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Micromachined 
/.. 

Mechanical-Thermal Noise in 
Acoustic and Vibration sensors 

Thomas B. Gabrielson 

Abstract-Since the introduction of the micromachining pro- 
cess, wherein mechanical structures are etched from blocks of 
silicon, a number of very small acoustic and vibration sensors 
have been built. This size reduction is attractive for many ap- 
plications but the small moving parts are especially susceptible 
to mechanical noise resulting from molecular agitation. For 
sensors designed for small-signal applications (microphones and 
hydrophones, for example), this mechanical-thermal noise is 
often one of the limiting noise components. While this compo- 
nent is often neglected in design and analysis, it is relatively 
easy to estimate, since, like electrical-thermal noise, the mag- 
nitude of mechanical-thermal noise depends only on tempera- 
ture and the magnitude of mechanical damping. This paper re- 
views several techniques for calculating the mechanical-thermal 
noise in acoustic and vibration sensors in general and in micro- 
machined sensors in particular. 

I. INTRODUCTION 
HE micromachining process has made possible the T construction of a variety of miniature small-signal ac- 

celerometers and acoustic pressure sensors (for example, 
[ 1]-[3]). Ranging from simple capacitive pressure sensors 
[4] to accelerometers that measure the proof-mass dis- 
placement by electron tunneling [ 5 ] ,  these sensors are at- 
tractive for many space-limited applications. However, in 
gases at normal pressures or in liquids, the small moving 
parts are especially susceptible to mechanical noise re- 
sulting from molecular agitation. If the sensor is intended 
for low-level signals, this mechanical-thermal noise can 
be the limiting noise component. 

Mechanical-thermal noise is not a new concept but its 
effects are frequently “rediscovered” when a sensor tech- 
nology is pushed to the limit of its sensitivity. Docu- 
mented examples range from the mirrored galvanometer 
[6] to condensor microphones [7] and gravity-wave de- 
tectors [8]. One of the more well-known mechanisms for 
mechanical-thermal noise is Brownian Motion. Here, the 
agitation of an observable object is caused by molecular 
collisions from a surrounding gas or liquid and the agi- 
tation is directly related to the fluid’s viscosity [9]. In fact, 
any molecular agitation even through solid structures like 
springs and supports can cause random motion of an ob- 
ject. Often, it is assumed that the preamplifier noise dom- 
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inates the sensor noise floor [lo]; while this is true in some 
cases, this assumption is particularly dangerous with mi- 
crominiature sensors for which mechanical-thermal noise 
can sometimes set a much higher noise floor. 

11. MECHANICAL-THERMAL NOISE 

The thermodynamically proper equation of motion for 
the displacement z of a damped harmonic oscillator with 
mass m, spring constant k, and mechanical resistance R ,  
is 

d2z dz 
dt dt 

m 7 + R - + kz = f , ( R ,  t ) .  

The presence of damping in the system suggests that any 
oscillation would continue to decrease in amplitude for- 
ever. Even the small, random jitter caused by molecular 
motion would decay. Inclusion of the fluctuating force fn 
prevents the system temperature from dropping below that 
of the system’s surroundings. 

The presence of the damping term in the equation re- 
quires that the fluctuating force be present as well. The 
damper provides a path for energy to leave the mass-spring 
system but this path works both ways: Random thermal 
agitation from the environment also affects the oscillator’s 
motion. This is the essence of the Fluctuation-Dissipation 
Theorem [ 111. If there is a mechanism for dissipation in 
a system, then there will also be a component of fluctua- 
tion in that system directly related to that dissipation. 

