estimator in Section

2.1 and the oracle MLE calculated using the entire dataset. Details of the

simulations are given in Section 1 of the Supplementary Materials. The

computation was performed using the R statistical software version 3.6.0

on UCSF Computation Biology and Informatics core at the shared high-

performance computing cluster C4 with 150GB of memory. The oracle MLE

was calculated using the function coxph in the R package survival. The

evaluation criteria for computational efficiency included (i) the total time

spent in loading the data; (ii) the total computation time, which refers to

the total amount of time required by data loading and algorithm execution,

and (iii) the total storage memory required.

As shown in Table 1 in the Supplementary Materials, the proposed

approach can greatly reduce the computation time for total computation

time and, not surprisingly, gains more computational efficiency with larger

cumulative sample size nc
B and the dimensionality of covariates p. The
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ratios of computation time of the proposed scalable estimator to that of

the oracle MLE ranged from 2.8 to 4.1 across different values of nc
B and p.

Also, in the case of nc
B = 108 and p = 50, it was infeasible to calculate the

oracle MLE using the entire dataset while the proposed approach was able

to complete the computation in a few hours.

5 Simulations and data analysis

5.1 Numerical simulations

We conducted Monte-Carlo simulations to examine the finite-sample per-

formance of the proposed methods. In all simulations, 1,000 datasets, each

with 100,000 observations, were generated and then divided into 100 data

batches with equal sample sizes. The censoring time C was generated from

uniform distributions that yielded censoring rates of 25%, 50% and 75%.

In our simulations, the numerical performance of the nested coordinate de-

scent algorithm in Section 4 was not sensitive to the selection of step lengths

and thus we set τ1 = τ2 = 1 to save computation time.

In the first set of simulations, we investigated the performance of the

proposed hybrid likelihood approach (see Section 2.1) for scalable esti-

mation under the Cox model. The covariates X1, X2, X3 were indepen-

dently generated from the standard normal distribution, X4 was gener-
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5.1 Numerical simulations

ated from a Bernoulli distribution with Pr(X4 = 1) = 0.5, and X5 was

generated from a Bernoulli distribution with Pr(X5 = 1) = 0.25. The

survival time T was generated from the Cox proportional hazards model

λ(t | X) = 1.5
√
t exp(β⊺X), where β = (0.5, 0.5, 0.5,−1,−1)⊺. Table 1

summarizes the simulation results of the oracle MLE β̃c
B calculated using

all 100,000 observations, the proposed scalable estimator β̂B, the inverse-

variance estimator β̃LZ
B = (

∑B
b=1 Σ̂

−1
b )−1

∑B
b=1 Σ̂

−1
b β̂b proposed in Lin and

Zeng (2010), the estimator β̃APBC
B calculated by the adaptive partition and

bias correction (APBC) method proposed in Wu et al. (2021), and the MLE

β̃B calculated only using 1,000 observations in the last batch DB. The es-

timator β̃APBC
B can be calculated using the R package updatesurvival by

setting the initial number of intervals as J0 = 5. As shown in Table 1,

the performance of the scalable estimator β̂B is similar to that of the oracle

MLE β̃c
B, the inverse-variance estimator β̃LZ

B , and the estimator β̃APBC . We

also estimated the cumulative baseline hazard function at 500 time points,

which were equally spaced between 0 and 1. The proposed estimator Λ̂B(t)

enjoys an efficiency gain when compared with the MLE Λ̃B(t) which was

calculated only using 1,000 observations in the last batchDB, with a relative

efficiency ranging from 1.17 to 1.63 across selected time points.

