National Academies Press: OpenBook

Pile Design for Downdrag: Examples and Supporting Materials (2024)

Chapter: Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations

« Previous: Appendix B: Statistical Analyses of t-z and q-z Curve Models
Page 73
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×

APPENDIX C

Design Example 1 — Embankment Fill Over Clay Using Hand Calculations

Design Example Problem 1 was formulated from the Briaud and Tucker (1997) Example Problem 1, as found on Pages 99 through 101 of Briaud and Tucker (1997). The data sheets (Pages 86 through 88 of Briaud and Tucker, 1997), that were used to program the data into the Briaud and Tucker (1997) PILENEG program, were referenced for the Design Example Problem 1 that is presented herein. Procedures for determining the location of the neutral plane and magnitudes of the drag load and downdrag are demonstrated using 1) Load-Resistance profiles and 2) Pile-Soil Settlement profiles by means of the proposed Method A (fully-mobilized) procedures proposed by the NCHRP 12-116A project team. This design example is related to pile loading resulting from a change in effective stress in the soil deposit due to an embankment load being placed on the soil surface. The example is provided through a series of steps to aid in completion of the analysis. The series of steps follow the flowchart proposed by the NCHRP 12-116A project team. For clarity, the modified series of procedural steps follow the NCHRP12-116A flowchart that is shown on the next page instead of the steps that were provided on pages 59 through 63 of Briaud and Tucker (1997). The design example is presented in SI units because the original Briaud and Tucker (1997) data were in SI units.

The provided data included the maximum shaft resistance and pile shape, cross-sectional area, embedded length, and modulus (Pages 85 and 87 of Briaud and Tucker, 1997). The load placed at the top pile was also provided (Page 86 of Briaud and Tucker, 1997). Additional information included soil settlement data and soil bearing data including Young’s modulus, Poisson’s ratio, and the ultimate bearing resistance (Page 88 of Briaud and Tucker, 1997). The provided data are summarized in Table C1. The output data from the PILENEG program, as found on pages 99-100 of Briaud and Tucker (1997), are presented in Table C2.

Page 74
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×

Table C1. Briaud and Tucker (1997) Example Problem 1 PILENEG Program input data.

Pile Material Concrete * Inferred or interpolated parameters using correlations contained in Briaud and Tucker (1997). Fig. 2.5 in this table refers to Fig. 2.5 from Briaud and Tucker (1997).
Pile Shape Octagonal
Pile Face [mm] 174*
Pile Perimeter [m] 1.39
Pile Area [m2] 0.145
Pile Embedded Length [m] 41.76
Pile Modulus [kN/m2] 2.41 x 107
Top Load on Pile [kN] 2225
Number of Pile Increments 50
Maximum Shaft Resistance Depth [m] Shaft Resistance [kN/m2]
0 12.92, 13*(su B&T Fig.
22.86 30.80, 31*(su B&T Fig.
41.76 94.18, 128* (su Fig. 2.5)
Soil Settlement Depth [m] Soil Settlement [m]
0 0.335
6.10 0.165
9.14 0.119
12.19 0.088
15.24 0.058
21.34 0.034
41.76 0.015
Soil Young’s Modulus [kN/m2] 21531
Soil Poisson’s Ratio 0.3
Soil Ultimate Bearing Capacity 7097
Groundwater Table Depth [m] 0*
Page 75
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
presentation
Page 76
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×

Table C2. Briaud and Tucker (1997) Example Problem 1 PILENEG Program output data.

Depth [m] Axial Force [kN] Axial Stress [kN/m2] Soil Settlement [m] Pile Settlement [m]
0.000E+00 2.225E+03 1.534E+04 3.200E-01 9.047E-02
8.352E-01 2.240E+03 1.545E+04 2.967E-01 8.994E-02
1.670E+00 2.257E+03 1.556E+04 2.734E-01 8.940E-02
2.506E+00 2.273E+03 1.568E+04 2.502E-01 8.886E-02
3.341E+00 2.291E+03 1.580E+04 2.269E-01 8.831E-02
4.176E+00 2.309E+03 1.593E+04 2.036E-01 8.776E-02
5.011E+00 2.329E+03 1.606E+04 1.803E-01 8.721E-02
5.846E+00 2.349E+03 1.620E+04 1.571E-01 8.665E-02
6.682E+00 2.369E+03 1.634E+04 1.412E-01 8.609E-02
7.517E+00 2.391E+03 1.649E+04 1.286E-01 8.552E-02
8.352E+00 2.413E+03 1.664E+04 1.159E-01 8.494E-02
9.187E+00 2.436E+03 1.680E+04 1.035E-01 8.436E-02
1.002E+01 2.460E+03 1.696E+04 9.503E-02 8.378E-02
1.086E+01 2.484E+03 1.713E+04 8.654E-02 8.319E-02
1.169E+01 2.509E+03 1.731E+04 7.805E-02 8.259E-02
1.253E+01 2.535E+03 1.748E+04 6.968E-02 8.199E-02
1.336E+01 2.527E+03 1.743E+04 6.146E-02 8.138E-02
1.420E+01 2.500E+03 1.724E+04 5.325E-02 8.078E-02
1.503E+01 2.472E+03 1.705E+04 4.503E-02 8.019E-02
1.587E+01 2.443E+03 1.685E+04 4.053E-02 7.960E-02
1.670E+01 2.413E+03 1.664E+04 3.724E-02 7.902E-02
1.754E+01 2.382E+03 1.643E+04 3.395E-02 7.845E-02
1.837E+01 2.351E+03 1.621E+04 3.067E-02 7.788E-02
1.921E+01 2.319E+03 1.599E+04 2.738E-02 7.732E-02
2.004E+01 2.286E+03 1.577E+04 2.410E-02 7.677E-02
2.088E+01 2.253E+03 1.553E+04 2.081E-02 7.623E-02
2.172E+01 2.218E+03 1.530E+04 1.865E-02 7.570E-02
2.255E+01 2.183E+03 1.506E+04 1.787E-02 7.517E-02
2.339E+01 2.146E+03 1.480E+04 1.710E-02 7.465E-02
2.422E+01 2.107E+03 1.453E+04 1.632E-02 7.414E-02
2.506E+01 2.064E+03 1.424E+04 1.554E-02 7.365E-02
2.589E+01 2.018E+03 1.392E+04 1.477E-02 7.316E-02
2.673E+01 1.969E+03 1.358E+04 1.399E-02 7.268E-02
2.756E+01 1.917E+03 1.322E+04 1.321E-02 7.222E-02
2.840E+01 1.861E+03 1.284E+04 1.243E-02 7.177E-02
2.923E+01 1.802E+03 1.243E+04 1.166E-02 7.133E-02
3.007E+01 1.740E+03 1.200E+04 1.088E-02 7.090E-02
3.090E+01 1.675E+03 1.155E+04 1.010E-02 7.050E-02
3.174E+01 1.606E+03 1.107E+04 9.325E-03 7.010E-02
3.257E+01 1.534E+03 1.058E+04 8.548E-03 6.973E-02
3.341E+01 1.459E+03 1.006E+04 7.771E-03 6.937E-02
3.424E+01 1.380E+03 9.519E+03 6.994E-03 6.903E-02
3.508E+01 1.299E+03 8.956E+03 6.217E-03 6.871E-02
3.591E+01 1.214E+03 8.370E+03 5.440E-03 6.841E-02
3.675E+01 1.125E+03 7.762E+03 4.663E-03 6.813E-02
3.758E+01 1.034E+03 7.131E+03 3.886E-03 6.787E-02
3.842E+01 9.393E+02 6.478E+03 3.108E-03 6.764E-02
3.925E+01 8.413E+02 5.802E+03 2.331E-03 6.743E-02
4.009E+01 7.401E+02 5.104E+03 1.554E-03 6.724E-02
4.092E+01 6.357E+02 4.384E+03 7.771E-04 6.707E-02
4.176E+01 5.279E+02 3.641E+03 0.000E+00 6.693E-02
Page 77
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×