In practice, there are two tools for analyzing equilib- 
rium fluctuations: the Equipartition Theorem and the 
Nyquist Relation. According to Equipartition [ 121, [13], 
if any collection of energy storage modes is in thermal 
equilibrium, then each mode will have an average energy 
equal to $kBT where kB is Boltzmann’s constant (1.38 X 

J/K) and T i s  the absolute temperature. A mode of 
energy storage is one in which the energy is proportional 
to the square of some coordinate; e.g., kinetic ($mu2) ,  
spring potential ( ‘kx2 1, electrical potential ( $ c v2 ), ro- 
tational-kinetic (?lo 2 ) .  Consequently, the mean-square 
displacement of a mass-spring oscillator resulting from 
thermal agitation is 

12 

i k  (x2) = iksT [J] (2) 

where ( x 2 >  can be taken as the average of the spectral 
density of x2 over all frequencies. 
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Nyquist’s Relation [ 131, [ 141 gives the spectral density 
of the fluctuating force related to any mechanical resis- 
tance 

F = J 4 k , T R  [N/&] (3) 
or the fluctuation pressure related to any acoustic resis- 
tance (R,,, = R / S 2  where S is the area of the active face) 

p = J4k,TR,,, [ ~ a / J H z l .  (4)  
This is a direct physical analog of Johnson noise related 
to electrical resistance. (This is not surprising since John- 
son noise is produced by scattering of free electrons by 
mechanical-thermal vibration of the conductor’s solid lat- 
tice [ 151 .) Nyquist’s Relation holds even if the resistance 
is a function of frequency [ 111. This result is derived di- 
rectly from equipartition: A system mode having $kBT 
broadband energy is equivalent to the damper in the sys- 
tem having an associated force generator with 
spectral density. 

Any mechanical system in thermal equilibrium, no mat- 
ter how complex, can be analyzed for mechanical-thermal 
noise by adding a force generator alongside each 
damper. Fig. 1 shows the inclusion of such a noise force 
for a simple mass-spring oscillator and Fig. 2 illustrates 
the noise forces for a compound mass-spring system. No- 
tice especially in Fig. 2 that the noise force acts at both 
ends of the damper. (The action on the frame in Figs. 1 
and 2 is inconsequential for these analyses and so is omit- 
ted.) Since the noise mechanisms are usually uncorre- 
lated, the system would be analyzed for each noise force 
separately. Then the total noise would be computed by 
adding the squares of the individual noise components and 
taking the square root of the sum. 

Often, the most convenient approach to noise analysis 
in complicated systems is to draw the electrical equivalent 
circuit and use a software circuit-analysis program to de- 
termine the noise response. In fact, it is hard to ignore 
mechanical-thermal noise this way because the mechani- 
cal dampers translate to electrical resistors and the John- 
son noise of resistors is well known. 

Fig. 1. Schematic diagram of a simple accelerometer including displace- 
ment coordinates and free-body diagram. 

Y l  
Fig. 2 .  Illustration of addition of noise forces to a two-mass-spring sys- 

tem. 

where 

and 4 ~ 7 :  = w i  = k / m .  In the accelerometer limit (f 
<< f o ) ,  the noise displacement becomes 

I zn(.f> 1 = J4kBTR/k (7) 

which can also be expressed in terms of the Q of the os- 
cillator (since Q = wom/R)  

IZ,(f)I = d4kBT/w0kQ = J4kBT/wimQ. (8) 

The signal response is 

I Z,(f> I = (f/fd’c(f> I y, I (9) 
but w21 Y, I is the magnitude of the input acceleration, a, 
(in meters per square second per root hertz), so 

l z m l  = a , G ( f ) / 4 .  (10) A. The Simple Accelerometer 
The generic accelerometer sensor is shown schemati- 

cally in  Fig. 1. When the case is exposed to some accel- 
eration, the interior mass moves relative to the case. This 
relative displacement is translated to an electrical output 

G(f)  = 1 in the a c c e ~ e ~ O ~ e t e r  limit. 
The signal-to-noise ratio (SNR) at any frequency is then 

signal. Also shown in Fig. 1 is the equivalent noise force 1Z,T/Zn12 = a:mQ/4kBTw0. (1 1) 
F,,. Of course, the noise force also acts on the sensor case 
through the other end of the damper but that is not im- 
portant here. In the frequency domain, the signal excita- 
tion displacement is Y(f) and the response is Z(f). To 
get the noise response, set the signal Y to zero and solve 
for Z ,  in terms of F,,; to get the signal response, set F,, to 
zero and solve for Z ,  in terms of the case displacement Y. 

