Ciência

Por José Tadeu Arantes | Agência FAPESP

Momento magnético é a grandeza que quantifica a interação de uma partícula dotada de spin com um campo magnético, como o de um ímã. Assim como a massa e a carga elétrica, o momento magnético é uma das grandezas fundamentais da física. Existe uma diferença entre o valor teórico do momento magnético do múon, uma partícula que pertence à mesma classe do elétron, e os valores obtidos nos experimentos de altas energias, realizados nos aceleradores de partículas. A diferença só aparece na oitava casa decimal, mas vem intrigando os cientistas desde 1948, quando foi descoberta. E não se trata de um detalhe, pois essa diferença pode indicar que o múon interaja com partículas de matéria escura, outros bósons de Higgs ou, até mesmo, que existam forças diferentes das conhecidas envolvidas no processo.

O valor teórico do momento magnético do múon, representado pela letra “g”, obtido a partir da equação de Dirac (formulada pelo físico inglês Paulo Dirac, 1902-1984, Prêmio Nobel de Física de 1933, um dos fundadores da mecânica e da eletrodinâmica quânticas), é igual a 2. Mas sabemos, hoje, que g não é exatamente igual a 2 e, por isso, existe um grande interesse em entender “g-2”, isto é, a diferença entre o valor experimental e o valor previsto pela equação de Dirac. O melhor valor experimental disponível atualmente, obtido com precisão impressionante no Fermilab, o Fermi National Accelerator Laboratory, nos Estados Unidos, e divulgado em agosto de 2023, é 2,00116592059, mais ou menos 0,00000000022. Informações sobre o experimento realizado no Fermilab, chamado “Muon g-2”, podem ser acessados em: https://muon-g-2.fnal.gov/.

“A determinação precisa do momento magnético do múon tornou-se uma questão central de física de partículas, pois a investigação desse intervalo entre os dados experimentais e as previsões da teoria pode nos proporcionar informações que levem à descoberta de algum efeito novo e espetacular”, diz à Agência FAPESP o físico Diogo Boito, professor do Instituto de Física de São Carlos da Universidade de São Paulo (IFSC-USP).

Ele e colaboradores acabam de publicar um estudo a respeito em Physical Review Letters.

“Nossos resultados foram apresentados em dois importantes eventos internacionais. Primeiro por mim, em um workshop em Madri, na Espanha. Depois por meu colega Maarten Golterman, da San Francisco State University, em um encontro realizado em Berna, na Suíça”, conta Boito.

Esses resultados quantificam e apontam para a origem de uma discrepância entre os dois métodos utilizados nas previsões atuais de g-2. O pesquisador detalha: “Existem atualmente dois métodos para determinar um componente fundamental de g-2. O primeiro baseia-se em dados experimentais. O segundo em simulações computacionais da cromodinâmica quântica (quantum chromodynamics, ou QCD, em inglês), a teoria que estuda as interações fortes entre os quarks. Os dois métodos levam a resultados bastante distintos e isso constitui um grande problema. Sem resolvê-lo, torna-se impossível investigar as contribuições de eventuais partículas exóticas, por exemplo, de novos bósons de Higgs ou de matéria escura, no resultado de g-2”.

O estudo conseguiu explicar tal discrepância. Mas, para entender isso, é preciso dar alguns passos para trás e recomeçar com uma descrição um pouco mais pormenorizada do múon.

O múon é uma partícula que pertence à classe dos léptons – a mesma do elétron. Porém, possui massa muito maior. E, por causa disso, não é estável, sobrevivendo apenas por intervalos de tempo curtíssimos, em contextos de altas energias. Quando interagem entre si, na presença de campos magnéticos, os múons se desconfiguram e reconfiguram, trazendo à presença um grande número de outras partículas: elétrons, pósitrons, bósons W e Z, bósons de Higgs, fótons etc. Assim, nos contextos experimentais, o múon sempre se apresenta acompanhado por miríades de partículas virtuais. São as contribuições dessas partículas que fazem com que o momento magnético efetivo, medido nos experimentos, seja maior do que o momento magnético teórico, igual a 2, calculado pela equação de Dirac.

“Para obter tal diferença [g-2], é preciso considerar todas essas contribuições. Tanto aquelas que a cromodinâmica quântica [que compõe o modelo-padrão da física de partículas] prevê, quanto outros efeitos menores, mas que aparecem em medições experimentais muito precisas. Já conhecemos muito bem várias dessas contribuições. Mas não todas”, afirma Boito.

Os efeitos decorrentes da interação forte não podem ser calculados teoricamente apenas, pois esses cálculos de cromodinâmica quântica são impraticáveis em alguns regimes de energia. Assim, existem duas possibilidades. Uma delas, que já possui um lastro histórico, é recorrer aos dados experimentais obtidos nas colisões de elétrons com pósitrons, que geram outras partículas formadas por quarks. A outra, que se tornou competitiva apenas na década de 2020, é simular, com base na teoria, o processo em supercomputadores. Trata-se da chamada “QCD na rede”.