Step 1: Establish soil data

Determine the geotechnical engineering design parameters and establish a profile of the soil deposit. Index parameters (water content, Atterberg limits, unit weight) should be used to help identify the stratigraphy of the soil deposit. The relevant soil data that are needed include soil shear strength and unit weight. An example of the soil stratigraphy for the Briaud and Tucker (1997) Example Problem 1 design example is included as Figure C1. The soil modulus (M) presented in Figure C1 was calculated using Equation 1 based on the Young’s modulus (E) and Poisson’s ratio (ν) values that were provided in Briaud and Tucker (1997). The undrained shear strength values were determined by converting the provided Briaud and Tucker (1997) friction data to undrained shear strength data (Figure C2).

M = E ( 1 v ) ( 1 + u ) ( 1 1 u ) Eqn. 1

Step 2: Determine soil settlement

Soil stratigraphy for the Briaud and
 Tucker (1997) Example Problem 1 design example (modified to include additional required design parameters)
Figure C1. Soil stratigraphy for the Briaud and Tucker (1997) Example Problem 1 design example (modified to include additional required design parameters).
Page 78
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×

The amount of expected soil settlement is determined using consolidation theory. The settlement profile shown in Figure C3 was created by discretizing the soil into sublayers (50, 0.835m thick layers) and then calculating the amount of settlement within each sublayer resulting from a 6m thick, 8m crest, 32m base embankment fill, with a unit weight of 19.5kN/m3, being placed on top of the two-layer clay soil profile.

Relationship between maximum friction and undrained shear strength (modified from Briaud and Tucker, 1997)
Figure C2. Relationship between maximum friction and undrained shear strength (modified from Briaud and Tucker, 1997).

A prescribed embankment geometry (6m thick, 8m crest, 32m base) and embankment unit weight (19.5kN/m3) were used to develop the soil settlement profile that is provided in Figure C3. The embankment (width, height, side slope) and unit weight are shown in Figure C4. The settlement profile presented in Figure C3 was developed for points below the center of the embankment using the Osterberg embankment stress distribution, which assumes a symmetric geometry, and provided half of the actual stress influence (Figure C4 and Equations 2 through 4).

Page 79
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Calculated settlement profile for an embankment fill (Fig. 4) placed on the soil profile provided previously as Figure C1 in Step 1
Figure C3. Calculated settlement profile for an embankment fill (Fig. 4) placed on the soil profile provided previously as Figure C1 in Step 1.
I = 1 π [ ( B 1 + B 2 B 2 ) ( α 1 + α 2 ) B 1 B 2 ( α 1 ) ] Eqn. 2
α 1 ( r a d i a n s ) = t a n 1 ( B 1 z ) Eqn. 3
α 2 ( r a d i a n s ) = t a n 1 ( B 1 + B 2 z ) t a n 1 ( B 1 z ) Eqn. 4

For the geometry shown in Figure C4, the embankment is symmetric about the central axis, and the amount of settlement (δ) was determined at different depths along this line of symmetry. Therefore, the influence factor (I), as computed using Equation 2 is multiplied by two (2) to account for both halves of the embankment about the line of symmetry. The increase in stress (∆σ) at each sublayer depth (z) is then determined by multiplying the influence factor with the bearing pressure (q=γfillHfill=117kPa) resulting from the embankment. The α1 and α2 parameters from (Figure C4) along with the Σ(I), ∆σ, and δ values that were calculated for each sublayer are included as Table C3. The consolidation strain (εz) presented in Table C3 was calculated by dividing the change in stress (∆σ) by the constrained modulus (M).

Page 80
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Schematic of the embankment evaluated using the Osterberg embankment stress distributions
Figure C4. Schematic of the embankment evaluated using the Osterberg embankment stress distributions.

Step 3: Establish pile data

The pile data required to determine the drag load and downdrag include 1) the incremental side resistance acting on the pile(s), 2) the end bearing resistance provided by the pile(s), 3) the unfactored pile head deadload, and 3) the elastic compression of the pile(s). Multiple pile types or pile geometries may be considered to determine the magnitude of downdrag/drag load on the pile(s). To compute the drag load for a given design scenario, the following pile data is required: pile material, pile diameter or pile perimeter, pile cross-sectional area, and pile modulus. The pile considered for this design example was an octagonal pile; the pile diameter was therefore not required. The pile material (pre-stressed concrete), perimeter (1.39m), cross-sectional area (0.145m2), and pile modulus (2.41x107 kN/m2) were considered in this example.

Step 4: Compute incremental side resistance

For a given pile geometry (diameter, length), the incremental side resistance is determined for discretized intervals. Fifty (50) intervals were used to determine the incremental side resistance to compare with the Briaud and Tucker (1997) Example Problem 1 design example. The incremental side resistance was determined by using the total stress analysis “α method” because the undrained shear strength (su) parameters were provided (as determined by the relationship between Briaud and Tucker (1997) maximum friction and undrained shear strength presented previously in Figure C2). Specifically, the procedure and equations (Equations 5 and 6) recommended in Randolph and Murphy (1985) were used. The effective stress (σz0) used in Equations 5 or 6 was determined using Terzaghi’s effective stress equation with the ground water table assumed to be at the ground surface as shown previously in Figure C1. The effective stress was calculated at the center of each sublayer (as presented in Table C3).

For s u / σ z 1 : α = ( s u σ z 0 ) N C 0.5 ( s u σ z 0 ) 0.5 0.5 Eqn. 5
For s u / σ z > 1 : α = ( s u σ z 0 ) N C 0.5 ( s u σ z 0 ) 0.25 Eqn. 6
with ( s u σ z 0 ) N C = 0.22
Page 81
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×

Table C3. Calculated settlement parameters.