Solving the simple accelerometer for the noise response 
gives 

IZ,(f)l = G ( f ) / k  [m/JHzI ( 5 )  

Here, the “signal” is taken to be the power spectral den- 
sity of the ambient noise of the environment. This is ap- 
propriate for a sensor designed for optimum reception of 
real signals in this ambient; if, however, the real signals 
are guaranteed never to approach the environmental am- 
bient, then the minimum real signal level should be used. 
(That could be a single-frequency level rather than a spec- 
tral density in which case the noise power in the analysis 
bandwidth should be used instead of noise spectral den- 
sity.) 
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p-b ergy to escape from the orderly motion of the sensor 
counts as dissipation. These mechanisms include mechan- 
ical damping in the spring and supports, viscous drag, 
acoustic reradiation, electrical leakage, and magnetic q $J A eddy-current damping. (In some cases, the deterministic 
effects of damping can be reduced by electromechanical 

- T z  

////////////// 

Fig. 3 .  Schematic diagram of simple pressure sensor including displace- 
ment coordinate and applied force. 

feedback but this in no way improves the ratio of signal 
to thermal noise. It is the real damping that determines 
the thermal fluctuations, not the apparent damping after 
feedback.) 

Many times, measurements Of a vibrating system’s 

therefore, the fluctuating force can be calculated from 

From (1 I), it is apparent that the SNR can be improved 
by increasing the Q, reducing the resonance frequency wo, 

ing the 
or increasing the mass m (which also lowers W O ) .  Increas- 

far enough so that it is within the band of expected signals 
is usually not prudent because this introduces a nonlinear 

dominant mass and Q are Simple; the resistance and, 

these measurements. In Other cases, the damping mecha- 
nism is simp1e enough to permit direct 

counter to miniaturization. Lowering 

phase into the system response. Increasing the Q can cause 
problems also: if the oscillator has a high Q, then out-of- 

band amplitude) and the mechanical system must have 
enough dynamic range to handle these large movements. 
Also, a high-Q system introduces long, oscillatory tails 
onto any rapid level changes. 

Once the resistance has been Or 

measured, the signal-to-noise ratio can be computed fmm 

(or acceleration) can be computed for comparison with the 
lowest signal level anticipated. The equivalent noise pres- 
sure (in Pa/&), is equal to the spectral density of the 
fluctuating force (3) divided by the area of the sensor dia- 
phragm (or, directly from (4)). 

band oscillations can be large (as much as Q times the in- (11) or (13). Alternatively, the equivalent noise pressure 

B. The Simple Pressure Sensor 
In the simple pressure sensor, the moving mass is di- 

rectly exposed to the incident acoustic pressure and the 
displacement of this mass is measured. Such a sensor is 
shown schematically in Fig. 3. For an arbitrary force F, 
the displacement response Z is 

IZI = FG(f)/k. (12) 
For signal, the force F = psS, where S is the area of the 
transducer face and ps is the spectral density of the signal 
pressure; for noise, the force F = so the signal- 
to-noise ratio is 

(13) 
In this case, the signal-to-noise ratio can be improved by 
increasing the area, increasing the Q, reducing the reso- 
nance frequency, or reducing the mass. Reduction of the 
mass would seem to favor microminiaturization but the 
worn product goes as &, which makes this dependence 
weak, whereas the dependence on area is as area squared. 

The foregoing analyses apply to sensors that are well- 
represented by a single mass-spring system. While this is 
adequate for many hydrophones, microphones, and vibra- 
tion sensors, some designs are more complex. The solu- 
tion procedure for more complicated systems is more te- 
dious but it is, in principle, identical to the simpler 
systems: Each damper in the system is given its own 
noise-force generator. 

IZs /Zn l 2  = ( P , S ) ~ / ~ ~ J R  = Q ( ~ ~ S ) ~ / 4 k ~ T w o m .  