In the second set of simulations, we investigated the performance of
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5.1 Numerical simulations

Table 1: Summary of simulation results under the Cox model

β̃c
B β̂B β̃LZ

B β̃APBC
B β̃B

Cen Bias SE SEE Bias SE SEE Bias SE SEE Bias SE SEE Bias SE SEE
25% β1 0 40 39 -2 40 39 9 40 40 -1 40 39 43 412 396

β2 0 39 39 -1 39 39 9 39 40 -2 39 39 43 401 395
β3 -1 39 39 -2 39 39 8 39 40 -3 39 39 22 397 396
β4 -1 78 78 5 78 78 -6 78 78 6 78 78 -66 819 784
β5 2 96 93 8 96 94 -8 97 94 7 96 95 -30 921 942

50% β1 1 47 47 -1 47 47 13 48 48 -1 47 47 53 482 477
β2 0 47 47 -2 47 47 13 48 48 -1 47 47 48 478 477
β3 -1 48 47 -3 48 47 11 48 48 -3 49 47 19 494 478
β4 2 93 94 8 93 95 -6 94 95 7 93 95 -99 970 953
β5 3 122 120 10 122 121 -16 123 121 10 122 120 5 1161 1213

75% β1 2 67 66 -1 67 66 11 68 67 1 67 66 100 667 671
β2 0 65 66 -3 65 66 19 66 67 3 66 66 49 659 670
β3 -1 65 66 -4 66 66 18 67 67 -3 67 66 53 698 671
β4 -4 140 137 20 140 137 -25 142 138 19 141 138 -114 1397 1381
β5 6 190 185 30 190 185 -14 194 186 28 190 186 -66 1936 1871

NOTE: Cen, the censoring rate; the true values of the regression coefficients (β1, β2, β3, β4, β5) are

(0.5, 0.5, 0.5,−1,−1); β̃c
B , the oracle maximum likelihood estimator calculated using all of the data; β̂B ,

the proposed hybrid likelihood scalable estimator; β̃LZ
B , the inverse-variance estimator proposed in Lin

and Zeng (2010); β̃APBC
B , the estimator calculated by the adaptive partition and bias correction (APBC)

method proposed in Wu et al. (2021); β̃B , the maximum likelihood estimator calculated using the data

in the Bth data batch; Bias, SE and SEE, empirical bias (×104), empirical standard error (×104) and

empirical mean of the standard error estimates (×104).
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5.1 Numerical simulations

the proposed hybrid empirical likelihood approach (see Section 3) for scal-

able estimation when new covariates are added. We generated covariates

X = (X1, X2)
⊺ from a mean zero bivariate normal random vector with

var(X1) = 1, var(X2) = 1, and a correlation coefficient of 0.5. Two new

covariates W1 and W2 were added since the 51th data batch, where W1

was generated from a logistic regression model with Pr(W1 = 1 | X1) =

exp(0.5X1)/{1 + exp(0.5X1)} and W2 = W1X1. This specification aims to

mimic the situation where a new treatment indicator, which is correlated

with currently observed covariates, and its interaction with a covariate are

added to the Cox model. The survival time T was generated from the max-

imal Cox model λ(t | Z) = 1.5
√
t exp(θ⊺Z), where Z = (X1, X2,W1,W2)

⊺

and θ = (0.5, 0.5,−1,−1)⊺. For the first 50 data batches, only a reduced

set of covariates X was observed and the full set of covariates Z was ob-

served starting from the 51th data batch, so B∗ = 51. When applying the

proposed hybrid empirical approach to estimate the regression coefficient,

we incorporated the updated estimates of the covariate effects of X in a

reduced Cox model. The simulation results are presented in Table 2. As

shown in the table, the proposed scalable estimator θ̂B outperforms the

MLE θ̃B, which is calculated only using IPD from the current batch DB,

with smaller standard errors. Moreover, the proposed estimator θ̂B enjoys
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5.2 Analysis of SEER breast cancer dataset

an efficiency gain when compared with the MLE θ̃∗
B, which is calculated us-

ing IPD from batches with newly added covariates, that is, {DB∗ , . . . ,DB}.

When the sample size of the historical data is much larger than that of

data with newly added covariates, that is, B = 51, the proposed estimator

θ̂B enjoys a substantial efficiency gain over the MLE θ̃∗
B calculated using

IPD from the 51th batch. The relative efficiency ranges from 1.20 to 3.81

in estimating β across different censoring rates. As expected, the efficiency

gain decreases as the sample size of data with newly added covariates in-

creases. In the case where the sample size of the historical data and that

of data with newly added covariates are comparable, that is, B = 100, the

relative efficiency ranges from 1.04 to 1.29, when compared with the MLE

θ̃∗
B calculated using IPD from batches 51–100.