Layer Depth [m] z [m] Thickness [m] σzo′ [kPa] α1 [rad] α2 [rad] Σ(I) ∆σ [kPa] εz δ [m]
0 - 0.8352 0.4176 0.8352 4.0465 1.4668 0.0779 0.9999 116.9912 0.0040 0.0034
0.8352 - 1.6704 1.2528 0.8352 12.1396 1.2673 0.2254 0.9981 116.7756 0.0040 0.0034
1.6704 - 2.5056 2.088 0.8352 20.2327 1.0897 0.3513 0.9919 116.0572 0.0040 0.0033
2.5056 - 3.3408 2.9232 0.8352 28.3258 0.9397 0.4504 0.9805 114.7226 0.0040 0.0033
3.3408 - 4.176 3.7584 0.8352 36.4189 0.8165 0.5236 0.9642 112.8139 0.0039 0.0033
4.176 - 5.0112 4.5936 0.8352 44.5120 0.7164 0.5748 0.9440 110.4464 0.0038 0.0032
5.0112 - 5.8464 5.4288 0.8352 52.6051 0.6350 0.6087 0.9209 107.7477 0.0037 0.0031
5.8464 - 6.6816 6.264 0.8352 60.6982 0.5683 0.6293 0.8960 104.8309 0.0036 0.0030
6.6816 - 7.5168 7.0992 0.8352 68.7912 0.5131 0.6401 0.8700 101.7873 0.0035 0.0029
7.5168 - 8.352 7.9344 0.8352 76.8843 0.4669 0.6435 0.8435 98.6867 0.0034 0.0028
8.352 - 9.1872 8.7696 0.8352 84.9774 0.4279 0.6415 0.8169 95.5815 0.0033 0.0028
9.1872 - 10.0224 9.6048 0.8352 93.0705 0.3946 0.6355 0.7907 92.5100 0.0032 0.0027
10.0224 - 10.8576 10.44 0.8352 101.1636 0.3659 0.6268 0.7650 89.4999 0.0031 0.0026
10.8576 - 11.6928 11.2752 0.8352 109.2567 0.3409 0.6160 0.7399 86.5704 0.0030 0.0025
11.6928 - 12.528 12.1104 0.8352 117.3498 0.3190 0.6039 0.7157 83.7345 0.0029 0.0024
12.528 - 13.3632 12.9456 0.8352 125.4429 0.2997 0.5909 0.6923 81.0005 0.0028 0.0023
13.3632 - 14.1984 13.7808 0.8352 133.5360 0.2825 0.5773 0.6699 78.3730 0.0027 0.0023
14.1984 - 15.0336 14.616 0.8352 141.6290 0.2671 0.5634 0.6483 75.8540 0.0026 0.0022
15.0336 - 15.8688 15.4512 0.8352 149.7221 0.2533 0.5495 0.6277 73.4433 0.0025 0.0021
15.8688 - 16.704 16.2864 0.8352 157.8152 0.2408 0.5357 0.6080 71.1395 0.0025 0.0021
16.704 - 17.5392 17.1216 0.8352 165.9083 0.2295 0.5220 0.5892 68.9400 0.0024 0.0020
17.5392 - 18.3744 17.9568 0.8352 174.0014 0.2192 0.5087 0.5713 66.8415 0.0023 0.0019
18.3744 - 19.2096 18.792 0.8352 182.0945 0.2097 0.4956 0.5542 64.8402 0.0022 0.0019
19.2096 - 20.0448 19.6272 0.8352 190.1876 0.2010 0.4829 0.5379 62.9321 0.0022 0.0018
20.0448 - 20.88 20.4624 0.8352 198.2807 0.1930 0.4706 0.5223 61.1129 0.0021 0.0018
20.88 - 21.7152 21.2976 0.8352 206.3737 0.1857 0.4587 0.5075 59.3784 0.0020 0.0017
21.7152 - 22.5504 22.1328 0.8352 214.4668 0.1788 0.4471 0.4934 57.7242 0.0020 0.0017
22.5504 - 23.3856 22.968 0.8352 222.5599 0.1724 0.4360 0.4799 56.1463 0.0019 0.0016
23.3856 - 24.2208 23.8032 0.8352 230.6530 0.1665 0.4253 0.4670 54.6405 0.0019 0.0016
24.2208 - 25.056 24.6384 0.8352 238.7461 0.1609 0.4150 0.4547 53.2030 0.0018 0.0015
25.056 - 25.8912 25.4736 0.8352 246.8392 0.1558 0.4051 0.4430 51.8301 0.0018 0.0015
25.8912 - 26.7264 26.3088 0.8352 254.9323 0.1509 0.3955 0.4318 50.5182 0.0017 0.0015
26.7264 - 27.5616 27.144 0.8352 263.0254 0.1463 0.3863 0.4211 49.2638 0.0017 0.0014
27.5616 - 28.3968 27.9792 0.8352 271.1184 0.1420 0.3775 0.4108 48.0640 0.0017 0.0014
28.3968 - 29.232 28.8144 0.8352 279.2115 0.1379 0.3689 0.4010 46.9155 0.0016 0.0014
29.232 - 30.0672 29.6496 0.8352 287.3046 0.1341 0.3608 0.3916 45.8156 0.0016 0.0013
30.0672 - 30.9024 30.4848 0.8352 295.3977 0.1305 0.3529 0.3826 44.7616 0.0015 0.0013
30.9024 - 31.7376 31.32 0.8352 303.4908 0.1270 0.3453 0.3739 43.7510 0.0015 0.0013
31.7376 - 32.5728 32.1552 0.8352 311.5839 0.1238 0.3380 0.3657 42.7814 0.0015 0.0012
32.5728 - 33.408 32.9904 0.8352 319.6770 0.1207 0.3309 0.3577 41.8506 0.0014 0.0012
33.408 - 34.2432 33.8256 0.8352 327.7701 0.1177 0.3241 0.3501 40.9566 0.0014 0.0012
34.2432 - 35.0784 34.6608 0.8352 335.8632 0.1149 0.3176 0.3427 40.0973 0.0014 0.0012
35.0784 - 35.9136 35.496 0.8352 343.9562 0.1122 0.3113 0.3356 39.2710 0.0014 0.0011
35.9136 - 36.7488 36.3312 0.8352 352.0493 0.1097 0.3052 0.3289 38.4759 0.0013 0.0011
36.7488 - 37.584 37.1664 0.8352 360.1424 0.1072 0.2993 0.3223 37.7104 0.0013 0.0011
37.584 - 38.4192 38.0016 0.8352 368.2355 0.1049 0.2936 0.3160 36.9730 0.0013 0.0011
38.4192 - 39.2544 38.8368 0.8352 376.3286 0.1026 0.2882 0.3099 36.2624 0.0013 0.0010
39.2544 - 40.0896 39.672 0.8352 384.4217 0.1005 0.2829 0.3041 35.5770 0.0012 0.0010
40.0896 - 40.9248 40.5072 0.8352 392.5148 0.0984 0.2778 0.2984 34.9158 0.0012 0.0010
40.9248 - 41.76 41.3424 0.8352 400.6079 0.0965 0.2728 0.2930 34.2774 0.0012 0.0010
z = layer midpoint depth, presentationzo′ = vertical effective stress, presentation1 and presentation2 = angles (in radians) as shown in Figure C6, presentationz = vertical consolidation strain, presentation = vertical settlement of individual sublayer; presentation (from bottom to top) = settlement profile (Figure C5).
Page 82
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×