111. DISSIPATION MECHANISMS 

One of the keys to evaluating mechanical-thermal noise 
is understanding the sources of dissipation in the system. 
In terms of fluctuations, any mechanism that allows en- 

For capacitive sensors, the very thin gaps that permit 
low polarization voltage and high capacitance per unit area 
also lead to squeeze-film damping-the viscous loss as- 
sociated with squeezing the fluid out from between mov- 
ing surfaces [16]. Squeeze-film damping can easily dom- 
inate the dissipation mechanisms for gaps of several 
micrometers. For two parallel disks of area S ,  with aver- 
age spacing ho, the equivalent mechanical resistance is 

Rfilm = 3pS2/2nhi [N s/m] (14) 
where 1.1 is the fluid’s viscosity (18 X kg/m s for 
air at 20°C; kg/m s for water at 20°C). Notice 
the strong dependence on the spacing. 

If one disk is perforated, the damping can be reduced 
considerably as the fluid can escape through the perfora- 
tions instead of being squeezed out the disk edges. In this 
case, the mechanical resistance is given approximately by 
~ 7 1  

where N is the total number of holes in the perforated 
plate, A is the fraction of open area in the plate, and 

This expression assumes that the fluid flows only through 
the perforation holes and not out beyond the edges of the 
plates; consequently, the limit as A goes to zero is not the 
simple squeeze-film expression, (14). A more complex but 
more accurate theoretical expression is given by Zucker- 
war [ 181 ; however, for many practical applications a good 
approximation consists of the parallel combination of the 
resistances given by (14) and (15). 
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Radiation resistance can be a significant dissipation 
mechanism above 10 kHz. The mechanical radiation re- 
sistance for a simple pressure sensor is approximated 
closely (for ka < 1) by [19] 

R, = p c ~ a ~ ( k a ) ~ / 4  [N s/m] (17) 

where k is the acoustic wavenumber ( w / c ) ,  p and c are 
the density and sound speed of the fluid, and a is the ra- 
dius of the piston. (The convention e f i W t  is assumed.) Oc- 
casionally, the noise corresponding to the radiation resis- 
tance is taken to be the only relevant component of 
thermal-agitation noise at normal pressures [20], [21]; this 
is certainly not true because the radiation impedance 
expression given above ignores the effects of viscosity. 
For sensors operating below several tens of kilohertz, the 
noise associated with film damping (14) and (15) nor- 
mally overwhelms that associated with the zero-viscosity 
radiation resistance. 

IV. CAPACITIVE MICROPHONE 

Noise-floor requirements for microphones can be de- 
manding. A professional recording studio would gener- 
ally be designed to keep the background noise at an 
A-weighted level of 25 dB [22], which corresponds to a 
spectral density of several micropascals per root hertz. 
Research applications might require even lower levels. An 
acoustic sensor for such applications must have a noise 
floor somewhat below these levels. Although mechanical- 
thermal noise is not so serious a problem in convention- 
ally sized microphones, it is easily observed. For exam- 
ple, the measurements of Tarnow [7], [23], and Ngo [24] 
on Briiel and Kjaer condensor microphones showed that 
the noise floor above several hundred hertz results from 
mechanical-thermal noise. 

In a micromachined capacitive sensor, the gap can be 
made very small (several micrometers at a unit cost of 
tens of dollars) thereby producing small sensors with a 
proportionately higher capacitance than conventional sen- 
sors. As discussed below, this accentuates mechanical- 
thermal noise especially since the damping increases rap- 
idly with decreasing gap. In addition, heterodyne (ac bias) 
schemes are available (e.g., [25], [26]) which, in effect, 
reduce the impedance of the capacitor element to pream- 
plifier noise currents. This can radically reduce the effect 
of the preamplifier current noise but does nothing about 
the mechanical-thermal noise. If the designer is unaware 
of the mechanical-thermal noise floor, unrealistic expec- 
tations can result. 

Since good noise spectral measurements are rarely pub- 
lished for micromachined sensors, it is worth considering 
some of the experiments with conventional capacitor mi- 
crophones. Tarnow [7], [23] and, later, Ngo [24] both 
performed careful spectral density measurements of noise 
from Briiel and Kjaer capacitor microphone cartridges. 
With measurements of the microphone damping and pre- 
dictions by Zuckenvar [ 181, excellent agreement was ob- 

tained between predicted levels of mechanical-thermal 
noise and the observed noise above several hundred hertz. 
(These measurements were all done with dc bias and so 
the low-frequency noise was dominated by the preampli- 
fier current noise interacting with the high-impedance ca- 
pacitive element.) 