5.2 Analysis of SEER breast cancer dataset

Breast cancer is the most frequently diagnosed cancer among women in

the United States. Accurate prediction of the breast cancer mortality risk

is essential for successful breast cancer management. The Surveillance,

Epidemiology, and End Results (SEER) Program of the National Cancer

Institute (NCI) collects demographics and cancer factors on all types of

incident cancer patients from cancer registries covering over 30% of the

U.S. population. Such a large-scale dataset provides valuable resources to
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5.2 Analysis of SEER breast cancer dataset

Table 2: Summary of simulation results in the presence of new covariates

θ̂B θ̃∗
B θ̃B

Cen Bias SE SEE Bias SE SEE Bias SE SEE
B = 51

25% θ1 5 495 429 5 595 584 5 595 584
θ2 3 255 225 22 458 449 22 458 449
θ3 -59 707 661 -58 818 789 -58 818 789
θ4 9 778 726 -11 853 814 -11 853 814

50% θ1 28 563 506 15 706 687 15 706 687
θ2 5 286 269 21 549 541 21 549 541
θ3 -24 871 832 -60 981 948 -60 981 948
θ4 36 956 883 -20 1052 998 -20 1052 998

75% θ1 23 669 604 24 954 922 24 954 922
θ2 14 404 365 19 787 758 19 787 758
θ3 -89 1226 1174 -98 1416 1389 -98 1416 1389
θ4 6 1339 1276 4 1499 1456 4 1499 1456

B = 100
25% θ1 -1 76 77 -1 85 82 9 592 584

θ2 2 58 59 4 65 63 59 462 450
θ3 -10 105 106 -5 108 111 -32 763 790
θ4 -2 107 108 -4 115 114 -47 828 813

50% θ1 -4 90 91 -1 97 96 17 682 687
θ2 4 69 71 5 79 76 57 546 542
θ3 -7 127 130 -6 133 130 -29 947 949
θ4 -3 132 133 -3 145 140 -76 1006 998

75% θ1 -3 124 120 -3 132 129 -2 916 923
θ2 8 96 98 6 108 106 82 764 761
θ3 -9 190 185 -7 196 194 -49 1384 1390
θ4 7 199 192 3 207 203 -39 1059 1453

NOTE: Cen, the censoring rate; the true values of the regression coefficients

(θ1, θ2, θ3, θ4) are (0.5, 0.5,−1,−1); the full set of covariates are observed

starting from the B∗th data batch with B∗ = 51; θ̂B , the proposed hybrid

empirical likelihood scalable estimator; θ̃∗
B , the maximum likelihood estima-

tor calculated using data batches that include the additional covariates; θ̃B ,

the maximum likelihood estimator calculated using the data in the Bth data

batch; Bias, SE and SEE, empirical bias (×104), empirical standard error

(×104) and empirical mean of the standard error estimates (×104).
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5.2 Analysis of SEER breast cancer dataset

evaluate the effects of patients’ demographics and tumor characteristics on

survival. The breast cancer data from SEER have the characteristics of

large sample size and high velocity. As time goes by, the updates in the

SEER database include not only newly diagnosed breast cancer cases, but

also new variables for improved characterization of patients’ risk profile.

In what follows, we applied the proposed scalable approaches to build risk

prediction models for breast cancer mortality.

Our study sample consisted of patients who were diagnosed with breast

cancer during 2000-2010 and the event of interest is death due to breast

cancer. The covariates collected since 2000 included age at diagnosis (≥ 50

years vs. < 50 years), estrogen receptors (ER, positive vs. negative), pro-

gesterone receptors (PR, positive vs. negative), cancer grade (III/IV vs.