The nominal unit side resistance (fn) for each sublayer was calculated by multiplying the α factor by the undrained shear strength using Equation 7. Likewise, the side resistance (Fs) for each sublayer was determined by multiplying the nominal side resistance by the area of the pile in contact with the soil within the given sublayer (Equation 8). The total side resistance for the pile was determined by summing the side resistance from each sublayer.

f n = α ( s u ) Eqn. 7
F s = f n A s Eqn. 8

The values that were calculated for the pile and soil properties presented in or inferred from the Briaud and Tucker (1997) Example Problem 1 design example are included in Table C4. These values include the vertical effective stress (σvo′), undrained shear strength (su), alpha value (α), nominal side resistance (fn), and side resistance (Fs) obtained for each sublayer.

Step 5: Develop a depth-dependent load profile

The depth-varying load profile is developed by determining the cumulative load in the pile, as a function of depth. Beginning at the top of the pile, the cumulative load in the pile is determined by adding the discretized side resistance for a given sublayer to the previous cumulative total. For this example, immediately after driving, the load in the pile at each depth was equal to the cumulative side resistance value at that depth prior to application of the top load on the pile. Assuming the top load transferred to the toe of the pile, the unfactored amount of top load that was added to the pile top was also added to the cumulative load in the pile value for all depths. Therefore, at a depth of 0m, the load in the pile was equal to the unfactored top load applied to the pile. At the bottom of the first increment, the cumulative side resistance was the combination of the unfactored top load and the incremental side resistance developed over the length of the first increment. The calculated load profile, within the octagonal precast concrete pile that was described in the Briaud and Tucker (1997) Example Problem 1 design example, is shown in Figure C5. Specifically, the data for the load profile after driving and the load profile after top load application are presented as Figures C5a and C5b, respectively. The tabulated data are also presented in Table C5.

Page 83
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×

Table C4. Calculated pile side resistance parameters.

Layer Depth z Thickness σzo su α fn Fs
[m] [m] [m] [kPa] [kPa] [kPa] [kN]
0 - 0.8352 0.4176 0.8352 4.0465 13.29 0.35 0.00 0.00
0.8352 - 1.6704 1.2528 0.8352 12.1396 13.95 0.45 6.32 7.34
1.6704 - 2.5056 2.088 0.8352 20.2327 14.62 0.55 8.07 9.37
2.5056 - 3.3408 2.9232 0.8352 28.3258 15.29 0.64 9.76 11.33
3.3408 - 4.176 3.7584 0.8352 36.4189 15.95 0.71 11.31 13.13
4.176 - 5.0112 4.5936 0.8352 44.5120 16.62 0.77 12.76 14.81
5.0112 - 5.8464 5.4288 0.8352 52.6051 17.29 0.82 14.14 16.42
5.8464 - 6.6816 6.264 0.8352 60.6982 17.95 0.86 15.48 17.98
6.6816 - 7.5168 7.0992 0.8352 68.7912 18.62 0.90 16.79 19.49
7.5168 - 8.352 7.9344 0.8352 76.8843 19.29 0.94 18.06 20.97
8.352 - 9.1872 8.7696 0.8352 84.9774 19.95 0.97 19.31 22.42
9.1872 - 10.0224 9.6048 0.8352 93.0705 20.62 1.00 20.55 23.86
10.0224 - 10.8576 10.44 0.8352 101.1636 21.29 1.02 21.77 25.27
10.8576 - 11.6928 11.2752 0.8352 109.2567 21.95 1.05 22.97 26.67
11.6928 - 12.528 12.1104 0.8352 117.3498 22.62 1.07 24.17 28.06
12.528 - 13.3632 12.9456 0.8352 125.4429 23.29 1.09 25.35 29.43
13.3632 - 14.1984 13.7808 0.8352 133.5360 23.95 1.11 26.53 30.80
14.1984 - 15.0336 14.616 0.8352 141.6290 24.62 1.12 27.70 32.16
15.0336 - 15.8688 15.4512 0.8352 149.7221 25.29 1.14 28.86 33.51
15.8688 - 16.704 16.2864 0.8352 157.8152 25.95 1.16 30.02 34.85
16.704 - 17.5392 17.1216 0.8352 165.9083 26.62 1.17 31.17 36.19
17.5392 - 18.3744 17.9568 0.8352 174.0014 27.29 1.18 32.32 37.52
18.3744 - 19.2096 18.792 0.8352 182.0945 27.95 1.20 33.46 38.85
19.2096 - 20.0448 19.6272 0.8352 190.1876 28.62 1.21 34.61 40.17
20.0448 - 20.88 20.4624 0.8352 198.2807 29.29 1.22 35.74 41.50
20.88 - 21.7152 21.2976 0.8352 206.3737 29.95 1.23 36.88 42.81
21.7152 - 22.5504 22.1328 0.8352 214.4668 30.62 1.24 38.01 44.13
22.5504 - 23.3856 22.968 0.8352 222.5599 31.76 1.24 39.43 45.78
23.3856 - 24.2208 23.8032 0.8352 230.6530 36.05 1.19 42.77 49.66
24.2208 - 25.056 24.6384 0.8352 238.7461 40.35 1.14 46.04 53.45
25.056 - 25.8912 25.4736 0.8352 246.8392 44.65 1.10 49.24 57.16
25.8912 - 26.7264 26.3088 0.8352 254.9323 48.94 1.07 52.39 60.82
26.7264 - 27.5616 27.144 0.8352 263.0254 53.24 1.04 55.51 64.44
27.5616 - 28.3968 27.9792 0.8352 271.1184 57.54 1.02 58.58 68.01
28.3968 - 29.232 28.8144 0.8352 279.2115 61.84 1.00 61.63 71.55
29.232 - 30.0672 29.6496 0.8352 287.3046 66.13 0.98 64.65 75.06
30.0672 - 30.9024 30.4848 0.8352 295.3977 70.43 0.96 67.65 78.54
30.9024 - 31.7376 31.32 0.8352 303.4908 74.73 0.95 70.63 82.00
31.7376 - 32.5728 32.1552 0.8352 311.5839 79.02 0.93 73.60 85.44
32.5728 - 33.408 32.9904 0.8352 319.6770 83.32 0.92 76.55 88.87
33.408 - 34.2432 33.8256 0.8352 327.7701 87.62 0.91 79.49 92.28
34.2432 - 35.0784 34.6608 0.8352 335.8632 91.91 0.90 82.41 95.67
35.0784 - 35.9136 35.496 0.8352 343.9562 96.21 0.89 85.32 99.06
35.9136 - 36.7488 36.3312 0.8352 352.0493 100.51 0.88 88.23 102.43
36.7488 - 37.584 37.1664 0.8352 360.1424 104.80 0.87 91.12 105.79
37.584 - 38.4192 38.0016 0.8352 368.2355 109.10 0.86 94.01 109.14
38.4192 - 39.2544 38.8368 0.8352 376.3286 113.40 0.85 96.89 112.49
39.2544 - 40.0896 39.672 0.8352 384.4217 117.69 0.85 99.77 115.82
40.0896 - 40.9248 40.5072 0.8352 392.5148 121.99 0.84 102.64 119.15
40.9248 - 41.76 41.3424 0.8352 400.6079 126.29 0.84 105.50 122.48
z = layer midpoint depth, σzo′ = vertical effective stress, su = undrained shear strength, α = total stress side resistance value, fn=nominal unit side resistance, Fs=sublayer side resistance. Note: fn neglected for top 1.5m
Page 84
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
a) Load profile graph following driving, b) load profile graph with unfactored top load
Figure C5. a) Load profile graph following driving, b) load profile graph with unfactored top load.
Page 85
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×