For example, the Briiel and Kjaer 4134 (1 /2  in) capac- 
itor microphone has been modeled and measured by sev- 
eral researchers [7], [18], [23], [24]. Zuckerwar [18] 
measured the following characteristics of the diaphragm 
and backplate: a backplate of radius = 3.61 mm with 6 
holes, each having a radius of 0.508 mm, and a backplate- 
to-diaphragm spacing of 21 pm. Using a parallel combi- 
nation of the resistances given by (14) and (15) (and di- 
viding by the sensor area squared), this gives a total 
acoustic resistance of 207 X lo6 N * s/m5. Zuckerwar's 
more accurate calculation gives a value of 189 X lo6 N 

s/m5, while Tarnow [7] quotes a value of 154 X lo6 N 
s/m5 and Ngo [24] uses 125 x lo6 N s/m5.  Overall, 

the equivalent pressure noise related to these resistance 
values (4) would be between 1.4 and 1.8 pPa/&. Tar- 
now measured a level of between 1.6 and 2 pPa/& 
from 1 to 20 kHz; Ngo measured a level of 2 pPa/& 
between 2 and 20 kHz. The correspondence between 
either measurement and the predicted range is good. 

Tamow [7] also measured the noise for the larger B&K 
4144 (1 in) microphone. He quotes an acoustic resistance 
of 18 X lo6 N * s/m5, which corresponds to an equiva- 
lent noise pressure of 0.54 pPa/&, and he measured 
levels of from 0.4 to 0 .5  pPa/&. These measurements 
covered 100 Hz to 20 kHz, well beyond the natural res- 
onance of the microphone (5  kHz) and, when corrected 
for the frequency response, agreed well with the predicted 
value for mechanical-thermal noise alone. He also mea- 
sured the temperature dependence of the noise down to 
liquid-nitrogen temperature (77 K) and found the proper 
linear dependence on absolute temperature for the noise 
power. 

As an example of mechanical-thermal noise analysis for 
a micromachined sensor, consider the capacitive micro- 
phone described by Hohm and Hess [4]. This device has 
a 0.8 by 0.8 mm diaphragm and a 0.5 by 0.6 mm back- 
plate forming an active capacitor with a 2-pm gap. With 
air as the dielectric, the capacitance is 1.3 pF and the 
squeeze-film damping resistance from (14) is about 0.1 N 

s / m  (which corresponds to an acoustic resistance of 2.4 
X 10" N - s/m5). The damping terms that results from 
reradiation and viscous flow around the backplate into the 
back volume are several orders of magnitude below the 
squeeze-film damping and any mechanical damping in the 
diaphragm will be ignored. 

The rms fluctuating force on the diaphragm (3) asso- 
ciated with the squeeze-film damping dominates the me- 
chanical-thermal noise and is equal to 4 x lo-" 
N/&, which, when applied to the 0.64 X m2 dia- 
phragm, results in an equivalent noise pressure of 60 
pPa/ 6. This equivalent noise pressure spectral density 
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corresponds to an A-weighted sound level of about 50 dB. 
(The equivalent noise bandwidth of the A-weighting func- 
tion is about 15 kHz.) In comparison, the ambient noise 
level ranges from 25 to 30 dB in a quiet recording studio 
[22] and from 30 to 50 dB in a quiet residential area [19]. 
Consequently, this microphone is not suited for recording 
low-level signals in quiet environments (as the authors re- 
mark). 