I/II), race (White, African American, and other). In response to the de-

mand of having better prognosis and predictive factors in evaluating and

guiding breast cancer treatment, the SEER Program began collecting new

data items related to breast cancer prognosis under the Collaborative Stage

(CS) Data Collection System since 2004 and an updated edition (CSv2)

since 2010 (Howlader et al., 2014). Hence data on CS tumor size are avail-

able only for cases diagnosed after 2004, while HER2 and AJCC stage 7th

edition are available only for cases diagnosed after 2010.
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5.2 Analysis of SEER breast cancer dataset

Excluding the patients with missing covariate values, the dataset con-

sists of 192,404 observations with a total of 9,822 (5.1%) events being ob-

served during the follow-up period. We divided the dataset into 11 data

batches according to the year of diagnosis, where the Bth batch includes

breast cancer cases diagnosed in year 1999 + B. The covariate CS tu-

mor size is available starting with the 5th batch and covariates HER2 and

AJCC stage are available starting with the 11th batch. Our goal is to build

a prediction model that utilize these important biomarkers while combin-

ing historical covariate effect estimates using batches that do not include

these newly added predictors. To this end, we applied the hybrid empirical

likelihood approach in Section 3 to update the risk prediction models.

Table 3 summarizes the point estimates and standard errors of the pro-

posed scalable estimator θ̂B and the MLE θ̃∗
B, and θ̃∗

B was calculated using

IPD in the batches which share the same set of covariates. As shown in

Table 3, the two methods yield similar coefficient estimates. More im-

portantly, the proposed scalable estimator θ̂B enjoys efficiency gains when

compared with the MLE θ̃∗
B by incorporating the historical covariate effect

information. Using cases diagnosed during 2000–2003, the proposed scal-

able estimator θ̂B yields similar results compared to the MLE θ̃∗
B calculated

using IPD from 2000–2003. Using cases diagnosed up to 2009, the proposed
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estimator θ̂B enjoys an efficiency gain when compared with the MLE θ̃∗
B

calculated using IPD from 2004 to 2009. The relative efficiency ranges from

1.02 to 1.20. At year 2010, the proposed estimator θ̂B enjoys an efficiency

gain when compared with the MLE θ̃∗
B calculated using IPD in 2010 and

the relative efficiency ranges from 1.02 to 6.83. The substantial efficiency

gain of the proposed scalable approach is attributed to the information from

the historical data, whose sample size (n = 174, 899) is much larger than

the batch size in 2010 (n = 17, 505). Moreover, the effect of CS tumor size

(2–4 cm vs < 2 cm) did not reach statistical significance when MLE was ap-

plied but was statistically significant when the proposed scalable approach

was applied. Adjusting for other covariates, a larger tumor size (2-4 cm vs

< 2 cm) is associated with a shorter length of breast cancer survival, with

hazard ratio of exp(0.39) ≈ 1.48 (95% CI, 1.22-1.77).

6 Discussion

In this article, we proposed a hybrid empirical likelihood framework for

scalable estimation with survival data batches. Our estimation procedure

is flexible in that it can incorporate various forms of summary statistics from

historical batches. Moreover, the proposed approach can greatly reduce the

storage memory and computation time for data loading and algorithm ex-
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Table 3: Estimated regression coefficients of the Cox model for the breast cancer study
B = 4 B = 10 B = 11

θ̂B θ̃∗
B θ̂B θ̃∗

B θ̂B θ̃∗
B

age (≥ 50 years) 0.239 0.240 0.432 0.448 0.496 0.439
(0.038) (0.038) (0.032) (0.035) (0.036) (0.095)

ER negative 0.623 0.623 0.403 0.389 0.508 0.510
(0.049) (0.049) (0.037) (0.041) (0.049) (0.108)

PR negative 0.538 0.538 0.595 0.602 0.739 0.819
(0.049) (0.049) (0.037) (0.041) (0.040) (0.108)

grade (III&IV vs. I&II) 0.970 0.971 0.534 0.533 0.496 0.501
(0.040) (0.040) (0.032) (0.034) (0.037) (0.092)

race (white vs others) 0.132 0.141 0.308 0.361 0.537 0.557
(0.066) (0.066) (0.052) (0.055) (0.066) (0.163)

race (black vs others) 0.666 0.670 0.641 0.703 0.838 0.827
(0.075) (0.075) (0.058) (0.061) (0.077) (0.178)