Table C5. Calculated load as a function of depth.

Layer Depth z QAD QwUTL
[m] [m] [kN] [kN]
0 - 0.8352 0.4176 0.00 2225.00
0.8352 - 1.6704 1.2528 7.34 2232.34
1.6704 - 2.5056 2.088 16.70 2241.70
2.5056 - 3.3408 2.9232 28.04 2253.04
3.3408 - 4.176 3.7584 41.16 2266.16
4.176 - 5.0112 4.5936 55.97 2280.97
5.0112 - 5.8464 5.4288 72.39 2297.39
5.8464 - 6.6816 6.264 90.37 2315.37
6.6816 - 7.5168 7.0992 109.86 2334.86
7.5168 - 8.352 7.9344 130.83 2355.83
8.352 - 9.1872 8.7696 153.25 2378.25
9.1872 - 10.0224 9.6048 177.11 2402.11
10.0224 - 10.8576 10.44 202.38 2427.38
10.8576 - 11.6928 11.2752 229.04 2454.04
11.6928 - 12.528 12.1104 257.10 2482.10
12.528 - 13.3632 12.9456 286.53 2511.53
13.3632 - 14.1984 13.7808 317.33 2542.33
14.1984 - 15.0336 14.616 349.48 2574.48
15.0336 - 15.8688 15.4512 382.99 2607.99
15.8688 - 16.704 16.2864 417.84 2642.84
16.704 - 17.5392 17.1216 454.03 2679.03
17.5392 - 18.3744 17.9568 491.55 2716.55
18.3744 - 19.2096 18.792 530.40 2755.40
19.2096 - 20.0448 19.6272 570.57 2795.57
20.0448 - 20.88 20.4624 612.07 2837.07
20.88 - 21.7152 21.2976 654.88 2879.88
21.7152 - 22.5504 22.1328 699.01 2924.01
22.5504 - 23.3856 22.968 744.79 2969.79
23.3856 - 24.2208 23.8032 794.44 3019.44
24.2208 - 25.056 24.6384 847.89 3072.89
25.056 - 25.8912 25.4736 905.05 3130.05
25.8912 - 26.7264 26.3088 965.88 3190.88
26.7264 - 27.5616 27.144 1030.32 3255.32
27.5616 - 28.3968 27.9792 1098.33 3323.33
28.3968 - 29.232 28.8144 1169.88 3394.88
29.232 - 30.0672 29.6496 1244.93 3469.93
30.0672 - 30.9024 30.4848 1323.47 3548.47
30.9024 - 31.7376 31.32 1405.48 3630.48
31.7376 - 32.5728 32.1552 1490.92 3715.92
32.5728 - 33.408 32.9904 1579.79 3804.79
33.408 - 34.2432 33.8256 1672.06 3897.06
34.2432 - 35.0784 34.6608 1767.74 3992.74
35.0784 - 35.9136 35.496 1866.79 4091.79
35.9136 - 36.7488 36.3312 1969.22 4194.22
36.7488 - 37.584 37.1664 2075.01 4300.01
37.584 - 38.4192 38.0016 2184.15 4409.15
38.4192 - 39.2544 38.8368 2296.64 4521.64
39.2544 - 40.0896 39.672 2412.46 4637.46
40.0896 - 40.9248 40.5072 2531.61 4756.61
40.9248 - 41.76 41.3424 2654.09 4879.09
QAD= load in pile after driving,
QwUTL= load in pile with addition of unfactored top load
Page 86
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×

Step 6: Calculate end bearing resistance and develop the depth-dependent resistance profile

The depth-dependent resistance profile is determined in a similar fashion to the development of the load profile graph. The resistance profile accumulates the resistance from the bottom of the pile to the top of the pile and includes the end bearing resistance. For the clay profile that was investigated, the end bearing resistance (Rt) was calculated using the undrained shear strength at the toe of the pile (su) and the cross-sectional area at the end of the pile (At) as obtained from Equations 9 and 10.

q n = 9 s u Eqn. 9
R t = q n A t Eqn. 10

The calculated resistance profile, within the octagonal precast concrete pile that was described in the Briaud and Tucker (1997) Example Problem 1 design example, is shown in Figure C6. Unlike the load profile, the resistance profile does not change in the presence of the unfactored top load. The tabulated data are also presented in Table C6.

Resistance profile graph
Figure C6. Resistance profile graph.

Step 7: Develop the depth-dependent combined load profile for the pile

The combined load and resistance profile graph for the pile analyzed for the example presented herein is presented in Figure C7. The combined load plot begins at the top of the pile and follows the load curve until the intersection with the resistance curve then follows the resistance curve until the toe of the pile is reached. The combined profile includes the application of the unfactored top load on the pile and the end bearing resistance at the toe of the pile.

Page 87
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×

Table C6. Calculated resistance as a function of depth.