If this microphone had been intended for, say, record- 
ing studio use, it would have to be redesigned. Since its 
intrinsic noise floor mimics such a high acoustic level, it 
is immaterial what the pressure-to-voltage transfer con- 
stant of the microphone is: the stated design is inade- 
quate. The transfer constant (receiving sensitivity) does 
determine whether or not the preamplifier will dominate 
the noise floor. The measured transfer constant for this 
device is about 1 mV/Pa, so the voltage noise corre- 
sponding to the mechanical-thermal noise would be 60 
nV/&. Using an inexpensive, low-noise JFET like the 
2N4338 (8-nV/& input voltage noise, 0.8-fA/& 
input current noise) as the preamplifier input stage, the 
mechanical-thermal noise would be the dominant com- 
ponent above 500 Hz. (The total capacitance of the mi- 
crophone is 6 pF.) 

If an equivalent A-weighted noise level of 20 dB were 
required, the microphone would have to be modified. This 
level corresponds, roughly, to a uniform pressure spectral 
density of 2 pPa/&. The acoustic resistance, then, 
must be no larger than 2.5 x 10’ N s/m5.  If the back- 
plate area is assumed to be half of the diaphragm area, 
then the squeeze-film resistance equation (14) can be 
solved for the new diaphragm-to-backplate spacing, which 
is about 20 pm-ten times larger than the original spac- 
ing. 

If no other changes were made, the active capacitance 
would be one tenth of the original capacitance and the 
electromechanical transformation coefficient [ 191, + (ra- 
tio of diaphragm velocity to electrical current) would be 
one hundredth of the original value, where 

+ = CoVo/ho [A * s/m]. (18) 

Here, CO is the active capacitance, Vo is the bias voltage, 
and ho is the gap. The smaller value of + would lead to 
greatly reduced sensitivity. If the diaphragm area were 
increased to maintain the original capacitance, the new 
diaphragm would be 2.5 by 2.5 mm, and the polarization 
voltage would have to be raised by a factor of ten to main- 
tain the original +. Also, the back volume would have to 
be enlarged to preserve the sensitivity. Overall, the result 
is a much larger sensor. 

A complete noise analysis would, of course, include 
the effects of at least the first stage of amplification. In 
order to properly account for the source impedance, a 
complete electromechanical equivalent circuit should be 
drawn. One of the standard representations [ 191 for a ca- 
pacitive sensor is shown in Fig. 4. The radiation imped- 
ance is included as R, and m,; the mechanical damping, 

Fig. 4. Electromechanical equivalent circuit for capacitive microphone. 

stiffness, and mass of the sensor are included as R ,  k ,  and 
m; and the electrical characteristics as CO and Ro. Parasitic 
capacitance would be added in parallel with Co. The 
“voltage” driver is a function of the acoustic pressure p ,  
and the transducer diaphragm area S .  

Rather than increasing the plate spacing, a more effec- 
tive way to decrease the damping is to perforate the back- 
plate. Bergqvist et al. [17] describe such a microma- 
chined microphone, which has a calculated noise level of 
22 dB(A) with a 2 by 2 mm diaphragm. While not much 
smaller than the 20 dB(A) design above, a small gap (2 
pm) can be maintained, which allows a low bias voltage. 

This unit has a transfer constant of 1.8 mV /Pa, a work- 
ing capacitance of 5 pF, and a total (including stray) ca- 
pacitance of 20 pF. From estimates from electron micro- 
photographs, the backplate appears to have about 1600 
holes with a ratio of open to total area (A)  of about 1 /3 .  
In air, then, using (15), the acoustic resistance would be 
280 x lo6 N s/m5, which results in an equivalent noise 
pressure of 2 pPa/& or about 22 dB(A). This would 
be adequate for many low-noise applications. Because the 
capacitance is low (as is true for most micromachined ca- 
pacitive sensors), unless a heterodyne system is used 
[e.g., 261, the preamplifier input current noise must be 
considered. With a transfer constant of 1.8 mV/Pa, the 
mechanical-thermal noise voltage would be 4 nV /& or 
just below the input voltage noise of a 2N4338 JFET. For 
a total source capacitance of 20 pF, the input voltage 
component that results from the JFET current noise into 
the source impedance would be greater than 4 nV/& 
at all frequencies below 1600 Hz. 