“O problema central da previsão de g-2 hoje em dia é que o resultado que se obtém usando os dados das colisões elétron-pósitron estão em desacordo com o resultado experimental total, enquanto os resultados baseados na QCD na rede estão em bom acordo com o experimento. E ninguém sabia ao certo por que isso acontecia. Nosso estudo esclarece parte desse quebra-cabeça”, comenta Boito.

Foi exatamente para resolver esse problema que ele e colaboradores realizaram o estudo em pauta. “O artigo atual é resultado de uma série de trabalhos nossos nos quais desenvolvemos um método novo para comparar os resultados de simulação de rede com aqueles obtidos a partir dos dados experimentais. Mostramos ser possível extrair, dos dados, contribuições que são calculadas na rede com grande precisão: a contribuição dos diagramas de Feynman ditos conectados”, informa o pesquisador.

Aqui é preciso abrir um pequeno parêntese para dizer que os diagramas de Feynman, criados no final da década de 1940 pelo físico norte-americano Richard Feynman (1918-1988), Prêmio Nobel de Física de 1965, são representações gráficas utilizadas para descrever as interações entre partículas e simplificar os respectivos cálculos.

“No presente estudo, obtivemos, pela primeira vez, com grande precisão, as contribuições dos diagramas de Feynman conectados na chamada ‘janela intermediária de energia’. Hoje, temos oito resultados para essas contribuições, obtidos com simulações de QCD na rede, e todos eles em bom acordo entre si. E mostramos que os resultados vindos dos dados da interação elétron-pósitron não concordam com esses oito resultados das simulações”, afirma Boito.

Segundo o pesquisador, isso possibilita entender onde está o problema e quais seriam as possíveis soluções para ele. “Ficou claro que, se os dados experimentais para o canal de dois píons [mésons, isto é, partículas formadas por um quark e um antiquark, produzidas em colisões de alta energia] estiverem subestimados por alguma razão, esta pode ser a causa da discrepância”, resume. De fato, dados novos, ainda em processo de revisão por pares, do Experimento CMD-3, realizado na Universidade de Novosibirsk, na Rússia, parecem indicar que os dados mais antigos do canal de dois píons poderiam estar, por alguma razão, subestimados.

Todo o trabalho feito por Boito neste estudo foi realizado no contexto de seu projeto “Testes do modelo padrão: QCD de precisão e g-2 do múon”, contemplado com Auxílio à Pesquisa Jovens Pesquisadores Fase 2 pela FAPESP.

O artigo Data-driven determination of the light-quark connected component of the intermediate-window contribution to the muon g-2 pode ser acessado em: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.251803.

Mais recente Próxima Exposição sensorial da natureza é um dos destaques do Museu do Amanhã neste mês
Mais de Galileu

Experimentos em diferentes regiões do planeta mostram que uso de tinta branca em espaços urbanos pode reduzir consideravelmente os impactos do calor excessivo

Pintar telhados de branco pode diminuir temperatura de cidades em até 2ºC

Pesquisadores analisaram 336 músicas que alcançaram as posições mais altas da parada da Billboard entre 1950 e 2022 para entender impacto das novas tecnologias de produção musical

73 anos de hits da Billboard comprovam: melodia das músicas ficou mais simples

Pesquisadores acreditam ser improvável proteger as gravuras milenares, feitas em pedras no deserto de Israel, que se deterioram com o passar do tempo

Pinturas em pedra de 5 mil anos vão desaparecer por ação de fungo do deserto

O auge do desempenho esportivo, representado pelos Jogos Olímpicos, faz pensar: até que ponto superar limites, arriscando a saúde física e mental, é algo que pode ser recompensado pelo lugar mais alto do pódio?

Quanto custa uma medalha de ouro? Uma reflexão sobre esforço e glória no esporte

Peter Colat é especialista em mergulho livre e acumula dezenas de vitórias na modalidade. Agora, ele escreve novamente seu nome no Guinness Book - passando muito frio no processo

Suíço nada 100 metros em lago congelado sem respirar e bate recordes

O fenômeno acontece todos os anos no mês de julho, e marca o momento em que a distância do planeta até a estrela é de “apenas” 152,6 milhões de quilômetros

O que é o Afélio, que faz a Terra ficar mais distante do Sol nesta sexta

No passado, cientistas usavam 100 quilos do tubérculo todos os meses para fabricar o imunizante, que protege contra formas graves da tuberculose. Saiba mais sobre essa história

O que batatas têm a ver com a vacina BCG feita pelo Instituto Butantan

Condição atinge homens e mulheres e é mais comum em pessoas com mais de 40 anos; procurar tratamento com rapidez é importante para evitar agravamento do caso

Ir muitas vezes ao banheiro pode ser sinal de bexiga hiperativa; entenda

Técnica para tratar a doença, que já dizimou dezenas de espécies de anfíbios pelo mundo, é simples: aumentar a temperatura dos anfíbios de propósito para conter avanço do fungo

Cientistas criam saunas de rãs para salvar espécies de fungo mortal

Empresa responsável por administrar forte do império romano faz escavações abertas ao público todos os anos. A temporada 2024 revelou coleção de objetos inédita

Sandália romana e restos de armaduras são achados em forte na Inglaterra