Layer Depth z R R= resistance from soil surrounding pile; resistance values are calculated at the top of each sublayer; the bottom sublayer includes the summation of the end bearing resistance and the side resistance in the bottom sublayer.
[m] [m] [kN]
0 - 0.8352 0.4176 2821.70
0.8352 - 1.6704 1.2528 2821.70
1.6704 - 2.5056 2.088 2814.36
2.5056 - 3.3408 2.9232 2805.00
3.3408 - 4.176 3.7584 2793.66
4.176 - 5.0112 4.5936 2780.54
5.0112 - 5.8464 5.4288 2765.73
5.8464 - 6.6816 6.264 2749.31
6.6816 - 7.5168 7.0992 2731.33
7.5168 - 8.352 7.9344 2711.84
8.352 - 9.1872 8.7696 2690.87
9.1872 - 10.0224 9.6048 2668.45
10.0224 - 10.8576 10.44 2644.59
10.8576 - 11.6928 11.2752 2619.32
11.6928 - 12.528 12.1104 2592.65
12.528 - 13.3632 12.9456 2564.60
13.3632 - 14.1984 13.7808 2535.17
14.1984 - 15.0336 14.616 2504.37
15.0336 - 15.8688 15.4512 2472.22
15.8688 - 16.704 16.2864 2438.71
16.704 - 17.5392 17.1216 2403.86
17.5392 - 18.3744 17.9568 2367.67
18.3744 - 19.2096 18.792 2330.15
19.2096 - 20.0448 19.6272 2291.30
20.0448 - 20.88 20.4624 2251.13
20.88 - 21.7152 21.2976 2209.63
21.7152 - 22.5504 22.1328 2166.82
22.5504 - 23.3856 22.968 2122.69
23.3856 - 24.2208 23.8032 2076.91
24.2208 - 25.056 24.6384 2027.26
25.056 - 25.8912 25.4736 1973.81
25.8912 - 26.7264 26.3088 1916.65
26.7264 - 27.5616 27.144 1855.82
27.5616 - 28.3968 27.9792 1791.38
28.3968 - 29.232 28.8144 1723.37
29.232 - 30.0672 29.6496 1651.82
30.0672 - 30.9024 30.4848 1576.77
30.9024 - 31.7376 31.32 1498.23
31.7376 - 32.5728 32.1552 1416.22
32.5728 - 33.408 32.9904 1330.78
33.408 - 34.2432 33.8256 1241.91
34.2432 - 35.0784 34.6608 1149.64
35.0784 - 35.9136 35.496 1053.96
35.9136 - 36.7488 36.3312 954.91
36.7488 - 37.584 37.1664 852.48
37.584 - 38.4192 38.0016 746.69
38.4192 - 39.2544 38.8368 637.55
39.2544 - 40.0896 39.672 525.06
40.0896 - 40.9248 40.5072 409.24
40.9248 - 41.76 41.3424 290.09
Page 88
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Calculated combined load-resistance profile graph
Figure C7. Calculated combined load-resistance profile graph.

Step 8: Identify the location of the neutral plane from the combined load and resistance curve

The neutral plane is located at the intersection of the load and resistance curves when plotted on the same graph. The neutral plane is located at 13.36m based on the calculations that were performed (Figure C8). The amount of load in the pile at the location of the neutral plane (2511kN) is similar to the 2535kN of load predicted by Briaud and Tucker (1997). The calculated depth of the neutral plane (13.36m) was deeper than the 12.53m neutral plane location computed by Briaud and Tucker (1997).

Step 9: Calculate the amount of drag load in the pile

The amount of drag load in the pile is equal to the amount of load in the pile at the location of the neutral plane minus the amount of unfactored load applied to the top of pile. Based on the calculations, the drag load was determined to be 286kN. Briaud and Tucker (1997) calculated the amount of drag load to be 310kN. Specifically, the drag load for the octagonal precast concrete pile is shown in Figure C9.

Page 89
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Calculated location of neutral plane from combined load-resistance profile
Figure C8. Calculated location of neutral plane from combined load-resistance profile.
Calculated drag load from combined load-resistance profile
Figure C9. Calculated drag load from combined load-resistance profile.
Page 90
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×

Step 10: Calculate the toe settlement and elastic compression in the pile

The elastic compression (δEC) for each segment of the pile is calculated using the load within the pile (load [Q] above the neutral plane and resistance [R] below the neutral plane, from Figure C9 shown previously), the cross-sectional area of the pile (A), the elastic modulus of the pile (E), and the segmental length of the pile (Ls). Specifically, the elastic compression for each segment (δEC,s) of the pile is determined using Equation 11. The cumulative elastic compression in the pile is then determined by accumulating each of the elastic compression values from the bottom of the pile to the top of the pile (Equation 12). The calculated segmental and cumulative elastic compression values are shown in Figure C10 and tabulated in Table C7. The toe movement is combined with the geotechnical resistance in Step 11.

δ E C , s = ( M i n [ Q R ] ) L s A E Eqn. 11
δ E C = Σ ( δ E C , s ) | from toe of pile to top of pile Eqn. 12

Step 11: Calculate the geotechnical resistance of the pile

The nominal compression resistance of the pile is determined using the Davisson Method (Davisson, 1972). Typically, the Davisson Method is intended to be used to determine the nominal axial downward resistance based on a measured load-displacement curve from a full-scale load test performed on a pile. A simulated load-displacement curve is suggested herein to enable estimation of the location of the neutral plane based on estimated pile and soil settlement data prior to commencement of fieldwork or full-scale testing. The suggested load-displacement curve is developed using the DeCock (2009) method based on Chin’s Hyperbolic Model. Specifically, the end resistance (Rt) and side resistance (Rs) values are computed using Equations 13 and 14 for prescribed levels of toe displacement (δt) and side displacement (δs). A flexibility factor (Kt or Ks) is included in each equation to account for the initial slope of the Rt/Rtut curve and the f/fns curve, respectively. The respective flexibility factors are calculated using Equations 15 and 16. The end bearing resistance flexibility factor is a function of the pile diameter and the secant modulus at 25 percent of the shear strength of the soil (E25,s) at the toe of the pile. As described in DeCock (2009), the secant modulus at 25 percent of the shear strength (E25,s), in units of [kPa], is calculated as being 1000 times the undrained shear strength for stiff soils. The dimensionless parameter Ms is typically 0.001 for stiff soils. As shown previously in Figure C1, an undrained shear strength of 128 kPa was used for this example. Likewise, the diameter of the octagonal pile (D) was assumed to be the distance across the octagonal pile (419mm), as reported on Page 85 of Briaud and Tucker (1997).

The disparity between the amount of movement required to mobilize the side resistance and the amount of movement required to mobilize the end bearing resistance is known but not considered for this example. To simplify calculations, rigid body movement of the pile is assumed to fully mobilize the pile in both side resistance and end bearing. Thereby, the movement of the top of the pile and the toe of the pile are equal. Displacement intervals of 0.0005m were investigated for movements of 0.00m to 0.01m and intervals of 0.005m were investigated between 0.01m and 0.05m. The asymptotic ultimate value of load that was observed at very large displacements was assumed to develop at a displacement value of 10 percent of the pile diameter (Equation 17).

Page 91
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Calculated elastic compression in the pile as a function of depth
Figure C10. Calculated elastic compression in the pile as a function of depth.