CS tumor size (2-4 cm vs <2cm) - - 1.114 1.117 0.385 0.241
- - (0.037) (0.038) (0.096) (0.141)

CS tumor size (≥ 4 cm vs <2cm) - - 2.112 2.116 0.746 0.801
- - (0.037) (0.038) (0.102) (0.138)

HER2 negative - - - - 0.559 0.503
- - - - (0.101) (0.102)

AJCC stage I vs 0 - - - - 1.476 1.309
- - - - (0.919) (1.008)

AJCC stage II vs 0 - - - - 2.161 2.138
- - - - (0.924) (1.005)

AJCC stage III vs 0 - - - - 3.259 3.256
- - - - (0.926) (1.005)

AJCC stage IV vs 0 - - - - 4.797 4.723
- - - - (0.927) (1.005)

NOTE: ER, estrogen receptors; PR, progesterone receptors; CS tumor size, Collaborative Stage tumor size;

HER2, human epidermal growth factor receptor 2; AJCC stage, American Joint Committee for Cancer stage

grouping, 7th edition; the entire dataset is divided into 11 data batches according to the year of diagnosis,

where the Bth batch includes breast cancer cases diagnosed in year 1999 + B. The covariate CS tumor

size is available starting with the 5th batch and covariates HER2 and AJCC stage are available starting

with the 11th batch; θ̂B , the proposed hybrid empirical likelihood scalable estimator; θ̃∗
B , the maximum

likelihood estimator calculated using the data batches which share the same set of covariates; standard

error estimates are given in the parentheses.
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ecution when compared to standard estimation. Our approach can also ac-

commodate the addition of covariates over time and can achieve significant

efficiency gains compared to using only the batches of data with complete

covariate information. We developed two testing procedures to check the

homogeneity assumption for the proposed scalable estimation methods. Re-

jection of the null hypothesis indicates potential violation of the assumption

and hence scalable estimation using the proposed approaches may not be

reliable. When the homogeneity assumption is violated, one needs to postu-

late proper statistical models to accommodate the batch heterogeneity and

extend the scalable estimation methods to account for such heterogeneity.

This will be studied in our future research.

Supplementary Materials

The Supplementary Materials contain additional numerical simulations, ad-

ditional analysis of SEER breast cancer dataset, the proofs of Theorems 1–3,

and details of the proposed computation algorithm.

Appendix

We adopt the following regularity conditions:

(C1) The vector of covariates X is bounded with probability one. The
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true value β0 lies in a compact subset of Rd.

(C2) The censoring time C is conditionally independent of T given X.

(C3) The vector of covariates Z is bounded with probability one. The

true value θ0 lies in a compact subset of Rq.

(C4) The censoring time C is conditionally independent of T given Z.

(C5) Let γ = (θ⊺,β⊺)⊺ and let γ0 = (θ⊺
0 ,β

⊺
0)

⊺ be the true value of γ.

For k = 0, 1, define s
(k)
Z (t,θ) = E{I(Y ≥ t) exp(θ⊺Z)Zk} and s(k)(t,β) =

E{I(Y ≥ t) exp(β⊺X)Xk}. Let U(γ) = (g(θ)⊺, h(β,θ)⊺)⊺, where

g(θ) =

∫ ∞

0

{
Z − s

(1)
Z (t,θ)

s
(0)
Z (t,θ)

}
{dN(t)− I(Y ≥ t) exp(θ⊺Z)dΛ∗

0(t)} ,

h(β,θ) =

∫ ∞

0

{
X − s(1)(t,β)

s(0)(t,β)

}{
dN(t)− I(Y ≥ t) exp(β⊺X)

s
(0)
Z (t,θ)

s(0)(t,β)
dΛ∗

0(t)

}
.

The functions ∂U(γ)/∂γ and ∂2U(γ)/∂γ∂γ⊺ are continuous in a neighbor-

hood of γ0. Moreover, functions ∥U(γ)∥3, ∥∂U(γ)/∂γ∥ and ∥∂2U(γ)/∂γ∂γ⊺∥

are bounded by some integrable functions in this neighborhood.
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