While the Bergqvist design performs well as a micro- 
phone, a similarly designed hydrophone may not be so 
successful. In order to keep the diaphragm from collaps- 
ing onto the backplate with increasing hydrostatic pres- 
sure, such a hydrophone would normally be fluid-filled 
instead of air-filled. Without a large increase in fluid-res- 
ervoir volume, the transfer constant would drop dramati- 
cally, but there is an even more fundamental change in 
the mechanical-thermal noise. Using the same physical 
parameters for the diaphragm and backplate as above, but 
substituting an electrical-grade silicone oil (kinematic vis- 
cosity of 50 centistokes or dynamic viscosity of 0.046 N 

s/m3) for the air increases the acoustic resistance to 720 
x lo9 N s/m5.  This results in an equivalent pressure 
noise of 107 pPa/&, a level high enough to interfere 
with ambient noise measurements in the ocean above sev- 
eral hundred hertz [27]. Lower viscosity oils are available 
but leakage currents, ion migration, and depolarization 
can prevent their use [28] especially with dc bias. 
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V. ELECTRON-TUNNELING ACCELEROMETER 

Accelerometers are often used to measure motion of 
solid surfaces and to measure directional components of 
acoustic and nonacoustic motion in fluids. In the case of 
an underwater acoustic sensor, a minimum detectable sig- 
nal of better than m/s2/& (10 ng/&) might 
be required [27] for detecting low-level signals against a 
quiet ocean ambient level. While capacitive accelerome- 
ters have been built, accelerometers that use electron tun- 
neling to measure the displacement of the proof mass with 
respect to the case have some advantages. Low-frequency 
noise for tunneling goes as 1 / f  instead of 1 / f 2  as for a 
capacitor. In addition, the displacement sensitivity is high. 
The tunneling current It is exponentially sensitive to the 
separation x 

1, = Io exp (-x/xo> [AI (19) 

where I,, is a function of the voltage Vb applied between 
the conductors and 

xo = 1 / a &  [m] (20) 
where CY = 1.025 x 10" m-l * eV-1/2 and 9 is the ef- 
fective work function of the surfaces [29]. For gold to 
gold, 9 is about 0.5 eV and xo is about a tenth of a na- 
nometer [SI. Therefore, the tunneling current changes by 
a factor of about three for a displacement change of a tenth 
of a nanometer. The small-signal displacement-to-current 
transfer constant is given by the derivative of (19), or 

I W ~ l  = I I / X O  [A/mI. (21) 

Since xo is so small, the tunneling current is extremely 
sensitive to displacement. The response to displacement, 
however, is strongly nonlinear so electromechanical feed- 
back is normally used to make the output linear (and to 
stabilize the tunneling gap). 

As an example, consider the electron-tunneling acce- 
lerometer described by Kenny er al. [5]. This is a micro- 
machined device with a mass of 30 x lop6  kg and a spring 
constant of 60 N / m  (thus a resonance frequency of 225 
Hz). The gold-to-gold gap is maintained so that the av- 
erage tunneling current is 1 .3  nA with an applied bias 
voltage of 100 mV. According to (21), the displacement- 
to-current sensitivity is 9 .4  A/m.  The dynamic response 
can be calculated from (10) and is equal to 9 .8 /wi  meters 
per g of acceleration below the resonance frequency. 
Coupled with the displacement current sensitivity, the 
overall transfer constant is 4.6 X A/g.  With a JFET- 
input preamplifier (e.g., 2N4338 having an input current 
noise of the order of lo-' '  A /  & Hz, this suggests a min- 
imum sensitivity of lo-' ' to lo-' '  g/&, which would 
be remarkable performance. 

Because tunneling involves random emission of elec- 
trons across the gap, a shot-noise component [13] must 
also be considered 

where q is the charge on an electron (1.6 x C). For 
a tunnel current of 1 .3  nA, the shot-noise component is 2 
x A/&-an order of magnitude higher than the 
hypothetical preamplifier noise. This would reduce the 
expected minimum sensitivity to 4 x g/&, still 
well below the 10 ng/& that might be required for an 
underwater acoustic sensor. 