Table C7. Calculated elastic compression in the pile as a function of depth.

z M i n [ Q R ] δEC,s δEC Comments:
z=depth,
Q=load,
R=resistance,
δEC,s=segmental elastic compression,
δEC=cumulative elastic compression (from bottom to top),
A=pile cross-sectional area=0.145[m2]
Ep=pile elastic modulus=2.41E+07[kPa]
Ls=length of each pile segment=0.8532[m]
[m] [kN] [m] [m]
0.4176 2225.00 0.0005 0.0225
1.2528 2232.34 0.0005 0.0220
2.088 2241.70 0.0005 0.0215
2.9232 2253.04 0.0005 0.0209
3.7584 2266.16 0.0005 0.0204
4.5936 2280.97 0.0005 0.0198
5.4288 2297.39 0.0005 0.0193
6.264 2315.37 0.0006 0.0188
7.0992 2334.86 0.0006 0.0182
7.9344 2355.83 0.0006 0.0176
8.7696 2378.25 0.0006 0.0171
9.6048 2402.11 0.0006 0.0165
10.44 2427.38 0.0006 0.0159
11.2752 2454.04 0.0006 0.0154
12.1104 2482.10 0.0006 0.0148
12.9456 2511.53 0.0006 0.0142
13.7808 2535.17 0.0006 0.0136
14.616 2504.37 0.0006 0.0130
15.4512 2472.22 0.0006 0.0124
16.2864 2438.71 0.0006 0.0118
17.1216 2403.86 0.0006 0.0112
17.9568 2367.67 0.0006 0.0106
18.792 2330.15 0.0006 0.0101
19.6272 2291.30 0.0005 0.0095
20.4624 2251.13 0.0005 0.0090
21.2976 2209.63 0.0005 0.0084
22.1328 2166.82 0.0005 0.0079
22.968 2122.69 0.0005 0.0074
23.8032 2076.91 0.0005 0.0069
24.6384 2027.26 0.0005 0.0064
25.4736 1973.81 0.0005 0.0059
26.3088 1916.65 0.0005 0.0054
27.144 1855.82 0.0004 0.0049
27.9792 1791.38 0.0004 0.0045
28.8144 1723.37 0.0004 0.0041
29.6496 1651.82 0.0004 0.0037
30.4848 1576.77 0.0004 0.0033
31.32 1498.23 0.0004 0.0029
32.1552 1416.22 0.0003 0.0025
32.9904 1330.78 0.0003 0.0022
33.8256 1241.91 0.0003 0.0019
34.6608 1149.64 0.0003 0.0016
35.496 1053.96 0.0003 0.0013
36.3312 954.91 0.0002 0.0011
37.1664 852.48 0.0002 0.0008
38.0016 746.69 0.0002 0.0006
38.8368 637.55 0.0002 0.0004
39.672 525.06 0.0001 0.0003
40.5072 409.24 0.0001 0.0002
41.3424 290.09 0.0001 0.0001
Page 92
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×

An ultimate value (Rtu) that is larger than the nominal net end bearing (Rt,10%; defined as R in Equation 10 that was previously presented) is used because the ultimate limit state Rt,10% value is typically defined at a movement of 10 percent of the pile diameter which may not correspond with the service limit state. The tabulated movement and the corresponding side resistance, end bearing resistance, and total resistance are included in Table C8.

R t = δ t K t + δ t R t u Eqn. 13
R s = δ s K s + δ s R s u Eqn. 14
K t 0.54 E s , 25 D Eqn. 15
K s = M s D F s Eqn. 16
R t u = 0.1 D 0.1 D R t , 10 % K t Eqn. 17

The predicted load-displacement curve for the pile is presented in Figure C11. This total resistance curve includes the influence from side resistance and end resistance. Also presented in Figure C11 is the Davisson Method line that was used to determine the nominal axial geotechnical resistance (2800kN) and displacement (0.041m) at failure for the pile that was analyzed.

This pile was not tipped into rock. Therefore, the location and settlement of the neutral plane can be determined in Step 12. Moreover, the location of the neutral plane determined from the combined load-resistance curve in Step 8 can then be compared with the location of the neutral plane determined from the soil settlement-pile settlement curve that will be determined in Step 12.

Step 12: Identify the location of and settlement at the neutral plane (from the soil settlement-pile settlement curve)

When using the soil settlement-pile settlement graph, the neutral plane is located at the intersection of the soil settlement and pile settlement curves when plotted on the same graph as a function of depth. The pile settlement is obtained by adding the settlement (0.041m) that was reported in Figure C11 with the elastic compression as a function of depth that was previously reported in Figure C10. These values are tabulated as Table C9. As shown in Figure C12, the neutral plane is located at a depth of 12.1m based on the calculations that were performed in Step 12. Moreover, the downdrag was determined to be 0.055m.

When comparing the locations of the neutral plane obtained during Step 8 (13.36m) and Step 12 (12.11m), the neutral plane locations are within the required 5ft (1.5m). The location of the neutral plane was selected as 13.36m because the location of the neutral plane from the combined load-settlement curve (Step 8) has less ambiguity than the location of the neutral plane from the soil settlement-pile settlement curve (Step 12).

Page 93
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Load-displacement curve with nominal downward load resistance identified
Figure C11. Load-displacement curve with nominal downward load resistance identified.

Table C8. Calculated load-displacement values for the octagonal 419mm diameter by 41.76m long precast concrete pile.

δs, δb Rs Rt RT Comments:
δs=side displacement,
δt=toe displacement,
Rs=side resistance,
Rt=end bearing resistance,
RT=total resistance,
Ks=side flexibility factor = 1.58E-7[m/kN],
Kt=toe flexibility factor =1.00E-5[m/kN],
Ms=0.001,
Rsu=ultimate side resistance=2654[kN],
Rtu=ultimate toe resistance=174.6[kN],
Rt,10%=nominal net end bearing esistance=167.6[kN],
D=diameter=419[mm],
su=undrained shear strength=128.44[kPa],
Es,25=128440[kPa],
At=pile toe area=0.145[m2],
Ep=pile modulus= 2.41E+07[kPa],
L=pile length=41.76[m]
[m] [kN] [kN] [kN]
0 0.00 0.00 0.00
0.0005 1443.96 38.77 1482.73
0.001 1870.33 63.45 1933.78
0.0015 2074.52 80.54 2155.06
0.002 2194.30 93.08 2287.37
0.0025 2273.04 102.67 2375.70
0.003 2328.75 110.24 2438.99
0.0035 2370.25 116.37 2486.61
0.004 2402.35 121.43 2523.78
0.0045 2427.93 125.68 2553.61
0.005 2448.79 129.31 2578.10
0.0055 2466.13 132.43 2598.56
0.006 2480.76 135.15 2615.91
0.0065 2493.28 137.54 2630.82
0.007 2504.11 139.66 2643.77
0.0075 2513.57 141.55 2655.13
0.008 2521.91 143.25 2665.16
0.0085 2529.32 144.78 2674.10
0.009 2535.94 146.16 2682.10
0.0095 2541.89 147.43 2689.32
0.01 2547.27 148.58 2695.85
0.015 2581.88 156.36 2738.23
0.02 2599.54 160.55 2760.09
0.025 2610.25 163.18 2773.43
0.03 2617.44 164.98 2782.43
0.035 2622.60 166.29 2788.90
0.04 2626.49 167.29 2793.78
0.045 2629.52 168.07 2797.59
0.05 2631.94 168.71 2800.65

Step 13: Perform limit state checks

Limit state checks were performed to determine if the pile size was suitable for the design loads. For the structural strength limit state, the determined drag load (286kN) was multiplied by the drag load factor (γDR=1.1) to obtain a factored load of drag load 315kN. The unfactored top load (2225kN) placed on the top of the pile was multiplied by the deadload factor (γD=1.25) to obtain a factored deadload of 2781kN. The combined total factored load was 3096kN. The concrete compressive strength for the pre-stressed concrete pile was assumed to be 5000psi (34474kPa) resulting in a factored structural stress of 25856kPa (0.75*34474kPa) and a factored structural strength of 3749kN when the stress was multiplied by the cross-sectional area of the pile (0.145m2). If a concrete compressive strength of 5000psi (34474kPa) was used for the pre-stressed pile then the pile is adequately sized because the factored structural strength (3749kN) was determined to be greater than the combined total factored load (3096kN). If a lower-strength concrete was used for the pre-stressed concrete pile, then the pile would need to be larger in cross-sectional area or lengthened. Either modification to the pile would result in a change in the amount of drag load on the pile; Steps 3 through 13 of the NCHRP12-116A flowchart would need to be repeated to ensure the factored structural strength was greater than the total factored load.

Page 94
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Calculated neutral plane location and settlement amount as obtained from soil settlement-pile settlement intersection
Figure C12. Calculated neutral plane location and settlement amount as obtained from soil settlement-pile settlement intersection.

Table C9. Soil settlement and pile settlement as a function of depth.

z δp δs Comments:
z=depth,
Q=load,
R=resistance,
δp=pile settlement,
δs=soil settlement,
A=pile cross-sectional area=0.145[m2],
Ep=pile elastic modulus=2.41E+07[kPa]
Ls=length of each pile
segment=0.8532[m]
[m] [m] [m]
0.4176 0.0635 0.0972
1.2528 0.0630 0.0939
2.088 0.0625 0.0905
2.9232 0.0619 0.0872
3.7584 0.0614 0.0839
4.5936 0.0608 0.0806
5.4288 0.0603 0.0774
6.264 0.0598 0.0743
7.0992 0.0592 0.0713
7.9344 0.0586 0.0684
8.7696 0.0581 0.0655
9.6048 0.0575 0.0628
10.44 0.0569 0.0601
11.2752 0.0564 0.0575
12.1104 0.0558 0.0550
12.9456 0.0552 0.0526
13.7808 0.0546 0.0503
14.616 0.0540 0.0480
15.4512 0.0534 0.0458
16.2864 0.0528 0.0437
17.1216 0.0522 0.0417
17.9568 0.0516 0.0397
18.792 0.0511 0.0378
19.6272 0.0505 0.0359
20.4624 0.0500 0.0341
21.2976 0.0494 0.0323
22.1328 0.0489 0.0306
22.968 0.0484 0.0289
23.8032 0.0479 0.0273
24.6384 0.0474 0.0257
25.4736 0.0469 0.0242
26.3088 0.0464 0.0227
27.144 0.0459 0.0213
27.9792 0.0455 0.0198
28.8144 0.0451 0.0185
29.6496 0.0447 0.0171
30.4848 0.0443 0.0158
31.32 0.0439 0.0145
32.1552 0.0435 0.0132
32.9904 0.0432 0.0120
33.8256 0.0429 0.0108
34.6608 0.0426 0.0096
35.496 0.0423 0.0085
36.3312 0.0421 0.0073
37.1664 0.0418 0.0062
38.0016 0.0416 0.0051
38.8368 0.0414 0.0041
39.672 0.0413 0.0030
40.5072 0.0412 0.0020
41.3424 0.0411 0.0010
Page 95
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Calculated location of neutral plane from the soil settlement/pile settlement graph
Figure C13. a) Calculated location of neutral plane from the soil settlement/pile settlement graph.

Conclusion:

Hand calculations were performed to determine the amount of drag load and downdrag on a pile being subjected to a change in effective stress from an embankment. Using the flowchart developed during the NCHRP 12-116A project, the downdrag, drag load, and location of the neutral plane were determined to be 0.055m, 286kN, and 13.36m, respectively. If the compressive strength of the concrete in the pile was 5000psi (34474kPa), the pile was determined to be adequately sized to support the loading conditions applied to the pile. This design approach relied upon the use of the DeCock (2009) method based on Chin’s Hyperbolic Model for determination of the load-settlement curve. Inherent assumptions in the design approach for determination of the load-settlement curve led to the suggestion that the neutral plane location determined using the combined load-resistance curve be used instead of the neutral plane location determined using the soil settlement-pile settlement curve.

Page 96
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×

References

Briaud, J.L., and Tucker, L. (1997). NCHRP Report 393: Design and Construction Guidelines for Downdrag on Uncoated and Bitumen-Coated Piles. TRB, National Research Council, Washington, DC.

Coffman, R.A., Budge, A.S., Stuedlein, A.W. (2022). “Report on Phase II Methodology and Design Procedures Interim Deliverable” NCHRP 12-116A Project Deliverable. Transportation Research Board. Version II, July 2022.

Davisson, M.T. (1972) “High Capacity Piles” Proceedings, Lecture Series, Innovations in Foundation Construction, ASCE, Illinois Section, 52 pp.

DeCock, F.A. (2009). Sense and Sensitivity of Pile Load-Deformation Behavior. Deep Foundation on Board and Auger Piles. Taylor and Francis. 22 pp.

Randolph, M.F., and Murphy, B.S. (1985). “Shaft Capacity of Driven Piles in Clay.” Proceedings of the 1985 Offshore Technology Conference. Paper No. OTC-4883-MS. May 6-9. Houston, TX.

Page 73
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 73
Page 74
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 74
Page 75
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 75
Page 76
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 76
Page 77
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 77
Page 78
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 78
Page 79
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 79
Page 80
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 80
Page 81
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 81
Page 82
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 82
Page 83
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 83
Page 84
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 84
Page 85
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 85
Page 86
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 86
Page 87
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 87
Page 88
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 88
Page 89
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 89
Page 90
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 90
Page 91
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 91
Page 92
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 92
Page 93
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 93
Page 94
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 94
Page 95
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 95
Page 96
Suggested Citation:"Appendix C: Design Example 1 - Embankment Fill Over Clay Using Hand Calculations." National Academies of Sciences, Engineering, and Medicine. 2024. Pile Design for Downdrag: Examples and Supporting Materials. Washington, DC: The National Academies Press. doi: 10.17226/27864.
×
Page 96
Next: Appendix D: Design Example 2 - Embankment Fill Over Clay Using PileAXL Program »
Pile Design for Downdrag: Examples and Supporting Materials Get This Book
×
 Pile Design for Downdrag: Examples and Supporting Materials
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

NCHRP Web-Only Document 398: Pile Design for Downdrag: Examples and Supporting Materials from TRB's National Cooperative Highway Research Program, provides appendices to NCHRP Research Report 1112: Design of Piles for Downdrag.

READ FREE ONLINE

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!