The force-balance feedback for this accelerometer is 
applied by electrostatic force through parallel plates, 7 
mm by 11 mm, spaced 50 pm apart. Since the plates are 
solid, the squeeze-film damping can be calculated from 
(14) for air between the plates. The resulting mechanical 
damping is 0.41 N s / m  (which corresponds to a Q of 
0.1). From (7), the displacement noise below the reso- 
nance frequency is 1.3 X 10-l2 m/&. The equivalent 
acceleration noise is 2.7 X g/&, much greater 
than the 10 ng / & requirement. The mechanical-ther- 
mal noise is three orders of magnitude greater than the 
shot noise and, while this minimum sensitivity is still good 
for such a small device, ignoring the mechanical-thermal 
noise would clearly lead to exaggerated performance 
claims. 

Fortunately, Kenny et al. [5], measured the noise from 
this accelerometer, although the noise is dominated by 1 / f  
noise. At about 2 kHz, the noise makes a transition from 
l / f t o  an increase with frequency associated with a res- 
onance in the electrostatic deflection system. The mea- 
sured level-2 X A/&-at this minimum is still 
probably due to the 1 lfnoise but it is not out of line with 
the predicted mechanical-thermal equivalent current noise 
of 1.4 x A/&. (Note: since 2 kHz is well above 
the resonance frequency of 225 Hz, ( 5 )  must be used to 
calculate the equivalent displacement noise, from which 
the current noise can be computed.) 

As Kenny et al. demonstrate, the 1 l fnoise  can be re- 
duced by applying force-balance feedback, although ex- 
tending the feedback bandwidth beyond the resonance 
frequency leads to instability because of the mechanical 
~ / 2  phase shift introduced by the mass-spring system. 
Alternatively, the 1 / f  noise can be virtually eliminated 
by using a heterodyne detection scheme. Consequently, 
the device is fundamentally limited by mechanical-ther- 
mal noise. In order to drop this level to the "quiet" ocean 
ambient level of 10 ng/&, the displacement noise 
would have to be dropped to 5 X m/&. This 
would require a mechanical resistance of 0.00054 N 
s /m or a Q of about 80. Since an accelerometer can be 
enclosed in a completely rigid case (unlike a pressure sen- 
sor), the case can be used to withstand hydrostatic pres- 
sure and the sensor itself can be evacuated, which should 
produce a sufficiently high Q. 

One proposed equivalent circuit [30] for an electron- 
tunneling accelerometer is shown is Fig. 5. The mechan- 
ical representation includes the mass of the case m,, in 
addition to the damped spring-mass system (R ,  k ,  m). The 
accelerometer is driven by a constant-velocity source but 
that could be replaced by a voltage source representing 
constant pressure drive if the sensor were immersed in a 
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m 
C 

Fig. 5. Electromechanical equivalent circuit for electon-tunneling acceler- 
ometer. 

fluid (as a hydrophone would be). If necessary, the radia- 
tion load can also be included as in Fig. 4, but, for noise 
analyses, the radiation resistance for the accelerometer is 
even less significant below several kilohertz than for the 
pressure sensor: The radiation resistance for an acceler- 
ometer goes as frequency to the fourth power [3 11. 

The transfer constant (force to current) is given by 

P = wJ;mJ [A”. (23) 

Notice that the mechanical resistance does not appear in 
the output branches. The thermal noise from this resis- 
tance enters the output circuit through fm. Since electron 
tunneling is nonreciprocal [32], the amplifier current noise 
does not feed back into the mechanical circuit so the am- 
plifier-induced noise is not as large as it would be for a 
reciprocal transducer. This advantage is inconsequential 
though, if the device is dominated by thermal noise in the 
mechanical circuit. 

As the preceeding examples illustrate, mechanical- 
thermal noise can have observable consequences in mi- 
cromachined sensors. The gross effects can be estimated 
easily either through Nyquist’s Relation or the Equipar- 
tition Theorem. Whenever a high-sensitivity microma- 
chined sensor is being designed, an analysis of mechani- 
cal-thermal noise should be included at an early stage to 
avoid being trapped with an unacceptably high noise floor. 
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